

Prof. Esteban Walter Gonzalez Clua, Dr.

Cuda Fellow

Computer Science Department

Universidade Federal Fluminense – Brazi

Universidade Federal Fluminense Rio de Janeiro - Brasil

TOP 10 Sites for November 2000

For more information about the sites and systems in the list, click on the links or view the complete list.

Release

- The List
- Press Release (PDF)
- Press Release
- · List highlights

Downloads

- TOP500 List (XML)
- TOP500 List (Excel)
- TOP500 Poster
- · Poster in PDF

	Rank	Site	System	Cores	Rmax (GFlop/s)	Rpeak (GFlop/s)	Power (kW)
	1	Lawrence Livermore National Laboratory United States	ASCI White, SP Power3 375 MHz IBM	8192	4938.0	12288.0	
	2	Sandia National Laboratories United States	ASCI Red Intel	9632	2379.0	3207.0	
	3	Lawrence Livermore National Laboratory	ASCI Blue-Pacific SST, IBM SP 604e	5808	2144.0	3856.5	

1 Million Watts

Volta

The most advanced accelerator ever built

Personal Clusters

SYSTEM SPECIFICATIONS

GPUs	4X Tesla V100				
TFLOPS (GPU FP16)	480				
GPU Memory	64 GB total system				
NVIDIA Tensor Cores	2,560				
NVIDIA CUDA® Cores	20,480				
CPU	Intel Xeon E5-2698 v4 2.2 GHz (20-Core)				
System Memory	256 GB LRDIMM DDR4				
Storage	Data: 3X 1.92 TB SSD RAID 0 OS: 1X 1.92 TB SSD				
Network	Dual 10 Gb LAN				
Display	3X DisplayPort, 4K resolution				
Acoustics	< 35 dB				

More than the sum of all Top 500 systems of the year 2000

Big Bang of IA

Heterogeneous Computing

```
using namespace std;
#define N 1024
#define RADIUS 3
 _global__ void stencil_1d(int *in, int *out) {
    __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
        int gindex = threadIdx.x + blockIdx.x * blockDim.x
        int lindex = threadldx.x + RADIUS;
                temp[lindex - RADIUS] = in[gindex - RADIUS];
                temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
       // Synchronize (ensure all the data is available)
        // Apply the stencil
        for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
                result += temp[lindex + offset]:
        out[gindex] = result;
void fill ints(int *x, int n) {
       fill n(x, n, 1):
int main(void) {
                           // host copies of a, b, c
                              // device copies of a, b, c
       int size = (N + 2*RADIUS) * sizeof(int);
       // Alloc space for host copies and setup values
        in = (int *)malloc(size); fill ints(in, N + 2*RADIUS);
        out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);
        // Alloc space for device copies
        cudaMalloc((void **)&d_in, size);
        cudaMalloc((void **)&d_out, size);
       // Copy to device cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
        cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);
        // Launch stencil 1d/) kernel on GPLI
        stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS,
        // Copy result back to host
        cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);
        free(in); free(out);
        cudaFree(d_in); cudaFree(d_out);
```


Modelo SIMT

SIMT

means

Single Instruction Multiple Thread

. . .

by allacronyms.com

How CUDA works?

```
global void int int
                                 int
   int i= threadIdx.x + blockIdx.x * blockDim.x;
   d c[i] = d a[i] + d b[i];
int main()
     vecAdd <<<K,M>>> (A, B, C); // K*M >= N
```

Overview

6 GPCs, <u>84</u> Volta SMs, 42 TPCs (each including two SMs), and eight 512-bit memory controllers (4096 bits total). Each SM has 64 FP32 Cores, 64 INT32 Cores, 32 FP64 Cores, and 8 new Tensor Cores. Each SM also includes four texture units. <u>5376</u> FP32 cores, 5376 INT32 cores, 2688 FP64 cores, <u>672</u> Tensor Cores, and 336 texture units

9	Tesla Product	Tesla K40	Tesla M40	Tesla P100	Tesla V100
Overview	GPU	GK110 (Kepler)	GM200 (Maxwell)	GP100 (Pascal)	GV100 (Volta)
	SMs	15	24	56	80
	TPCs	15	24	28	40
	FP32 Cores / SM	192	128	64	64
	FP32 Cores / GPU	2880	3072	3584	5120
	FP64 Cores / SM	64	4	32	32
	FP64 Cores / GPU	960	96	1792	2560
	Tensor Cores / SM	NA	NA	NA	8
	Tensor Cores / GPU	NA	NA	NA	640
	GPU Boost Clock	810/875 MHz	1114 MHz	1480 MHz	1455 MHz
	Peak FP32 TFLOP/s*	5.04	6.8	10.6	15
	Peak FP64 TFLOP/s*	1.68	2.1	5.3	7.5
	Peak Tensor Core TFLOP/s*	NA	NA	NA	120
	Texture Units	240	192	224	320
	Memory Interface	384-bit GDDR5	384-bit GDDR5	4096-bit HBM2	4096-bit HBM2
	Memory Size	Up to 12 GB	Up to 24 GB	16 GB	16 GB
	L2 Cache Size	1536 KB	3072 KB	4096 KB	6144 KB
	Shared Memory Size / SM	16 KB/32 KB/48 KB	96 KB	64 KB	Configurable up to 96 KB
	Register File Size / SM	256 KB	256 KB	256 KB	256KB
	Register File Size / GPU	3840 KB	6144 KB	14336 KB	20480 KB
	TDP	235 Watts	250 Watts	300 Watts	300 Watts
	Transistors	7.1 billion	8 billion	15.3	21.1 billion
⊗				billion	

Why GPUs became as powerfull (and indispensable) to Deep Learning as they are for Rendering?

Tensor Cores

$$(FP16/FP32) D = (FP16) A x B + C (4 x 4 x 4)$$

64 FP operation per clock → full process in 1 clock cycle

8 TC per SM → 1024 FP per clock per SM

Mixed Precision

"Deep learning have found that deep neural network architectures have a natural resilience to errors due to the backpropagation algorithm used in training them, and some developers have argued that 16-bit floating point (half precision, or FP16) is sufficient for training neural networks."

New SIMT model

Until Pascal: 32 threads per warp in SIMT scheme

```
if (threadIdx.x < 4) {
        A;
        B;
} else {
        X;
        Y;
}
Z;</pre>
```


There is no control in the thread level sync at the divergence, in the same warp

New SIMT model

Volta allows to group threads at a warp level

```
if (threadIdx.x < 4) {
    A;
    B;
} else {
    X;
    Y;
}

Z;

—syncwarp()</pre>

X;

Y;

Z;

Time
```

There is no control in the thread level sync at the divergence, in the same warp

Cooperative Groups

```
global void cooperative kernel(...)
  // obtain default "current thread block" group
  thread group my block = this thread block();
  // subdivide into 32-thread, tiled subgroups
  // Tiled subgroups evenly partition a parent group into
  // adjacent sets of threads - in this case each one warp in siz
  thread group my tile = tiled partition(my block, 32);
  // This operation will be performed by only the
  // first 32-thread tile of each block
  if (my block.thread rank() < 32) {
      my tile.sync();
```


Cooperative Groups - Example

```
// threads update particles in parallel
integrate<<<blooks, threads, 0, s>>>(particles);

// Note: implicit sync between kernel launches

// Collide each particle with others in neighborhood
collide<<<<blooks, threads, 0, s>>>(particles);
```

Cooperative Groups - Example

```
__global__ void particleSim(Particle *p, int N) {
   thread_group g = this_grid();
   // phase 1
   for (i = g.thread_rank(); i < N; i += g.size())
      integrate(p[i]);

   g.sync() // Sync whole grid

   // phase 2
   for (i = g.thread_rank(); i < N; i += g.size())
      collide(p[i], p, N);
}</pre>
```


Faster Memory

900 GB/sec peak bandwidth NVLink 2.0

GPU Educational Kit

UFF NVIDIA CENTER OF EXCELENCE

Home

Learn GPU Computing

Research

Papers

People

Downloads

Contact US

Posts

Search

GPU-accelerated computing is the use of a graphics processing unit (GPU) together with a CPU to accelerate scientific, analytics, engineering, consumer. and enterprise applications. Pioneered in 2007 by NVIDIA®, GPU accelerators now power energy-efficient datacenters in government labs, universities, enterprises, and small-and-medium businesses around the world. GPUs are accelerating applications in platforms ranging from cars, to mobile phones and tablets, to drones and robots.

HOW GPUS ACCELERATE APPLICATIONS

GPU-accelerated computing offers unprecedented application performance by offloading compute-intensive portions of the application to the GPU, while the remainder of the code still runs on the CPU. From a user's perspective, applications simply run significantly faster.

How GPU Acceleration Works

Application Code

GET STARTED TODAY

There are three basic approaches to adding GPU acceleration to your applications:

- ✓ Dropping in GPU-optimized libraries
- ✓ Adding compiler "hints" to auto-parallelize your code
- ✓ Using extensions to standard languages like C and Fortran

Learning how to use GPUs with the CUDA parallel programming model is

For free online classes and developer resources visit CUDA zone.

GPU Educational Kit

Curso completo de Programação em GPUs: (legendado para Português)

http://www2.ic.uff.br/~gpu/kit-de-ensino-gpgpu/

Curso de Deep Learning em GPUs: (Português)

http://www2.ic.uff.br/~gpu/learn-gpu-computing/deep-learning/

Save the date

S8885 - Opening Keynote

Session Speakers

Jensen Huang - Founder & CEO, NVIDIA

Session Description

Don't miss this keynote from NVIDIA Founder & CEO, Jensen Huang, as he speaks on the future of computing.

Additional Information

ALL TOPICS: Deep Learning and Al Frameworks, Autonomous Vehicles,

Autonomous Machines, IoT, Robotics & Drones, Data Center and

Cloud Infrastructure

INDUSTRY SEGMENTS: General

AUDIENCE LEVEL: All technical

SESSION TYPE: Keynote

SESSION LENGTH: 2 hours

Session Schedule

Tuesday, Mar 27, 9:00 AM - 11:00 AM - Hall 3 (Keynote Hall)

27 de março 9AM San Jose, CA 2PM Brasil/Argentina

