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1 Million Watts 



Volta 
The most advanced accelerator ever built 



•  7.5 TFLOP/s of double precision floating-point (FP64) performance; 

•  15 TFLOP/s of single precision (FP32) performance; 

•  120 Tensor TFLOP/s of mixed-precision matrix-multiply-and-
accumulate. 

Capacity 



More than the sum of 
all Top 500  systems  
of the year 2000 





Volta Architecture 



Or the 3 things you must 
learn by heart at this talk…. 



#1 – we are talking about Heterogeneous 
Computing 

§  Host  The CPU and its memory (host memory) 
§  Device  The GPU and its memory (Global memory) 

Host 
Device 



Heterogeneous Computing 
#include <iostream> 
#include <algorithm> 
 
using namespace std; 
 
#define N          1024 
#define RADIUS     3 
#define BLOCK_SIZE 16 
 
__global__ void stencil_1d(int *in, int *out) { 
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS]; 
 int gindex = threadIdx.x + blockIdx.x * blockDim.x; 
 int lindex = threadIdx.x + RADIUS; 
 
 // Read input elements into shared memory 
 temp[lindex] = in[gindex]; 
 if (threadIdx.x < RADIUS) { 
  temp[lindex - RADIUS] = in[gindex - RADIUS]; 
  temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE]; 
 } 
 
 // Synchronize (ensure all the data is available) 
 __syncthreads(); 
 
 // Apply the stencil 
 int result = 0; 
 for (int offset = -RADIUS ; offset <= RADIUS ; offset++) 
  result += temp[lindex + offset]; 
 
 // Store the result 
 out[gindex] = result; 
} 
 
void fill_ints(int *x, int n) { 
 fill_n(x, n, 1); 
} 
 
int main(void) { 
 int *in, *out;              // host copies of a, b, c 
 int *d_in, *d_out;          // device copies of a, b, c 
 int size = (N + 2*RADIUS) * sizeof(int); 
 
 // Alloc space for host copies and setup values 
 in  = (int *)malloc(size); fill_ints(in,  N + 2*RADIUS); 
 out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS); 
  
 // Alloc space for device copies 
 cudaMalloc((void **)&d_in,  size); 
 cudaMalloc((void **)&d_out, size); 
 
 // Copy to device 
 cudaMemcpy(d_in,  in,  size, cudaMemcpyHostToDevice); 
 cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice); 
 
 // Launch stencil_1d() kernel on GPU 
 stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, 
d_out + RADIUS); 
 
 // Copy result back to host 
 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost); 
 
 // Cleanup 
 free(in); free(out); 
 cudaFree(d_in); cudaFree(d_out); 
 return 0; 
} 
 

serial code 

parallel code 

serial code 

parallel fn 

This slide is credited to Mark 
Harris (nvidia)  



#2 – Memory bandwidth matters!... 



GPU Computing Flow 
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1.  Copy input data from CPU memory 
to GPU memory 

PCI Bus 
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GPU Computing Flow 

1.  Copy input data from CPU memory 
to GPU memory 

2.  Load GPU program and execute, 
caching data on chip for 
performance 

3.  Copy results from GPU memory to 
CPU memory 

PCI Bus 

224GB/s 
(56 Gfloats/s) 

11TFlops 



#3 – 1 kernels, lots of threads... 



How things work at GPU x CPU 

F1 
F2 

F3 
F4 

Only ~1% of CPU is dedicated to 
computation, 99% to moving/storing data 
to combat latency.  
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Modelo SIMT 
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GPU x CPU 

F1 F2 F3 F4 Kernel 

Only ~1% of CPU is dedicated to 
computation, 99% to moving/storing data 
to combat latency.  

Intel i7 Bloomfield 

Kepler K10 



How CUDA works? 
  

__global__ void add(int *d_a, int *d_b, int *d_c) { 
    int i= threadIdx.x + blockIdx.x * blockDim.x; 
    d_c[i] = d_a[i] + d_b[i]; 
} 
 
 
int main() 
{ 

 vecAdd <<<K,M>>>(A, B, C);  //  K*M >= N 
} 
 



6 GPCs, 84 Volta SMs, 42 TPCs (each including two SMs), 
and eight 512-bit memory controllers (4096 bits total). Each 
SM has 64 FP32 Cores, 64 INT32 Cores, 32 FP64 Cores, 
and 8 new Tensor Cores. Each SM also includes four 
texture units. 5376 FP32 cores, 5376 INT32 cores, 2688 
FP64 cores, 672 Tensor Cores, and 336 texture units 

Overview 



Overview 



Volta SM 

Compute capability 



Volta SM 



Why GPUs became as powerfull (and 
indispensable) to Deep Learning as they are 
for Rendering? 
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Tensor Cores 



Tensor Cores 

(FP16/FP32) D = (FP16) A x B + C (4 x 4 x 4) 
 
64 FP operation per clock à full process in 1 clock cycle 
 

8 TC per SM à 1024 FP per clock per SM  
 



Mixed Precision 
“Deep learning have found that deep neural network 
architectures have a natural resilience to errors due to the 
backpropagation algorithm used in training them, and some 
developers  have argued that 16-bit floating point (half 
precision, or FP16) is sufficient for training neural 
networks.” 
 



New SIMT model 

Until Pascal: 32 threads per warp in SIMT scheme 

There is no control in the thread level sync at the 
divergence, in the same warp 



New SIMT model 

Volta allows to group threads at a warp level 

There is no control in the thread level sync at the 
divergence, in the same warp 



Cooperative Groups 



Cooperative Groups - Example 
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Cooperative Groups - Example 



Closer to Unified Memory 

Both CPU and GPU 
accessing the data 



900 GB/sec peak bandwidth 
NVLink 2.0 
 

Faster Memory 





Curso	completo	de	Programação	em	GPUs:	
(legendado	para	Português)	
	
hJp://www2.ic.uff.br/~gpu/kit-de-ensino-gpgpu/	
	
Curso	de	Deep	Learning	em	GPUs:	
(Português)	
	
hJp://www2.ic.uff.br/~gpu/learn-gpu-compuRng/deep-learning/	
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