
Prof.	Esteban	Walter	Gonzalez	Clua,	Dr.	
Cuda	Fellow	
Computer	Science	Department	
Universidade	Federal	Fluminense	–	Brazil	

GPU	Architectures	
Volta,	Cuda	9	and	Beyond...	

Universidade Federal Fluminense
Rio de Janeiro - Brasil

1 Million Watts

Volta
The most advanced accelerator ever built

•  7.5 TFLOP/s of double precision floating-point (FP64) performance;

•  15 TFLOP/s of single precision (FP32) performance;

•  120 Tensor TFLOP/s of mixed-precision matrix-multiply-and-
accumulate.

Capacity

More than the sum of
all Top 500 systems
of the year 2000

Volta Architecture

Or the 3 things you must
learn by heart at this talk….

#1 – we are talking about Heterogeneous
Computing

§  Host The CPU and its memory (host memory)
§  Device The GPU and its memory (Global memory)

Host
Device

Heterogeneous Computing
#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 int gindex = threadIdx.x + blockIdx.x * blockDim.x;
 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory
 temp[lindex] = in[gindex];
 if (threadIdx.x < RADIUS) {
 temp[lindex - RADIUS] = in[gindex - RADIUS];
 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
 }

 // Synchronize (ensure all the data is available)
 __syncthreads();

 // Apply the stencil
 int result = 0;
 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
 result += temp[lindex + offset];

 // Store the result
 out[gindex] = result;
}

void fill_ints(int *x, int n) {
 fill_n(x, n, 1);
}

int main(void) {
 int *in, *out; // host copies of a, b, c
 int *d_in, *d_out; // device copies of a, b, c
 int size = (N + 2*RADIUS) * sizeof(int);

 // Alloc space for host copies and setup values
 in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);
 out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

 // Alloc space for device copies
 cudaMalloc((void **)&d_in, size);
 cudaMalloc((void **)&d_out, size);

 // Copy to device
 cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

 // Launch stencil_1d() kernel on GPU
 stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS,
d_out + RADIUS);

 // Copy result back to host
 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

 // Cleanup
 free(in); free(out);
 cudaFree(d_in); cudaFree(d_out);
 return 0;
}

serial code

parallel code

serial code

parallel fn

This slide is credited to Mark
Harris (nvidia)

#2 – Memory bandwidth matters!...

GPU Computing Flow

This slide is credited to Mark
Harris (nvidia)

1.  Copy input data from CPU memory
to GPU memory

PCI Bus

GPU Computing Flow

This slide is credited to Mark
Harris (nvidia)

1.  Copy input data from CPU memory
to GPU memory

2.  Load GPU program and execute,
caching data on chip for
performance

PCI Bus

GPU Computing Flow

This slide is credited to Mark
Harris (nvidia)

1.  Copy input data from CPU memory
to GPU memory

2.  Load GPU program and execute,
caching data on chip for
performance

3.  Copy results from GPU memory to
CPU memory

PCI Bus

GPU Computing Flow

1.  Copy input data from CPU memory
to GPU memory

2.  Load GPU program and execute,
caching data on chip for
performance

3.  Copy results from GPU memory to
CPU memory

PCI Bus

224GB/s
(56 Gfloats/s)

15TFlops

GPU Computing Flow

1.  Copy input data from CPU memory
to GPU memory

2.  Load GPU program and execute,
caching data on chip for
performance

3.  Copy results from GPU memory to
CPU memory

PCI Bus

224GB/s
(56 Gfloats/s)

11TFlops

#3 – 1 kernels, lots of threads...

How things work at GPU x CPU

F1
F2

F3
F4

Only ~1% of CPU is dedicated to
computation, 99% to moving/storing data
to combat latency.

How things work at GPU x CPU

F1
F2

F3
F4 Kernel

Only ~1% of CPU is dedicated to
computation, 99% to moving/storing data
to combat latency.

Modelo SIMT

GPU x CPU

F1 F2 F3 F4

Only ~1% of CPU is dedicated to
computation, 99% to moving/storing data
to combat latency.

Intel i7 Bloomfield

GPU x CPU

F1 F2 F3 F4 Kernel

Only ~1% of CPU is dedicated to
computation, 99% to moving/storing data
to combat latency.

Intel i7 Bloomfield

Kepler K10

How CUDA works?

__global__ void add(int *d_a, int *d_b, int *d_c) {
 int i= threadIdx.x + blockIdx.x * blockDim.x;
 d_c[i] = d_a[i] + d_b[i];
}

int main()
{

 vecAdd <<<K,M>>>(A, B, C); // K*M >= N
}

6 GPCs, 84 Volta SMs, 42 TPCs (each including two SMs),
and eight 512-bit memory controllers (4096 bits total). Each
SM has 64 FP32 Cores, 64 INT32 Cores, 32 FP64 Cores,
and 8 new Tensor Cores. Each SM also includes four
texture units. 5376 FP32 cores, 5376 INT32 cores, 2688
FP64 cores, 672 Tensor Cores, and 336 texture units

Overview

Overview

Volta SM

Compute capability

Volta SM

Why GPUs became as powerfull (and
indispensable) to Deep Learning as they are
for Rendering?

Why GPUs became as powerfull (and
indispensable) to Deep Learning as they are
for Rendering?

Why GPUs became as powerfull (and
indispensable) to Deep Learning as they are
for Rendering?

Tensor Cores

Tensor Cores

(FP16/FP32) D = (FP16) A x B + C (4 x 4 x 4)

64 FP operation per clock à full process in 1 clock cycle

8 TC per SM à 1024 FP per clock per SM

Mixed Precision
“Deep learning have found that deep neural network
architectures have a natural resilience to errors due to the
backpropagation algorithm used in training them, and some
developers have argued that 16-bit floating point (half
precision, or FP16) is sufficient for training neural
networks.”

New SIMT model

Until Pascal: 32 threads per warp in SIMT scheme

There is no control in the thread level sync at the
divergence, in the same warp

New SIMT model

Volta allows to group threads at a warp level

There is no control in the thread level sync at the
divergence, in the same warp

Cooperative Groups

Cooperative Groups - Example

Cooperative Groups - Example

Cooperative Groups - Example

Closer to Unified Memory

Both CPU and GPU
accessing the data

900 GB/sec peak bandwidth
NVLink 2.0

Faster Memory

Curso	completo	de	Programação	em	GPUs:	
(legendado	para	Português)	
	
hJp://www2.ic.uff.br/~gpu/kit-de-ensino-gpgpu/	
	
Curso	de	Deep	Learning	em	GPUs:	
(Português)	
	
hJp://www2.ic.uff.br/~gpu/learn-gpu-compuRng/deep-learning/	
	
	

27 de março
9AM San Jose, CA
2PM Brasil/Argentina

