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1 Introduction

Many variations on the Art Gallery problem
have been proposed. A comprehensive list can
be found in O’Rourke’s book [7] and in Sher-
mer’s survey [8]. We propose yet another an-
other variation, that surprisingly has not been
studied before. The motivation follows from a
common practice with real-life guards.

In real-life, almost any area can be guarded
by a single, mobile guard. However, if left to his
own devices, a security guard may not patrol as
often nor as thoroughly as the employer wishes.
To ensure compliance, check-in stations that the
guard has to physically visit on a regular basis
may be installed.

The lazy guard problem is thus as follows:
Given a polygon, choose a minimum number of
stations (points) in the polygon such that a mo-
bile guard that visits all stations will guard the
entire polygon. A polygon that can be guarded
with k stations is said to be lazy k guardable.

2 Lazy guarding a simple poly-
gon

In general we allow the guard to utilize any route
between stations, in which case specifying an or-
dering in which the stations must be visited does
not change the problem. If the guard instead

follows the shortest path route between stations
(the short lazy guard problem) then we may dis-
tinguish the ordered and unordered versions of
the problem. Ordering clearly does not matter

for one and two stations. Figure 1 is a polygon

with a hole that can be three-station guarded by
a short lazy guard (as shown) if the guard must
visit the stations in order ABCA but not if the
guard visits in order ABACA.

The class of short lazy k guardable polygons
is thus a strict superset of lazy k guardable poly-
gons for k > 3.

Theorem 1 For simple polygons, ordering sta-
tions does not matter and the class of lazy k
guardable simple polygons is identical to the class
of short lazy k guardable simple polygons.

Proof:

Suppose a simple polygon is short lazy guard-
able with k stations visited in some specified or-
der.

Take any point p of the polygon. This point
is guarded during a shortest route from some sta-
tion a to its neighbour b in the specified order.
Extend a straight line from p to the route and
continue to extend the line until it intersects the
far edge of the polygon.

This constructed line divides the polygon
into two pieces, one containing ¢ and one con-
taining b. Regardless of the order in which a
lazy guard visits the stations, and regardless of
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Figure 1: Three-station short lazy guardable with order ABCA

the route taken, the guard must cross this line
and thus guard p. g

For later proofs, it is sometimes convenient to
assume that the guard follows the shortest path
between stations, and that the stations are or-
dered so that the guard’s route forms a simple
(perhaps degenerate) polygon. We call this the
guard’s polygon.

There is no distinction between one guard-
able polygons and lazy one guardable polygons;
both are the class of star polygons, and the
guard/station can not always be placed on the
boundary of the polygon (figure 2).

For k larger than one, lazy k guardable poly-
gons are a strict superset of k guardable polygons
(figure 3).

Some stationary two guardable polygons re-
quire the guards to be positioned in the interior
of the polygon (refer again to figure 2). How-
ever this is not necessary for lazy two guardable
simple polygons.

Lemma 2 Any simple polygon which is lazy two
guardable may be guarded with the stations placed
on the boundary of the polygon.

Proof:

From lemma 1, we can restrict ourselves to
the case of short lazy two guardable polygons.
The guard’s polygon is a piecewise linear chain.

Extend the end segments of this chain until they
intersect the boundary of the polygon. If the
stations are moved to these intersection points
the shortest route between them is a superset
of the original guard’s polygon, and thus guards
the entire polygon. g

Theorem 3 Any simple polygon which is lazy
guardable may be guarded with the same number
of stations placed on the boundary of the polygon.

Proof:

Proven already for two guards (lemma 2).

By theorem 1 we consider the guard’s poly-
gon, and let s; be a station not on the boundary,
with neighbours sg and s;. Bisect the exterior
angle /sps;sz and extend the bisector until it
meets the boundary of the polygon at sj. Re-
place station s; with a station at sj.

The new guard’s polygon contains the entire
old guard’s polygon, and so the polygon is still
lazy guarded by the new set of stations. This
process can be repeated until all stations are on
the boundary of the polygon. g

A street polygon [4] is a simple polygon
whose border can be divided into two chains
(called left and right respectively) meeting at
common points s and ¢, such that any point on
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Figure 2: Stationary guardable only with a point in interior of polygon

Figure 3: Lazy 2 guardable

the left chain is visible to some point on the right
chain, and vice-versa.

We will generalize the notion of a street poly-
gon to more than two vertices. Consider a poly-
gon along with k > 2 end points on the bound-
ary. Each pair of consecutive end points deter-
mines a polygonal chain. The polygon along
with the end points form a k-street polygon if
and only if every non-end point can see some
point on a different chain (each end point is con-
sidered to be on both of the chains meeting at
that end point).

Theorem 4 A simple polygon is lazy k guard-
able (with k > 2) if and only if it admits a choice
of k end points so as to form a k-street.

Proof sketch:

Let p be a point on the polygon boundary.

(=) Move stations to the boundary. Extend
a line from p to the guard’s polygon and con-
tinue until you hit the other side of the polygon.
This divides the polygon into two pieces, with
stations in both pieces, so the line must connect
p to a different chain.

(<) Place a guard at each of the k end points.
Extend a line from p to a point on another chain.
This line divides the polygon into two pieces,
each containing a station, so p is guarded. g

We give necessary and sufficient conditions
for recognizing a k-street, starting with some no-
tation.

Given two points, s and ¢, on the boundary
of P, we use C(s,t) to denote the subset of the
boundary of P traced by a clockwise traversal
of P from the point s to t inclusive. Let C(s,t)

‘denote the complementary part of the boundary

of P. Consider a reflex vertex p in the polygon
P. Let p* and p~ respectively denote the clock-
wise and counter-clockwise vertices of P adjacent
to p. Extend the ray anchored at p* through p
and denote the first point of intersection with the
boundary of P as r(p*). Similarly we can obtain
r(p~) by extending the ray from p~ through p.
We define the clockwise component of the reflex
vertex p as the chain C(p,r(p*)). Similarly the
counter-clockwise component of a reflex vertex p
is the chain C(r(p~),p).
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The following characterization is due to Ick-
ing and Klein [4].

Lemma 5 The chain C(s,t) is weakly visible
from C(s,t) if and only if C(s,t) does not con-
tain a clockwise or counter-clockwise component.

We can now solve the lazy guard problem.

Algorithm:

1. Compute the clockwise and counter-
clockwise components of polygon P. This
can be done in linear time [3].

2. Once the components have been identified
we can determine a smallest number of
points such that each component has at
least one point in it. This problem can
be described in terms in covering a set of
arcs on a circle with a minimum number of
points, and is solvable in linear time [5].

Thus we have the following theorem.

Theorem 6 An optimal placement of stations
for lazy guarding a simple polygon can be found
in linear time.

3 Lazy guarding a polygon
with holes is NP-complete

Consider the following decision problem.

LG:

INSTANCE: A polygon P (possibly with
holes) with vertices at rational coordinates, and
an integer k.

QUESTION: Is P lazy k guardable?

Lemma 7 LG is in NP.

Proof sketch:

Given a proposed solution consisting of k
guard stations, we can verify that the solution
is valid in polynomial time.

Extend lines through every pair of visible
points (vertices and guard stations) partitioning
P into regions consisting of points (where lines

intersect), open line segments between intersec-
tions, and open regions.

It can be shown that all points in a region
are essentially the same. We choose one sample
point p from each region and construct its vis-
ibility polygon. The point p, and hence its en-
tire region, is guarded if and only if the visibility
polygon either contains a station, or partitions P
into more than one piece containing a station. g

We will reduce a known NP-complete prob-
lem to LG. A verter cover of a graph G = (V, E)
is a subset of V that contains at least one end-
point of every edge in E.

VCP3:

INSTANCE: G a connected planar graph
with degree at most three, and an integer k.

QUESTION: Is there a vertex cover of G of
size at most k?

VCP3 is NP-complete [2, 6]. We prove that
finding a minimal placement of stationary guards
for a polygon with holes is NP-complete. This
result is known (a different proof is found in [7]),
however, our proof serves as a useful first step
for establishing that LG is NP-complete. We de-
scribe the stationary guard problem in terms of
a polygon cover. Let P be a polygon and let §
be a set of points in P (in the interior or on the
boundary of P). Let Vis(S) denote the union of
the visibility polygons of the points in S.

SG:

INSTANCE: A polygon P (possibly with
holes) with vertices at rational coordinates, and
an integer k.

QUESTION: Is there a set of points S in P,
of cardinality k, such that Vis(S) covers P?

Lemma 8 SG is NP-complete.

Proof sketch:

It is a routine matter to verify, in polyno-
mial time, if for a given set of points .S in P that
Vis(S) covers P. Thus SG is in NP.

We show that VCP3 is polynomially re-
ducible to SG. Let G = (V, E) be a connected
planar graph with degree at most three. To cre-
ate a polygon with holes, P, we obtain a straight
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line drawing of G such that each vertex is rep-
resented by a point, and each edge by a straight
line segment. Furthermore, we insist that no ver-
tices in the drawing are on the same horizontal
line, and that no two adjacent edges are collinear.
That such a drawing can be obtained in polyno-
mial time is well known, see [1]. We now in-
flate each line segment so that it has some finite
width, that is, we map line segments to rectan-
gles. We attach thin spikes to the end of each
rectangle. These spikes will enforce a required
visibility property. The details follow. See fig-
ure 5. Note that to see into the spike a guard
must be within the corridor.

It is fairly easy to see that the polygon ob-
tained has all of its vertices at rational coor-
dinates, using a polynomial amount of space.
We figuratively call each spiked rectangle cor-
responding to an edge e of G the corridor c(e).
Polygon P is the the union of all of the corri-
dors. Because of the spikes, P has the property
that a corridor is .covered by Vis({s}) only if s
lies well inside the corridor—the long walls of the
rectangle are not visible from part of the spike.

We call the intersection of corridors corre-
sponding to a vertex v, room(v). Suppose that
G has a k vertex cover. It is easy to see that by
placing a guard in room(v), for every v in the
cover of G, we get a stationary guarding of P.

On the other hand, assume that P is guarded
by a set of k guards S. Let s be one of the guards
in S. If s lies in a set of corridors C then we as-
sociate s to a vertex v such that room(v) is in
the intersection of the corridors in C.

If every corridor is guarded, then each cor-
ridor must have a guard lying in it. Therefore,
each edge of G is also covered.

Thus we have shown that P is guarded by k
guards if and only if G has a k vertex cover. g

We proceed by showing that LG is NP-
complete.

Theorem 9 LG is NP-complete.

Proof:
The reduction is again from VCP3.

We construct a polygon with holes P from
a planar graph G, of degree at most three, com-
posed of two components which we call corridors,
and ducts. We obtain the corridor component as
in lemma 8. We now augment the corridors with
a system of two vertical and n + 1 horizontal
ducts. The vertical ducts are axis parallel rect-
angles, and the horizontal ducts are hexagons
formed by the union of an axis parallel rectangle
and two right triangles. The triangles at the end
of each horizontal duct are called nooks. See fig-
ure 4. Observe that the duct component is lazy
guarded if and only if we place a station inside
each nook. A path from points z to y avoiding
the shaded corridor is shown, illustrating that a
station is needed in every corridor to ensure that
we lazy guard the corridor component.

The polygon P is constructed so that 2(n+1)
stations, one per nook, are required to lazy guard
the nooks. The remainder of P, that is, the cor-
ridors will be lazy guarded by k other stations.

Suppose G can be covered by k vertices. For
each vertex v in the cover of G we place a sta-
tion in room(v). Let S denote these k stations. '
It follows that Vis(.S) covers the corridors, so any
tour of these k stations guards the corridor com-
ponent. By using 2(n + 1) additional stations,
one in each nook, we guard the duct component.
Thus P is lazy 2(n + 1) + k guardable if G is
covered by k vertices.

Conversely, suppose P is lazy 2(n + 1) + k
guardable. We have shown that 2(n + 1) of the
stations must be in the nooks, and these stations
guard the ducts. For the remaining k stations we
use a mapping as in lemma 8. If this mapping
leads to a vertex cover of G we are done. Sup-
pose instead that G is not vertex covered. This
implies that there is at least one corridor, call it
¢, that does not contain any stations in it. We
argue that we can visit all stations without com-
ing near the centre line of ¢, thus the spikes of
c are not guarded. This contradicts the assump-
tion that P is lazy guarded. Let x and y be
arbitrary stations in P. Then there exists points
in P that describe a piece-wise linear path (of
at most 7 edges) in P that does not see all of
corridor c. See figure 4. We can use this method
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Figure 4: A polygon made up of corridors
and ducts. -

to travel between any two stations, and thus ob-
tain a tour of the stations that does not see the
spikes of corridor ¢. This establishes the desired
contradiction.

~ We have shown that P is 2(n + 1) + k lazy
guarded if and only if G is covered by k vertices.
Since we have already shown that LG is in NP
we conclude that LG is NP-complete. g
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