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Abstract

An O(n) time and space algorithm for the Euclidean Steiner tree problem with three terminals in
a simple polygon with n vertices is given. Its applicability to the problem of determining good quality
solutions for any number of terminals is discussed.

1 Introduction

We consider the following variant of the Euclidean Steiner tree problem (ESTP):
e Given: A simple polygon P and three terminals ¢;,¢; and t; in P.
e Find: Euclidean Steiner minimal tree (ESMT) spanning ¢;,t;, % in P.

We present an O(n) time and space algorithm for this problem. Our interest in this special case is due to the
fact that it is one of the steps toward an efficient heuristic for the ESTP inside a polygon for any number of
terminals. To justify this claim, we need to consider the obstacle-free case first. The reader is referred to [6]
for basic definitions and properties of ESMTs. Obstacle-free ESMTs tend to consist of unions of relatively
small full Steiner trees. The greedy concatenation of ESMTs for small, approprietely chosen, subsets of
up to 4 terminals proved therefore to yield good quality solutions; ESMTs are ordered by non-increasing
savings over the lengths of the Euclidean minimum spanning trees (EMST). One way to identify clusters
of terminals is to consider an EMST for all terminals [2]. Subsets of 2, 3 and 4 terminals with connected
induced subgraphs of the EMST seem to be reasonable candidates. Another way to identify clusters is to
use the Delaunay triangulation of the terminals [10]. Subsets of terminals on a common edge, triangle, and
pair of triangles sharing an edge, seems to be reasonable condidates.

ESMTs for terminals inside a simple polygon P most likely consist of unions of small full Steiner trees.
However, no exact algorithm for this problem is available. Suppose that clustering into subsets with 2, 3
and 4 terminals is available. We are then left with the problem of finding ESMTs for these small clusters
in P. For clusters of size 2, this reduces to the shortest path problem inside P, and can be solved in linear
time and space [3, 7]. In this paper we address the problem of determining ESMTs for 3 terminals inside P
in linear time. In a companion paper [12], we give a polynomial algorithm for the ESMT with 4 terminals.

The problem of determining reasonable clusters with 2, 3 and 4 terminals inside a simple polygon is far
from trivial. The simplest way is perhaps to consider a dual of the geodesic Voronoi diagram for n terminals
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inside a polygon with k vertices. Aronov [1] gave an O((k + n)log(k +n)logk) divide and conquer algorithm
for this problem. Another possibility is to determine the visibility graph for the terminals and vertices of P.
A low cost subtree of the visibility graph spanning the terminals can be determined by any of several available
approximation algorithms for the Steiner tree problem in weighted graphs [6]. A small subset of terminals
is considered as a reasonable cluster if the deletion of all other terminals leaves the subtree connected.

The paper is organized as follows. Some basic definitions are given in Section 2. The original problem is
reduced in Section 3 to the ESTP for three terminals in a smaller polygon with some particular properties.
The three terminals for the reduced problem need not to be identical with the original terminals. In Section 4,
the vertices of the smaller polygon are preprocessed in order to determine shortest distances from all vertices
to the three terminals. The algorithm for the determination of the ESMT in the reduced polygon is given
in Section 5. Conclusions and suggestions for further research are collected in Section 6.

2 Basic Definitions

A polygon is simple if no point of the plane belongs to more than two edges of P and the only points of
the plane that belong to precisely two edges are the vertices of P. A simple polygon P has a well-defined
interior i(P) and exterior e(P). A point p is said to be in P if p € i(P) U P. A vertex v on P is convez if
its interior angle is less than 180°. Otherwise it is said to be reflez. The clockwise successor and successor
vertices of a vertex v on P will be denoted by v* and v, respectively. A simple polygon is called a c-kite if
precisely c of its vertices are convex. A polygon P is weakly-simple if any pair of polygonal chains obtained
by partitioning P does not properly intersect (but the chains are permitted to touch each other).

The shortest path between two points « and v in a polygon P will be denoted by P(u,v). P(u,v) is a
unique polygonal chain and its interior vertices are reflex vertices of P.

3 Polygon Reductions

Consider a triangulation of the simple polygon P. Remove from it (one at a time) outermost triangles
(sharing only one side) provided that the remaining triangles contain all terminals. Let P; denote the
polygon determined by the boundary of the exterior face of the reduced triangulation.

Lemma 1 ESMT for t;,t;,t; in P is in P;.

Proof. Assume that there is no ESMT completely in P;. Let T denote the ESMT for the terminals in P.
Let e be an edge of P; crossed by at least one edge of T'. Let v] denote the rightmost intersection of e with
T (when looking from the interior of P;). Follow the edge of T away from P;. When reaching a vertex, take
the rightmost edge. Continue in this manner until the edge e is reached again. Let v} denote this cross-point.
If there are additional intersections of e with T' to the left of v}, let v} be the rightmost one among them.
Determine v} as above. Keep repeating this until all cross-points are covered by line segments vjv}, v3v}, ....
Replace the portions of T beyond e by line-segments v}v}, v5v}, ... The resulting network is not longer than
T, it spans all terminals, and it does not cross e. This process can be repeated for all edges of P; crossed by
T, a contradiction. O

Consider a weakly-simple polygon P, consisting of the concatenation of the shortest paths Py(ti,t;),
Pl(tj,tk), Py (t, t;) (Fig. 1).

Lemma 2 ESMT fort;,t;,t; in P is in Ps.

Proof. There always exists an obstacle-avoiding ESMT within the minimum length perimeter enclosing all
terminals (see [9]). This is valid for any number of terminals and:any number of polygonal obstacles. In the
case of 3 terminals inside a polygon P, e(P)U P can be considered as a single obstacle. Obviously, short-
est paths Py(t;,t;), P1(tj,tx) and Pi(tr,t;) define a weakly-simple polygon P inside P; with the minimum
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length perimeter enclosing all terminals. .

If i(P,) = 0, then the unique ESMT for t;,¢;, ¢ in P overlaps with the edges of P,. We therefore assume
in the following that i(P2) # 0. Let P denote the smallest polygon containing i(Pz). Let qu, v = 1,7, k,
denote a vertex on P; where the path to t, (overlapping with P») begins. This path can be of zero-length,
i.e., qu = ty. The vertex g, will be referred to as a semi-terminal. Note that P3 is a concatenation of the
shortest paths P»(gi,q;), P2(gj,qx) and Pa(gr,g;). Furthermore, P> contains Ps.

Rather than determining ESMT for ¢;,t;,t; in P, one can look for an ESMT for g¢i,qj,qx in P3. It will
together with Pa(t;,qi), Pa(t;,q;) and Pa(tx,qr) yield ESMT for t;.t;,t; in P» C P, C P.

Figure 1: Nested polygons with the ESMT

Lemma 3 P; is a 3-kite.

Proof. All interior vertices on P3(gi,q;) must be reflex. Assume to the contrary that v is the first interior
convex vertex on P3(gi,q;)- There is a point v* in the interior of the edge vvt such that the line segment
v~ v* does not intersect P;. Furthermore, [v"v*| + |v*vt| < |[v"v| + |vv?|, a contradiction. By a similar
argument, it follows that all interior vertices of P3(gj,qx) and Ps(gx,¢i) must be reflex. Since every simple
polygon must have at least 3 convex vertices, it follows that g;, g;, gx are all convex vertices. O

A line L is said to be an interior tangent of a c-kite P at a touch-point v € P iff one of the following
cases OCCUTS.

e v is reflex and the two edges of P incident with v are on the same side of L.
e v is convex and the two edges of P incident with v are on the opposite sides of L.

e v is an interior point of an edge of P and this edge overlaps with L.

Lemma 4 Every c-kite P, ¢ > 3, has ezactly c — 2 interior tangents for any fized slope r € [-o0,¢]. In
particular, a 3-kite has ezactly 1 interior tangent for any fized slope.

Proof. The sum of interior angles of any simple polygon is (n — 2)x. This follows from the fact that every
triangulation of a simple polygon has n — 2 triangles. Each triangle contributes to the total sum of angles

by =.
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Let @;. 1 < i < c. denote interior angles of convex vertices. Let 3; + 7. 1 < j < n — ¢ denote interior
angles of reflex vertices. Then '

n-—c¢

Zai+2ﬂj =n-2)r—(n—c)r=(c—2)7
i=1 i=1

Since a; and B; denote maximal rotation of interior tangents at respectively convex and reflex vertices, and
the slope interval at a particular vertex does not overlap but has a common point with slope interval of next
vertex on the polygon. ]

4 Preprocessing of 3-Kites

We need to associate shortest distances d;(v),d;j(v),dr(v) between every vertex v on a 3-kite P3 and semi-
terminals g;, g;, gx (Fig. 2). The distance d;(v) for every vertex v on Ps(g;, g;) is determined by the following
procedure.

Figure 2: 3-kite P

v = g;; di(v) := 0;
repeat

v:=vt;

di(v) :==di(v™) + v v|;
until v = g;;

Naturally, d;(v) for every vertex v on P3(gi,q;) is determined by a procedure traversing P3(gi,g;) in the
opposite direction. Similar procedures determine d;(v) and di(v) for every vertex v on P3(gj,qx) as well as
di.(v) and d;(v) for every vertex v on Pa(gx, g:).

In order to determine di(v) for every vertex v on P3(g;, g;), initialize d.(v) to |vgy| for all v € Ps3(q;, g;)-
Values of di.(v) for vertices of P3(gi,q;) not visible from q; must then be updated. This is done in two scans
of P3(qi,g;j). First, the vertices of Ps(gi,q;) not visible from g are scanned from g¢; toward g;. Next, the
vertices of P5(gi,q;) not visible from g are scanned from g; toward g;. Only the first scan is described as
they are; analogous. Let LeftTurn(v,q,gqx) be a predicate that returns true iff points v,q,q; make a left
turn at ¢. In particular, if these three points are colinear (or two of them overlap), then LeftTurn(v, g, qx)
= False. It is well-known that LeftTurn can be implemented so that it requires O(1) time [8].
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vi= gl qi= g
repeat
while LeftTurn(v.gq,qr) do q :=¢q~;
di(v) := |vg| + di(q); v :i=vt;
until ¢ = qx;

Similar two-way scans are applied to determine d;(v) and d;(v) for all vertices v on P3(g;,qx) and P3(qx, i)
respectively.

5 ESMT for Semi-Terminals

The determination of the ESMT for the semi-terminals gi,q;,¢x in the 3-kite P3 can be divided into 2
separate cases by assuming that the unique Steiner point s is located on P; (in particular, it can overlap
with one of the semi-terminals) or in #(P3). The best solutions for each of these two cases are compared,
and the better one is the overall ESMT.

The first case is simple. The Steiner point s cannot be in the interior of an edge of Ps; two of the three
edges incident with s meet at less than 120°. Suppose that s overlaps with a vertex v. Shortest paths from
v to the semi-terminals have total length d;(v) + d;(v) + di(v).

The second case is more interesting. Three chains of the ESMT incident with the Steiner point s in the
interior of P; meet at 120°. Each of these chains touches Ps, and then follows P; until reaching semi-terminals
i, q;,qx- Let sv;, svj, sv; denote the edges incident with s.

Lemma 5 The points v;, vj, v are vertices of P3. Furthermore, the edges sv;, svj, svi overlap with interior
tangents at v;, vj, vx, Tespectively.

Proof. Suppose that v; is not a vertex of P3. The chain from s through v; in the ESMT must continue
along the edge containing v;. At least a portion of this path in the neighborhood of v; must be visible from
a point s* on sv;. Let v} denote a point in this neighborhood. Then |s*v;| + |viv]| > |s™v] |, a contradiction.
Suppose that the edge sv; is not overlapping with an interior tangent at v;. If v; is a convex vertex, then
sv; is not completely in P, a contradiction. Assume that v; is reflex. By an argument similar to that in the
first part of the proof, a shorter network exists, a contradiction. ]

Lemma 5 suggests a trivial O(n?) algorithm for a shortest tree spanning g, g;,gx with a Steiner point s
in i(P3). Construct a non-degenerate Steiner tree for each triple v;, vj, v of vertices of P3 (or decide that
it does not exist). Check for intersections with P3. If no intersections, connect each g, qj, qr to the closest
point among v;, vj, vk. Take the shortest of such trees (if any).

Instead of the exhaustive enumeration of all triples of vertices, one only needs to consider triples of
vertices that admit interior tangents making 120° with each other.

o Initialization: Let v; denote the vertex of P; touched by the vertical interior tangent L;. If L; overlaps
with an edge of Ps, let v; be its first end-point (when Pj is traversed in clockwise direction). Traverse
the vertices of P3 in clockwise direction, beginning at v;, until reaching a vertex v; which admits an
interior tangent L; making 120° with L;. Continue the clockwise traversal of P3 until reaching a vertex
v which admits an interior tangent L; making 120° with L;.

o Iteration: Determine a non-degenerate Steiner tree for v;,vj, v (or decide that it does not exist). If
the edges overlap with interior tangents at v;, vj, v, connect each semi-terminal g;, g, gr to the closest
of vertices v;, vj, vk. Save the tree found if its length is less than the length of the best solution found
so far (if any).

o Sweep: Interior tangents L;, Lj, Ly are rotated (counterclockwise) around their touch-points v, v;, vk
until one overlaps with an edge of P5. Such rotations amount to finding the smallest angle between
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interior tangents L;. L;, L; and edges v;v} ,vjvf,vkv,f. Suppose that L; is the first interior tangent

overlapping with an edge. Replace v; by v}.

e Termination The circular sweep terminates when the interior tangents have been rotated at least
120°; otherwise perform next Iteration.

Theorem 1 The ESMT for three terminals in a simple polygon can be determined in O(n) time and space.

Proof. To prove the correctness of the algorithm for the ESMT for three semi-terminals ¢;, ¢;. qx in P3, we
only need to observe that all triples of vertices on P3 which admit interior tangents meeting at 120° will be
generated during the circular scan. The correctness of the ovarall algorithm then follows immediately.
Linear time complexity is quite straightforward to establish. Triangulation of P can be done in linear
time [4). Determination of P; from P involves the deletion of vertices of degree 2 provided that the remaining
triangulation contains all terminals. This can be done in O(n) time. Shortest paths between the three
terminals can be determined in linear time [3, 7]. Hence, P, can be obtained from the triangulated P; in
linear time. Determination of P3 from P» is trivial. Distances from all vertices of the kite to each semi-
terminal g;,g;,gx can be found in O(n) time. When the Steiner point s overlaps with one of the vertices,
O(n) time is needed to find the solution. In the case when s is in #(P3), the circular sweep generates as many
triples as there are vertices on the 3-kite. For each triple, the corresponding Steiner tree can be determined
in constant time. Also constant time is needed to check if the edges of the Steiner tree overlap with interior
tangents of P;. Finally, it is obvious that the space complexity of the algorithm is O(n). o

6 Conclusions

We presented an O(n) time and space algorithm for the ESTP for three terminals inside a simple polygon with
n vertices. There is a number of interesting issues that remain open or will be addressed in companion papers.
One is to obtain an efficient time and space algorithm for the same problem but with four terminals[12].
Another problem is how to preprocess the polygon and any number of terminals in order to identify reasonable
clusters of up to four terminals. This would lead to a general heuristic for the ESTP for any number
of terminals inside a polygon. Such a heuristic would be based on the concatenation of small ESMTs.
Determination of ESMTs for small subsets of terminals in presence of several (convex) obstacles inside a
simple polygon is also of interest. In this context, Steiner visibility graphs introduced in [11] could prove
useful. Finally, we mention the problem of preprocessing a simple polygon so that three and/or four terminals
querries for ESMTs can be answered efficiently.
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