CCCG 2011, Toronto ON, August 10-12, 2011

Sequential Dependency Computation via Geometric Data Structures

Gruia Calinescu *

Abstract

We are given integers 0 < G; < Gy # 0 and a se-
quence Sy = {ai,as,...,an) of N integers. The goal
is to compute the minimum number of insertions and
deletions necessary to transform Sy into a valid se-
quence, where a sequence is wvalid if it is nonempty, all
elements are integers, and all the differences between
consecutive elements are between (G; and Gy. For this
problem from the database theory literature, previous
dynamic programming algorithms have running times
O(N?) and O(A- N log N), for a parameter A unrelated
to N. We use a geometric data structure to obtain a
O(N log N loglog N) running time.

1 Introduction

Golab, Karloff, Korn, Saha, and Srivastava introduce
the following problem in VLDB 2009 [3]: We are given
integers 0 < G1 < G2 # 0 and a (not necessarily sorted)
sequence Sy = (a1, as,...,ay) of N integers. The goal
is to compute the minimum number of insertions and
deletions necessary to transform Sy into a valid se-
quence, where a sequence is walid if it is nonempty,
all elements are integers, and all the differences be-
tween consecutive elements are between G and Gs.
That is, (b1,ba,...,bp) is valid if M > 1 and for all
1€ {1,...,M—1}, G1 Sbi+1_bi < G9. We term the
problem GAP DEPENDENCY.

An example instance of GAP DEPENDENCY and
its solution has G; = 4, Gy = 6, and
(1,7,5,9,12,25,31, 30, 34, 40) as the (invalid) input se-
quence. A feasible solution deletes the first five ele-
ments and the seventh element, resulting in the valid
sequence (25,30,34,40), at cost 6. A better fea-
sible solution, of cost 5, starts by deleting 12 and
inserting 15 and 20 in its place, obtaining the se-
quence (1,7,5,9,15,20,25, 31,30, 34, 40), which is still
not valid since 5 — 7 < 4 and 30 — 31 < 4.
After deleting 7 and 31, we obtain the valid se-
quence (1,5,9,15,20,25,30,34,40). Yet another so-
lution of cost 5 deletes 5,9,31 (resulting in sequence
(1,7,12,25,30,34,40), which is invalid since 25 — 12 >

*Department of Computer Science, Illinois Institute of Tech-
nology; calinescu@iit.edu. Research supported in part by NSF
grant CCF-0515088.

TAT&T Labs—Research, 180 Park Ave., Room C231, Florham
Park, NJ 07932, USA; howard@research.att.com.

Howard Karlofft

6), followed by inserting 16 and 20 between 12 and 25.

Golab et al. [3] present an algorithm with run-
ning time O(G2C12G1N10gN) for G > Gy > 0 (and
O(NlogN) if G = 0 or G; = G3). This is pseu-
dopolynomial running time. Implicit in [3] is also
a O(N?)-time algorithm. In this paper we give a
O(N log N loglog N)-time algorithm for Gy > G; > 0,
by exploiting a surprising connection to geometric data
structures.

2 Preliminaries

We include definitions and results from [3]. Given a
sequence Sy = (a1, az, ..., an), define S; to be the prefix
S; = (a1, az, ...,a;), and OPT(i) to be the value of the
GAP DEPENDENCY optimum with input S;.

Given a sequence (a1, as,...,an) of integers, for i =
1,2,...,N,let v = a; and define T'(7) to be the minimum
number of insertions and deletions one must make to
(a1, ag, ...,a;) in order to convert it into a valid sequence
ending in the number v.

Computing OPT(N) from the T'(i)’s can be done as
follows. OPT(N) = ming<,<y—1{r + T(N — r)}, as
proven in Claim 1.

Claim 1 [Claim 3 of [3]] The minimum number
OPT(i) of insertions and deletions required to convert
sequence S; into a valid one is given by ming<,<;—1{r -+
T(i—r)}. Furthermore, OPT (i) can be calculated induc-
tively by OPT(1) =0 and OPT (i) = min{1+ OPT (i —
1),T%)} for alli > 2.

In order to show how to compute the T'(7)’s, we need
the following definition from [3]:

Definition 1 Define dcost(d), for d = 0,1,2, ..., to be
the minimum number of integers one must append to
the length-1 sequence (0) to get a valid sequence ending
in d, and oo if no such sequence exists.

For example, if G; = 4 and G = 6, then dcost(7) =
oo. Furthermore, dcost(8) = 2, uniquely obtained by
appending 4 and 8. We compute dcost very differently.
Precisely, we use existing geometric data structures. In-
stead of this lemma:

Lemma 1 (Lemma 6 of [3]) If G; = 0, then
deost(d) = [d/G3]. Otherwise, dcost(d) = [d/G2] if
[(d+1)/G1] > [d/G2] and co otherwise,

2374 Canadian Conference on Computational Geometry, 2011

we use the method of the following section. We do so
since the previous dynamic programs [3] may use the
lemma for Q(min{ N?, chi201 N log N'}) values of d, even
though dcost can be computed in constant time.

The O(N?) algorithm of [3] follows in a rather
straightforward way from Claim 1, the lemma above,
and Theorem 2 which appears later. We refer to [3] for

the more sophisticated O(&N log N) algorithm.

3 The new algorithm for computing the T'(i)-values

In this paper we will assume that 0 < G; < Gs.

What differentiates this paper from [3] is the use of
a fast geometric data structure to calculate the T'(i)’s,
in amortized time O(log N loglog N) each. We show
how the recurrence used in [3] can be modified to
make use of a data structure allowing fast 2-dimensional
range minimum queries, and thereby to decrease the
running time from O(min{N? 52— - Nlog N}) to
O(N log Nloglog N). (This is only an improvement, of
course, if Gﬁ%l > loglog N.)

We assume all the values a; are nonnegative. (Oth-
erwise, let m = min; a; and set a; := a; — m.) For each
Jj, create point P; = (z;,y;) with z; = a; mod G2 and
y; = laj/G2]. Two values of j can have points P; with
the same coordinates; we treat the points P; as distinct.
Let A:=Gy — Gy > 0.

For given ¢, define two regions in the two dimensional
Euclidean plane as follows (see Figure 1 for an example).
Let ¢;(z) be the linear map

ai(z) =y — (x — (2 — G1))/A
and let @; be the halfspace
Qi ={(z,y) : y <a@)}.
Let 7;(z) be the linear map
ri(z) =yi — (@ —x;)/A
and let R; be the intersection of the halfspaces

{(z,9)ly <ri(2)}

and
{(z,y)]z = 2},

and last, let Rf = R; \ {(=i,v:)}-

(It will be crucial later that all the lines r;(x), over
all 4, and all lines ¢;(z), over all i, have the same slope.
These facts will allow us to find one affine transfor-
mation converting, for all ¢, @; into a halfspace with
axis-parallel bounding line, and R; into an intersection
of two halfspaces, whose bounding lines are orthogonal
azis-parallel lines.)

Our algorithm relies on the following theorem from
(3]

2 3 4 9 7 8 Y

Figure 1: Here Gy = 10, G; = 7, a; = 35. The point
P; is given by the small dark circle. R; and @; are un-
bounded and we only show their relevant parts—where
other points P; could be located. R; is the region on the
right, colored using a diagonal pattern. @); is the region
on the left, colored using a doubly diagonal pattern.
Where the regions intersect, we use a solid pattern.

Theorem 2 [8] Fiz i > 2. Assume Gy > 0. Define
m = Minj<a; <a; {1 (j)+(i—1—=7)+[dcost(a;—a;)—1]}.
Then T(i) = min{i — 1,m}.

For intuition only, we explain the recurrence. To end
an optimal subsequence with a;, we either delete the
first ¢ — 1 elements, or, with j being such that j < 4
and a; < a;, take the optimal subsequence ending with
aj, delete the i — 1 — j elements between a; and aj,
and insert dcost(a; — a;) — 1 elements between a; and
a;. (The “—17 is here since, as defined, dcost(d) also
inserts “d”, while we do not have to insert “a;”.)

We will prove the following theorem by relating it to
Theorem 2.

Theorem 3 Fix i > 2. Define

= ;jgf%;eR;;{T(j) +(@—j—1)+(y—y;)—1}
and
g:=_min TG+ —j—1)+ vi—yj)}

JJ<i,PjeQ;
Then m = min{q,r}.

To prove Theorem 3, we need Claim 2. Recall that
the xz-coordinate of each Py is at most Go — 1.

Claim 2 1. For any k < i, Jay < a; and dcost(a; —
ay) < oo/ if and only if P, € Q; U R}.

2. If P, € R}, then ap < a; and deost(a; — ay) =
Yi — Yk-

3. If P, € Q; \ R;, then a, < a; and dcost(a; — ag) =
vi —yk + 1.

CCCG 2011, Toronto ON, August 10-12, 2011

We will prove Claim 2 in a moment.
Proof of Theorem 3. We need to prove that

min_ {T(j)+ (i — 1 j)

min{q, 'f'} a j<i,aj<a;
J %

+[dcost(a; — a;) — 1]}.

By part 1 of Claim 2, the two minima are infinite
on exactly the same set. Using this and the fact that
P, ¢ Q; (because ¢;(x;) = y; — G1/A and G7 > 0 so
that y; > qi(2:)),

m = min T()+

<, P €Q;UR (i—1—j)+ dcost(a; —a;) —1]

= T(q
= min{,_min [T0)+

i T() + (i — 1 — 5) + dcost(a; — a;) — 1],
j<i,1§1€12)i\Ri[(j) + (i j) + deost(a; — aj) — 1]

j<ivpglelngi[T(J) + (i = 1= j) + deost(a; — a;) — 1]}.

(t—1—j)+ dcost(a; —aj) — 1],

Now we use parts 2 and 3 of Claim 2 and the fact that
P; ¢ Q; to infer that m equals

min{ min [T(G)+GE—-1—-7)+vy—y; — 1],

j<i,PjER}

min TG+ —-1-7)+vyi—vyil,
j<i)PJ_6Qi\Ri[() +(3)+yi =yl

i TG+ (i —1—5) +y; —y; — 1]}
jei i TG+) +yi —y; — 1}
Letting
A= i Ty —1— i —y; — 1,
jeimn TG+ G 7 +vi—y— 1
B = min TG)+ 6@ —1—7)+y —y;l,
jei i R TG) +)+ vi =yl
and
C:= i T(j i—1—34 i —yi — 1],
jeipRin e TE) G) +yi—y; =1
we want to show that min{A, B,C} min{gq,7}.

Since r = A and ¢ = min{B,C + 1}, min{q,r} =
min{ A, min{B,C + 1}} = min{A4, B,C + 1}. We want
to show that min{A, B,C} = min{A, B,C + 1}, which
follows from the fact that A < C. O

Sketch of proof of Claim 2. Note that a; = z;+y,G2
and ar = zp + ypGo.

Let I, = [kG1,kG3] for k > 0. Tt is easy to see that
I;; N Z is precisely the set of all integers which can be
written as the sum of exactly k integers all between G;
and Gg. Then dcost(d) is the minimum k such that
d € Iy, if one exists, and oo otherwise. In other words,
here is a way to compute dcost(d) for all d, in principle:

Algorithm Simpledcost:

e Set dcost(d) = oo for all d > 0.

e For k=0,1,2,..., do:

— Set dcost(d) = k for all d € I, unless dcost(d)
was already defined.

We will show that the three statements in the claim
are obtained in effect by “running” algorithm Sim-
pledcost above.

Label the lattice points 0,1,2, ..., a;, starting by la-
beling the point P; = (x;,y;) “0”, and then moving left-
ward, labeling points with successive integers, until a
point (0,y) on the y-axis is reached, and (after labeling
that point) continuing with point (Go — 1,y — 1). The
point labeled “a;” will be the origin (0, 0), since the top
row has x; 4+ 1 labeled points, and each of the other y;
rows has (G2 points, or 1+ a; points in total, as desired.

For all y € {0,1,2,...,y;}, the point (x;,y) is labeled
(ys —y)G2, which is the right endpoint of interval I, _,

Now execute the following:

Forl=0,1,2,...,y; + 1, do:

e Starting at point (z;,y;—!) and continuing for |[;| =
l- (G2 — G1) additional steps, move rightward by
one lattice point each time;

however, if a point (Gz — 1,y) is hit, then after
visiting that point, visit the point (0, y+1) next and
afterward continue proceeding rightward as before.
(Every visited point (z,y) has y > —1.)

e Assign dcost equal to I for each point visited, unless
its dcost was already assigned or its second coordi-
nate was negative.

The points with nonnegative second coordinate vis-
ited during iteration [are exactly those whose labels
are in [j, so we are in effect executing algorithm Sim-
pledcost. In other words, the existence of a point with
nonnegative second coordinate with label [and assigned

dcost d means that dcost(l) = d, and the existence
of such a point with label | and no dcost means that
dcost(l) = oo.

(As an example, look at Figure 1. I, = [0] and
only (5,3) is assigned decost 0. I; = [7,10] and the
lattice points with dcost 1 are (5,2),(6,2),(7,2), (8,2).
I, = [14,20] and the lattice points with dcost = 2
are (5,1), (6,1), (7,1), (8,1), (9,1), (0,2), (1,2).
I5 = [21,30] and the lattice points with dcost = 3 are
(5,0),(6,0),(7,0),(8,0),(9,0),(0,1),(1,1),(2,1), (3, 1),
(4,1). Iy = [28 40] and the lattice points with dcost 4
are (0,0),(1,0),(2,0),(3,0), (4,0).)

The following crucial statements are easy to verify.
All the points assigned a finite dcost are in Q; U R;, and
all such points P in the nonnegative quadrant get a
finite deost. If P, € R}, then ay < a;, since r;(x) has
negative slope. If P, € Q; \ R;, then, since ¢;(0) = y; +
(@i—G1)/A <yi+[(G2—1)-Gi]/A = yi+(A-1)/A <
yi + 1, all P; € @; have y; < y; and hence a; < a;.

2374 Canadian Conference on Computational Geometry, 2011

Because we assign dcost equal to [for points in row
y; — 1 in R;, as well as some to the left in @; in row
yi — 1+ 1, we infer that dcost(a; — ax) = y; — yi if
P, € R;, and that dcost(a; — ar) = yi — yp + 1 if
P € Q; \ R;. O

Here is our geometric algorithm to compute the
T'(z)’s. Recall that before defining @; and R}, for each
Jj, we defined points P; = (z;,y;) with z; = a; mod G»
and Y = La/j/GQJ .

e T(l):=0and z :=T(1) — 1 —y;.
e Fori:=2,3,...,n, do

—ri=i+y —2+minj<; . per: %j-
—q:=i+y —1+minj<. peq; 2
— T(i) := min{i — 1,7, q}.

-z =T0E)—i—y.

The running time of this algorithm is O(n) plus the
time to do the 2n mins involved in the definitions of mo
and m3. The idea is to use a geometric data struc-
ture to do each min in time O(log Nloglog N), for
O(Nlog Nloglog N) time overall. In order to use a
standard geometric data structure, we will have to con-
vert each of the regions @Q; (a halfspace) and R; (an in-
tersection of two halfspaces) into a halfspace with axis-
parallel boundaries, and into an orthant (an intersection
of two halfspaces with axis-parallel boundaries), respec-
tively.

The algorithm requires one to find min;<; . p;er: 2;
and min;<; . p,eq; #;- It is an annoyance that the algo-
rithm needs a minimum over P; € R} rather than over
P; € R;. Were the desired minimum over P; € R;,
one would just apply to all points the affine trans-
formation 7' mapping (z,y) — (z,y + x/A). This
affine transformation maps points (z, ¢;(z)) = (=, (y; +
(x; — G1)/A) — x/A) on the bounding line of Q; to
points (z, (y; + (x; — G1)/A)), which are on a horizon-
tal line. The same affine transformation maps points
(z,ri(x)) = (x,(yi + x;/A) — x/A) on the “diagonal”
bounding line of R; to (x,y; +x;/A), another horizontal
line, and maps points (x;,y) on R;’s vertical bounding
line to (z;, y+z;/A), the same vertical line. This means
that the question, “Is (x,y) € @;?” could be answered,
in the transformed space, by asking if T'(x,y) is on or
below a horizontal line, and “Is (z,y) € R;?” could be
answered in the transformed space by asking if T'(z,y)
is on or to the right of a vertical line and on or below a
horizontal one.

Unfortunately, though, the min is over P; € R in-
stead of over R;. We now exploit the fact that all the
(untransformed) query points are of the form (x,y) €
N2, < G5 — 1. It suffices to make an affine trans-
formation which correctly answers queries about these
points.

-1 0 1 2 3 4 5 6 7 8 9

Figure 2: Here P; is the solid point, A = 2, the rele-
vant part of R; is given by the shaded area, and R}’s
bounding lines are thicker.

The idea is to replace each line ¢;(z) by a line ¢}(z)
which very closely tracks g¢;(xz) (and to define Q) =
{(z,9)|ly < qi(x)}) and (see Figure 2 for intuition) to
replace the line 7;(x) by a line }(x) which very closely
tracks r;(z), and to replace the line x = x; by x = x; —¢
(and to define R = {(z,y)|(x > x; —) A (y < ri(x))})
(for a small € > 0) such that (1) all lines ¢}(z) over all ¢
and 7% (x) over all 7 have the same slope, and (2) a point
P € N? with first coordinate at most G — 1 is in Q; if
and only if P € @}, and (3) a lattice point P with first
coordinate at most Go—1 is in R} if and only if P € R).

This is done as follows. Let h = [G3/A]. The line
y = r;(x), which we will call Ly, passes through P, =
(xs,y:) and Z = (x; + hA,y; — h), since it has slope
—1/A. Consider the line segment corresponding to z-
coordinates in interval I = [z;, 2; + hA]. (Clearly x; +
hA > Gy.) For any x € I, the lowest lattice point (z,y)
strictly above the line segment is at least 1/A above
it. This means that if we hold P; fixed and raise the
right endpoint by 1/(2A)—in other words, consider the
line Ly passing through P; and 7' = (x; + hA,y; —
h+1/(2A))—then “raising” the line segment causes it
to “pass through” no lattice points. (The slope v :=
(—=h +1/(2A))/(hA) = —1/A + 1/(2hA?) of L; does
not depend on i.) Clearly, between = x; and © = x; +
hA, L, passes through no lattice points except P;, and
furthermore, the minimum distance upward from any
point on L1, whose z-coordinate is integral, to a lattice
point is at least 1/A — 1/(2A) = 1/(2A). In addition,
the minimum distance downward from any point on L,
in that interval to a lattice point other than P; is at
least (1/(2A))/(hA) = 1/(2hA?), since the interval has
length hA.

Now simply “lower” L; uniformly by 7 := 1/(4hA?)
to get a new line Lo which is below P; but above every
other lattice point with z-coordinate between z; and
z; + hA which had been below L;. In other words,
Ly is the line connecting (z;,y; — 1/(4hA?)) and (x; +
hA,y; — h + 1/(2A) — 1/(4hA?)). Ly is the desired
boundary for R} provided that Ls crosses the line y = y;
at a point © = z; — € for € € (0,1). Where does Lo

CCCG 2011, Toronto ON, August 10-12, 2011

hit the line y = y;? We have 7/¢ = 1/A — 1/(2hA?)
so e = 7/(1/A — 1/(2hA?)) < 7/(1/(24)) = 2AT =
1/(2hA) < 1.

To construct ¢}(z) from g;(x), just use the line of
slope v passing through (0,¢;(0)). The set of lattice
points on or under that line, between z-coordinates 0
and hA, is the same as the set of those on or under
qi(z). However, if ¢;(0) is integral, so that (0, ¢;(0)) is
on both the original line and the “rotated” one, one may
want to raise the line slightly to prevent roundoff errors.

Now we just apply the affine transformation 7" which
maps (z,y) — (z,y'), where ¥y = y + z/7, to turn Q)
into a halfspace with a horizontal bounding line and
R} into the intersection of a halfspace with a horizontal
bounding line and a halfspace with a vertical bounding
line.

We apply this affine transformation to all points P;.
We need to do orthogonal range search queries in which
we need to find the minimum z; in a translated quadrant
or halfspace. However, since z; is defined only after all
21, 22, ---, 2i—1 are defined, the key values are not known
in advance. (The points themselves, however, are known
in advance.)

3.1 Running time analysis

Here is what a data structure must support in order to
run the algorithm. We are given, in advance, n points P;
in Z? with P; = (z;,y;). For each i, we will construct
key(i) adaptively in the order 1,2,3,...,n, as follows.
Initialize key(1) in some way. The data structure must
be able to execute the following code:

e for i =2 to n do:

— Find a j minimizing key(j) among those j < i
satisfying z; < x; and y; < y;.
— Now define key(i) (somehow).

e end for.

The augmented segment tree of Mehlhorn and Naher
[5] guarantees the existence of a O(N log N loglog N)-
time algorithm [4]. In fact, a data structure giving a
running time of O(N log N loglog N) is likely to be im-
plicit in Gabow, Bentley, and Tarjan [2]; however their
result as stated (Theorem 3.3 and the discussion above
it) is for the case when all key(i) values are known in
advance.

We leave open the existence of a O(N log N)-time al-
gorithm, and suggest Willard [6] or Chan, Larsen, and
Patrascu [1] as a possible starting point.

4 Acknowledgments

The authors thank Hal Gabow and Kurt Mehlhorn for
their help finding data structures supporting all query
and update operations in O(nlognloglogn) time.

References

[1] T. M. Chan, K. G. Larsen, and M. Patrascu. Orthogonal
range searching on the RAM, revisited. In F. Hurtado
and M. J. van Kreveld, editors, Symposium on Compu-
tational Geometry, pages 1-10. ACM, 2011.

[2] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scal-
ing and related techniques for geometry problems. In
ACM Symposium on Theory of Computing, pages 135—
143, 1984.

[3] L. Golab, H. Karloff, F. Korn, A. Saha, and D. Srivas-
tava. Sequential dependencies. PVLDB, 2(1):574-585,
2009.

[4] K. Mehlhorn, 2011. Personal communication.

[5] K. Mehlhorn and S. Naher. Dynamic Fractional Cascad-
ing. Algorithmica, pages 215-241, 1990.

[6] D. E. Willard. Examining Computational Geometry,
Van Emde Boas Trees, and Hashing from the Perspective
of the Fusion Tree. SIAM J. Comput., 29(3):1030-1049,
2000.

