Sequential Dependency Computation via Geometric Data Structures

Gruia Calinescu *

Howard Karloff[†]

Abstract

We are given integers $0 \le G_1 \le G_2 \ne 0$ and a sequence $S_N = \langle a_1, a_2, ..., a_N \rangle$ of N integers. The goal is to compute the minimum number of insertions and deletions necessary to transform S_N into a valid sequence, where a sequence is valid if it is nonempty, all elements are integers, and all the differences between consecutive elements are between G_1 and G_2 . For this problem from the database theory literature, previous dynamic programming algorithms have running times $O(N^2)$ and $O(A \cdot N \log N)$, for a parameter A unrelated to N. We use a geometric data structure to obtain a $O(N \log N \log \log N)$ running time.

1 Introduction

Golab, Karloff, Korn, Saha, and Srivastava introduce the following problem in VLDB 2009 [3]: We are given integers $0 \le G_1 \le G_2 \ne 0$ and a (not necessarily sorted) sequence $S_N = \langle a_1, a_2, ..., a_N \rangle$ of N integers. The goal is to compute the minimum number of insertions and deletions necessary to transform S_N into a valid sequence, where a sequence is valid if it is nonempty, all elements are integers, and all the differences between consecutive elements are between G_1 and G_2 . That is, $\langle b_1, b_2, ..., b_M \rangle$ is valid if $M \ge 1$ and for all $i \in \{1, ..., M-1\}$, $G_1 \le b_{i+1} - b_i \le G_2$. We term the problem GAP DEPENDENCY.

An example instance of GAP DEPENDENCY and its solution has $G_1 = 4$, $G_2 = 6$, and $\langle 1,7,5,9,12,25,31,30,34,40 \rangle$ as the (invalid) input sequence. A feasible solution deletes the first five elements and the seventh element, resulting in the valid sequence $\langle 25,30,34,40 \rangle$, at cost 6. A better feasible solution, of cost 5, starts by deleting 12 and inserting 15 and 20 in its place, obtaining the sequence $\langle 1,7,5,9,15,20,25,31,30,34,40 \rangle$, which is still not valid since 5-7 < 4 and 30-31 < 4. After deleting 7 and 31, we obtain the valid sequence $\langle 1,5,9,15,20,25,30,34,40 \rangle$. Yet another solution of cost 5 deletes 5,9,31 (resulting in sequence $\langle 1,7,12,25,30,34,40 \rangle$, which is invalid since 25-12 >

6), followed by inserting 16 and 20 between 12 and 25. Golab et al. [3] present an algorithm with running time $O(\frac{G_2}{G_2-G_1}N\log N)$ for $G_2>G_1>0$ (and $O(N\log N)$ if $G_1=0$ or $G_1=G_2$). This is pseudopolynomial running time. Implicit in [3] is also a $O(N^2)$ -time algorithm. In this paper we give a $O(N\log N\log\log N)$ -time algorithm for $G_2>G_1>0$, by exploiting a surprising connection to geometric data structures.

2 Preliminaries

We include definitions and results from [3]. Given a sequence $S_N = \langle a_1, a_2, ..., a_N \rangle$, define S_i to be the prefix $S_i = \langle a_1, a_2, ..., a_i \rangle$, and OPT(i) to be the value of the GAP DEPENDENCY optimum with input S_i .

Given a sequence $\langle a_1, a_2, ..., a_N \rangle$ of integers, for i = 1, 2, ..., N, let $v = a_i$ and define T(i) to be the minimum number of insertions and deletions one must make to $\langle a_1, a_2, ..., a_i \rangle$ in order to convert it into a valid sequence ending in the number v.

Computing OPT(N) from the T(i)'s can be done as follows. $OPT(N) = \min_{0 \le r \le N-1} \{r + T(N-r)\}$, as proven in Claim 1.

Claim 1 [Claim 3 of [3]] The minimum number OPT(i) of insertions and deletions required to convert sequence S_i into a valid one is given by $\min_{0 \le r \le i-1} \{r + T(i-r)\}$. Furthermore, OPT(i) can be calculated inductively by OPT(1) = 0 and $OPT(i) = \min\{1 + OPT(i-1), T(i)\}$ for all $i \ge 2$.

In order to show how to compute the T(i)'s, we need the following definition from [3]:

Definition 1 Define dcost(d), for d = 0, 1, 2, ..., to be the minimum number of integers one must append to the length-1 sequence $\langle 0 \rangle$ to get a valid sequence ending in d, and ∞ if no such sequence exists.

For example, if $G_1 = 4$ and $G_2 = 6$, then $dcost(7) = \infty$. Furthermore, dcost(8) = 2, uniquely obtained by appending 4 and 8. We compute dcost very differently. Precisely, we use existing geometric data structures. Instead of this lemma:

Lemma 1 (Lemma 6 of [3]) If $G_1 = 0$, then $dcost(d) = \lceil d/G_2 \rceil$. Otherwise, $dcost(d) = \lceil d/G_2 \rceil$ if $\lceil (d+1)/G_1 \rceil > \lceil d/G_2 \rceil$ and ∞ otherwise,

^{*}Department of Computer Science, Illinois Institute of Technology; calinescu@iit.edu. Research supported in part by NSF grant CCF-0515088.

[†]AT&T Labs-Research, 180 Park Ave., Room C231, Florham Park, NJ 07932, USA; howard@research.att.com.

we use the method of the following section. We do so since the previous dynamic programs [3] may use the lemma for $\Omega(\min\{N^2, \frac{G_2}{G_2-G_1}N\log N\})$ values of d, even though dcost can be computed in constant time.

The $O(N^2)$ algorithm of [3] follows in a rather straightforward way from Claim 1, the lemma above, and Theorem 2 which appears later. We refer to [3] for the more sophisticated $O(\frac{G_2}{G_2-G_1}N\log N)$ algorithm.

3 The new algorithm for computing the T(i)-values

In this paper we will assume that $0 < G_1 < G_2$.

What differentiates this paper from [3] is the use of a fast geometric data structure to calculate the T(i)'s, in amortized time $O(\log N \log \log N)$ each. We show how the recurrence used in [3] can be modified to make use of a data structure allowing fast 2-dimensional range minimum queries, and thereby to decrease the running time from $O(\min\{N^2, \frac{G_2}{G_2-G_1} \cdot N \log N\})$ to $O(N \log N \log \log N)$. (This is only an improvement, of course, if $\frac{G_2}{G_2-G_1} > \log \log N$.)

We assume all the values a_i are nonnegative. (Otherwise, let $m = \min_i a_i$ and set $a_i := a_i - m$.) For each j, create point $P_j = (x_j, y_j)$ with $x_j = a_j \mod G_2$ and $y_j = \lfloor a_j/G_2 \rfloor$. Two values of j can have points P_j with the same coordinates; we treat the points P_j as distinct. Let $\Delta := G_2 - G_1 > 0$.

For given i, define two regions in the two dimensional Euclidean plane as follows (see Figure 1 for an example). Let $q_i(x)$ be the linear map

$$q_i(x) = y_i - (x - (x_i - G_1))/\Delta$$

and let Q_i be the halfspace

$$Q_i = \{(x, y) : y \le q_i(x)\}.$$

Let $r_i(x)$ be the linear map

$$r_i(x) = y_i - (x - x_i)/\Delta$$

and let R_i be the intersection of the halfspaces

$$\{(x,y)|y \le r_i(x)\}$$

and

$$\{(x,y)|x \ge x_i\},\$$

and last, let $R_i^* = R_i \setminus \{(x_i, y_i)\}.$

(It will be crucial later that all the lines $r_i(x)$, over all i, and all lines $q_i(x)$, over all i, have the same slope. These facts will allow us to find *one* affine transformation converting, for all i, Q_i into a halfspace with axis-parallel bounding line, and R_i into an intersection of two halfspaces, whose bounding lines are orthogonal axis-parallel lines.)

Our algorithm relies on the following theorem from [3].

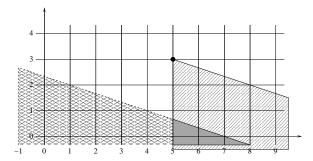


Figure 1: Here $G_2 = 10$, $G_1 = 7$, $a_i = 35$. The point P_i is given by the small dark circle. R_i and Q_i are unbounded and we only show their relevant parts—where other points P_j could be located. R_i is the region on the right, colored using a diagonal pattern. Q_i is the region on the left, colored using a doubly diagonal pattern. Where the regions intersect, we use a solid pattern.

Theorem 2 [3] Fix $i \ge 2$. Assume $G_1 > 0$. Define $m := \min_{j < i, a_j < a_i} \{T(j) + (i-1-j) + [dcost(a_i - a_j) - 1]\}$. Then $T(i) = \min\{i - 1, m\}$.

For intuition only, we explain the recurrence. To end an optimal subsequence with a_i , we either delete the first i-1 elements, or, with j being such that j < i and $a_j < a_i$, take the optimal subsequence ending with a_j , delete the i-1-j elements between a_j and a_i , and insert $dcost(a_i-a_j)-1$ elements between a_j and a_i . (The "-1" is here since, as defined, dcost(d) also inserts "d", while we do not have to insert " a_i ".)

We will prove the following theorem by relating it to Theorem 2.

Theorem 3 Fix $i \geq 2$. Define

$$r := \min_{j : j < i, P_j \in R_i^*} \{ T(j) + (i - j - 1) + (y_i - y_j) - 1 \}$$

and

$$q := \min_{j \ : \ j < i, P_j \in Q_i} \{ T(j) + (i - j - 1) + (y_i - y_j) \}.$$

Then $m = \min\{q, r\}$.

To prove Theorem 3, we need Claim 2. Recall that the x-coordinate of each P_k is at most $G_2 - 1$.

Claim 2 1. For any k < i, $[a_k < a_i \text{ and } dcost(a_i - a_k) < \infty]$ if and only if $P_k \in Q_i \cup R_i^*$.

- 2. If $P_k \in R_i^*$, then $a_k < a_i$ and $dcost(a_i a_k) = y_i y_k$.
- 3. If $P_k \in Q_i \setminus R_i$, then $a_k < a_i$ and $dcost(a_i a_k) = y_i y_k + 1$.

We will prove Claim 2 in a moment.

Proof of Theorem 3. We need to prove that

$$\min\{q,r\} = \min_{j < i, a_j < a_i} \{T(j) + (i-1-j)$$

$$+ [dcost(a_i - a_j) - 1]\}.$$

By part 1 of Claim 2, the two minima are infinite on exactly the same set. Using this and the fact that $P_i \notin Q_i$ (because $q_i(x_i) = y_i - G_1/\Delta$ and $G_1 > 0$ so that $y_i > q_i(x_i)$),

$$m = \min_{j < i, P_j \in Q_i \cup R_i^*} [T(j) + (i-1-j) + dcost(a_i - a_j) - 1]$$

$$= \min \{ \min_{j < i, P_i \in R_*^*} [T(j) + (i-1-j) + dcost(a_i - a_j) - 1],$$

$$\min_{j < i, P_j \in Q_i \setminus R_i} [T(j) + (i - 1 - j) + dcost(a_i - a_j) - 1],$$

$$\min_{j < i, P_j \in Q_i \cap R_i} [T(j) + (i - 1 - j) + dcost(a_i - a_j) - 1] \}.$$

Now we use parts 2 and 3 of Claim 2 and the fact that $P_i \not\in Q_i$ to infer that m equals

$$\min \{ \min_{j < i, P_j \in R_i^*} [T(j) + (i - 1 - j) + y_i - y_j - 1],$$

$$\min_{j < i, P_j \in Q_i \setminus R_i} [T(j) + (i - 1 - j) + y_i - y_j],$$

$$\min_{j < i, P_i \in Q_i \cap R_i} [T(j) + (i - 1 - j) + y_i - y_j - 1] \}.$$

Letting

$$A := \min_{j < i, P_j \in R_i^*} [T(j) + (i - 1 - j) + y_i - y_j - 1],$$

$$B := \min_{j < i, P_j \in Q_i \setminus R_i} [T(j) + (i - 1 - j) + y_i - y_j],$$

and

$$C := \min_{j < i, P_j \in Q_i \cap R_i} [T(j) + (i-1-j) + y_i - y_j - 1],$$

we want to show that $\min\{A,B,C\} = \min\{q,r\}$. Since r=A and $q=\min\{B,C+1\}$, $\min\{q,r\} = \min\{A,\min\{B,C+1\}\} = \min\{A,B,C+1\}$. We want to show that $\min\{A,B,C\} = \min\{A,B,C+1\}$, which follows from the fact that $A \leq C$. \square

Sketch of proof of Claim 2. Note that $a_i = x_i + y_i G_2$ and $a_k = x_k + y_k G_2$.

Let $I_k = [kG_1, kG_2]$ for $k \ge 0$. It is easy to see that $I_k \cap \mathbb{Z}$ is precisely the set of all integers which can be written as the sum of exactly k integers all between G_1 and G_2 . Then dcost(d) is the minimum k such that $d \in I_k$, if one exists, and ∞ otherwise. In other words, here is a way to compute dcost(d) for all d, in principle: Algorithm **Simpledcost**:

• Set $dcost(d) = \infty$ for all $d \ge 0$.

- For k = 0, 1, 2, ..., do:
 - Set dcost(d) = k for all $d \in I_k$, unless dcost(d) was already defined.

We will show that the three statements in the claim are obtained in effect by "running" algorithm **Simpledcost** above.

Label the lattice points $0, 1, 2, ..., a_i$, starting by labeling the point $P_i = (x_i, y_i)$ "0", and then moving leftward, labeling points with successive integers, until a point (0, y) on the y-axis is reached, and (after labeling that point) continuing with point $(G_2 - 1, y - 1)$. The point labeled " a_i " will be the origin (0, 0), since the top row has $x_i + 1$ labeled points, and each of the other y_i rows has G_2 points, or $1 + a_i$ points in total, as desired.

For all $y \in \{0, 1, 2, ..., y_i\}$, the point (x_i, y) is labeled $(y_i - y)G_2$, which is the right endpoint of interval $I_{y_i - y}$. Now execute the following:

For $l = 0, 1, 2, ..., y_i + 1$, do:

or $i = 0, 1, 2, ..., g_i + 1, do$.

- Starting at point $(x_i, y_i l)$ and continuing for $|I_l| = l \cdot (G_2 G_1)$ additional steps, move rightward by one lattice point each time;
 - however, if a point $(G_2 1, y)$ is hit, then after visiting that point, visit the point (0, y+1) next and afterward continue proceeding rightward as before. (Every visited point (x, y) has $y \ge -1$.)
- Assign dcost equal to l for each point visited, unless its dcost was already assigned or its second coordinate was negative.

The points with nonnegative second coordinate visited during iteration l are exactly those whose labels are in I_l , so we are in effect executing algorithm **Simpledcost**. In other words, the existence of a point with nonnegative second coordinate with label l and assigned $dcost\ d$ means that dcost(l) = d, and the existence of such a point with label l and no dcost means that $dcost(l) = \infty$.

(As an example, look at Figure 1. $I_0 = [0]$ and only (5,3) is assigned $dcost\ 0$. $I_1 = [7,10]$ and the lattice points with $dcost\ 1$ are (5,2),(6,2),(7,2),(8,2). $I_2 = [14,20]$ and the lattice points with $dcost\ =\ 2$ are $(5,1),\ (6,1),\ (7,1),\ (8,1),\ (9,1),\ (0,2),\ (1,2)$. $I_3 = [21,30]$ and the lattice points with $dcost\ =\ 3$ are (5,0),(6,0),(7,0),(8,0),(9,0),(0,1),(1,1),(2,1),(3,1), $(4,1).\ I_4 = [28,40]$ and the lattice points with $dcost\ 4$ are (0,0),(1,0),(2,0),(3,0),(4,0).

The following crucial statements are easy to verify. All the points assigned a finite dcost are in $Q_i \cup R_i$, and all such points P_k in the nonnegative quadrant get a finite dcost. If $P_k \in R_i^*$, then $a_k < a_i$, since $r_i(x)$ has negative slope. If $P_k \in Q_i \setminus R_i$, then, since $q_i(0) = y_i + (x_i - G_1)/\Delta \le y_i + [(G_2 - 1) - G_1]/\Delta = y_i + (\Delta - 1)/\Delta < y_i + 1$, all $P_j \in Q_i$ have $y_j \le y_i$ and hence $a_j < a_i$.

Because we assign dcost equal to l for points in row $y_i - l$ in R_i , as well as some to the left in Q_i in row $y_i - l + 1$, we infer that $dcost(a_i - a_k) = y_i - y_k$ if $P_k \in R_i$, and that $dcost(a_i - a_k) = y_i - y_k + 1$ if $P_k \in Q_i \setminus R_i$. \square

Here is our geometric algorithm to compute the T(i)'s. Recall that before defining Q_i and R_i^* , for each j, we defined points $P_j = (x_j, y_j)$ with $x_j = a_j \mod G_2$ and $y_j = \lfloor a_j/G_2 \rfloor$.

- T(1) := 0 and $z_1 := T(1) 1 y_1$.
- For i := 2, 3, ..., n, do

$$- r := i + y_i - 2 + \min_{j < i : P_j \in R_i^*} z_j.$$

$$-q := i + y_i - 1 + \min_{j < i : P_j \in Q_i} z_j.$$

- $-T(i) := \min\{i-1, r, q\}.$
- $-z_i := T(i) i y_i.$

The running time of this algorithm is O(n) plus the time to do the 2n mins involved in the definitions of m_2 and m_3 . The idea is to use a geometric data structure to do each min in time $O(\log N \log \log N)$, for $O(N \log N \log \log N)$ time overall. In order to use a standard geometric data structure, we will have to convert each of the regions Q_i (a halfspace) and R_i (an intersection of two halfspaces) into a halfspace with axisparallel boundaries, and into an orthant (an intersection of two halfspaces with axis-parallel boundaries), respectively.

The algorithm requires one to find $\min_{j < i : P_j \in R_i^*} z_j$ and $\min_{j < i: P_i \in Q_i} z_j$. It is an annoyance that the algorithm needs a minimum over $P_j \in R_i^*$ rather than over $P_j \in R_i$. Were the desired minimum over $P_j \in R_i$, one would just apply to all points the affine transformation T mapping $(x,y) \rightarrow (x,y+x/\Delta)$. affine transformation maps points $(x, q_i(x)) = (x, (y_i +$ $(x_i - G_1)/\Delta - x/\Delta$ on the bounding line of Q_i to points $(x, (y_i + (x_i - G_1)/\Delta))$, which are on a horizontal line. The same affine transformation maps points $(x, r_i(x)) = (x, (y_i + x_i/\Delta) - x/\Delta)$ on the "diagonal" bounding line of R_i to $(x, y_i + x_i/\Delta)$, another horizontal line, and maps points (x_i, y) on R_i 's vertical bounding line to $(x_i, y+x_i/\Delta)$, the same vertical line. This means that the question, "Is $(x, y) \in Q_i$?" could be answered, in the transformed space, by asking if T(x,y) is on or below a horizontal line, and "Is $(x,y) \in R_i$?" could be answered in the transformed space by asking if T(x,y)is on or to the right of a vertical line and on or below a horizontal one.

Unfortunately, though, the min is over $P_j \in R_i^*$ instead of over R_i . We now exploit the fact that all the (untransformed) query points are of the form $(x,y) \in \mathbb{N}^2$, $x \leq G_2 - 1$. It suffices to make an affine transformation which correctly answers queries about these points.

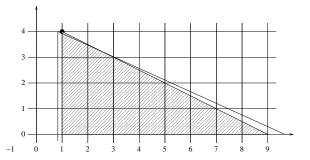


Figure 2: Here P_i is the solid point, $\Delta = 2$, the relevant part of R_i is given by the shaded area, and R_i 's bounding lines are thicker.

The idea is to replace each line $q_i(x)$ by a line $q_i'(x)$ which very closely tracks $q_i(x)$ (and to define $Q_i' = \{(x,y)|y \leq q_i'(x)\}$) and (see Figure 2 for intuition) to replace the line $r_i(x)$ by a line $r_i'(x)$ which very closely tracks $r_i(x)$, and to replace the line $x = x_i$ by $x = x_i - \epsilon$ (and to define $R_i' = \{(x,y)|(x \geq x_i - \epsilon) \land (y \leq r_i'(x))\}$) (for a small $\epsilon > 0$) such that (1) all lines $q_i'(x)$ over all i and $r_i'(x)$ over all i have the same slope, and (2) a point $P \in \mathbb{N}^2$ with first coordinate at most $G_2 - 1$ is in G_i if and only if $P \in Q_i'$, and (3) a lattice point P with first coordinate at most $G_2 - 1$ is in G_i if and only if G_i if and G_i if and

This is done as follows. Let $h = \lceil G_2/\Delta \rceil$. The line $y = r_i(x)$, which we will call L_0 , passes through $P_i =$ (x_i, y_i) and $Z := (x_i + h\Delta, y_i - h)$, since it has slope $-1/\Delta$. Consider the line segment corresponding to xcoordinates in interval $I = [x_i, x_i + h\Delta]$. (Clearly $x_i + h\Delta$) $h\Delta \geq G_2$.) For any $x \in I$, the lowest lattice point (x,y)strictly above the line segment is at least $1/\Delta$ above it. This means that if we hold P_i fixed and raise the right endpoint by $1/(2\Delta)$ —in other words, consider the line L_1 passing through P_i and $Z' = (x_i + h\Delta, y_i$ $h+1/(2\Delta)$)—then "raising" the line segment causes it to "pass through" no lattice points. (The slope $\gamma :=$ $(-h + 1/(2\Delta))/(h\Delta) = -1/\Delta + 1/(2h\Delta^2)$ of L_1 does not depend on i.) Clearly, between $x = x_i$ and $x = x_i +$ $h\Delta$, L_1 passes through no lattice points except P_i , and furthermore, the minimum distance upward from any point on L_1 , whose x-coordinate is integral, to a lattice point is at least $1/\Delta - 1/(2\Delta) = 1/(2\Delta)$. In addition, the minimum distance downward from any point on L_1 in that interval to a lattice point other than P_i is at least $(1/(2\Delta))/(h\Delta) = 1/(2h\Delta^2)$, since the interval has length $h\Delta$.

Now simply "lower" L_1 uniformly by $\tau := 1/(4h\Delta^2)$ to get a new line L_2 which is below P_i but above every other lattice point with x-coordinate between x_i and $x_i + h\Delta$ which had been below L_1 . In other words, L_2 is the line connecting $(x_i, y_i - 1/(4h\Delta^2))$ and $(x_i + h\Delta, y_i - h + 1/(2\Delta) - 1/(4h\Delta^2))$. L_2 is the desired boundary for R'_i provided that L_2 crosses the line $y = y_i$ at a point $x = x_i - \epsilon$ for $\epsilon \in (0, 1)$. Where does L_2

hit the line $y = y_i$? We have $\tau/\epsilon = 1/\Delta - 1/(2h\Delta^2)$ so $\epsilon = \tau/(1/\Delta - 1/(2h\Delta^2)) < \tau/(1/(2\Delta)) = 2\Delta\tau = 1/(2h\Delta) < 1$.

To construct $q'_i(x)$ from $q_i(x)$, just use the line of slope γ passing through $(0, q_i(0))$. The set of lattice points on or under that line, between x-coordinates 0 and $h\Delta$, is the same as the set of those on or under $q_i(x)$. However, if $q_i(0)$ is integral, so that $(0, q_i(0))$ is on both the original line and the "rotated" one, one may want to raise the line slightly to prevent roundoff errors.

Now we just apply the affine transformation T' which maps $(x,y) \to (x,y')$, where $y'=y+x/\gamma$, to turn Q_i' into a halfspace with a horizontal bounding line and R_i' into the intersection of a halfspace with a horizontal bounding line and a halfspace with a vertical bounding line.

We apply this affine transformation to all points P_j . We need to do orthogonal range search queries in which we need to find the minimum z_j in a translated quadrant or halfspace. However, since z_i is defined only after all $z_1, z_2, ..., z_{i-1}$ are defined, the key values are not known in advance. (The points themselves, however, are known in advance.)

3.1 Running time analysis

Here is what a data structure must support in order to run the algorithm. We are given, in advance, n points P_i in \mathbb{Z}^2 with $P_i = (x_i, y_i)$. For each i, we will construct key(i) adaptively in the order 1, 2, 3, ..., n, as follows. Initialize key(1) in some way. The data structure must be able to execute the following code:

- for i = 2 to n do:
 - Find a j minimizing key(j) among those j < i satisfying $x_j \le x_i$ and $y_j \le y_i$.
 - Now define key(i) (somehow).
- end for.

The augmented segment tree of Mehlhorn and Näher [5] guarantees the existence of a $O(N\log N\log\log N)$ -time algorithm [4]. In fact, a data structure giving a running time of $O(N\log N\log\log N)$ is likely to be implicit in Gabow, Bentley, and Tarjan [2]; however their result as stated (Theorem 3.3 and the discussion above it) is for the case when all key(i) values are known in advance.

We leave open the existence of a $O(N \log N)$ -time algorithm, and suggest Willard [6] or Chan, Larsen, and Pătrascu [1] as a possible starting point.

4 Acknowledgments

The authors thank Hal Gabow and Kurt Mehlhorn for their help finding data structures supporting all query and update operations in $O(n \log n \log \log n)$ time.

References

- [1] T. M. Chan, K. G. Larsen, and M. Pătrascu. Orthogonal range searching on the RAM, revisited. In F. Hurtado and M. J. van Kreveld, editors, *Symposium on Computational Geometry*, pages 1–10. ACM, 2011.
- [2] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques for geometry problems. In ACM Symposium on Theory of Computing, pages 135– 143, 1984.
- [3] L. Golab, H. Karloff, F. Korn, A. Saha, and D. Srivastava. Sequential dependencies. PVLDB, 2(1):574–585, 2009.
- [4] K. Mehlhorn, 2011. Personal communication.
- [5] K. Mehlhorn and S. Näher. Dynamic Fractional Cascading. Algorithmica, pages 215–241, 1990.
- [6] D. E. Willard. Examining Computational Geometry, Van Emde Boas Trees, and Hashing from the Perspective of the Fusion Tree. SIAM J. Comput., 29(3):1030–1049, 2000.