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Edge-guarding Orthogonal Polyhedra

Nadia M. Benbernou∗ Erik D. Demaine† Martin L. Demaine† Anastasia Kurdia Joseph O’Rourke‡

Godfried Toussaint§ Jorge Urrutia¶ Giovanni Viglietta‖

Abstract

We address the question: How many edge guards are
needed to guard an orthogonal polyhedron of e edges,
r of which are reflex? It was previously established [3]
that e/12 are sometimes necessary and e/6 always suf-
fice. In contrast to the closed edge guards used for these
bounds, we introduce a new model, open edge guards
(excluding the endpoints of the edge), which we argue
are in some sense more natural in this context. After
quantifying the relationship between closed and open
edge guards, we improve the upper bound to show that,
asymptotically, (11/72)e (open or closed) edge guards
suffice, or, in terms of r, that (7/12)r suffice. Along
the way, we establish tight bounds relating e and r for
orthogonal polyhedra of any genus.

1 Introduction

We consider a natural variation of the famous Art
Gallery Problem: given an orthogonal polyhedron P
(possibly with holes) in R

3, select a minimum number
of edges of P (called edge guards) so that the interior of
P is fully guarded (i.e., each point of P is visible to at
least one guard).

Although traditionally edge guards are closed in that
they occupy the entire edge, we suggest that open edge

guards, which exclude their endpoints, are a more nat-
ural model. We establish that at most three times as
many open edge guards are needed to cover the same
polyhedron as closed edge guards, a tight bound. De-
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spite this apparent weakness, we improve the previous
upper bound for closed edge guards to a better bound
for open edge guards.

Open guards, open polyhedra. In line with our fo-
cus on open edge guards, we also focus on guarding
open polyhedra, i.e., bounded polyhedra excluding their
boundaries. Consider an orthogonal polyhedron to rep-
resent an empty room with solid walls, with the task to
place guards who can detect unwelcome intruders. Be-
cause an intruder cannot hide within a wall but rather
must be located inside the room, there is no need to
guard the walls of the room, i.e., the boundary of the
polyhedron. A guarding problem can alternatively be
viewed as an illumination problem, with guards act-
ing as light sources. Incandescent lights are modeled
as point guards, and fluorescent lights are modeled as
segment guards. In the latter case, it is more realistic to
disregard the endpoints of the edge guards. The amount
of light that a point interior to the polyhedron receives
is proportional to the total length of the segments illu-
minating that point. Employing the open edge-guard
model ensures that if a point is illuminated, it receives
a strictly positive amount of light, and makes the model
more realistic.

Notice that these two definitions of illuminated points
(visible to an open edge guard or receiving a strictly
positive amount of light from closed edge guards) cease
to be equivalent if we consider polyhedra with boundary.

Previous work. Although guarding orthogonal poly-
gons is a relatively well-studied topic, few positive re-
sults exist for orthogonal polyhedra. To the best of
our knowledge, the only results relevant to the problem
studied in this paper were given by Urrutia in his sur-
vey [3, Sec. 10]: for a polyhedron of e edges, e/6 closed
edge guards always suffice, and e/12 guards are some-
times necessary (Figure 1). He also conjectured that
the latter is the correct bound, i.e., that e/12 + O(1)
suffice. Because no proof of the upper bound was given
in [3], another contribution here is that our proof for
the (11/72)e bound incorporates the essence of Urru-
tia’s unpublished e/6 proof.



23rd Canadian Conference on Computational Geometry, 2011

Figure 1: Lower bound example from [3]: k guards are
required to guard a polyhedron with a total of 12k+12
edges.

2 Properties of orthogonal polyhedra

We start with precise definitions of necessary concepts.
Given two points x and y, we denote by xy the (closed)
straight line segment joining x and y, and by x̃y the
corresponding open segment, i.e., the relative interior of
xy.

Orthogonal polyhedra. A cuboid is defined as a com-
pact subset of R3 bounded by 6 axis-orthogonal planes.
The union of a finite non-empty set of cuboids is an
orthogonal polyhedron if its boundary is a connected 2-
manifold.
A face of an orthogonal polyhedron is a maximal pla-

nar subset of its boundary, whose interior is connected
and non-empty. Faces are orthogonal polygons with
holes, perhaps with degeneracies such as hole bound-
aries touching each other at single vertex, etc. A vertex

of an orthogonal polyhedron is any vertex of any of its
faces. An edge is a minimal positive-length straight line
segment shared by two faces and connecting two ver-
tices of the polyhedron. Each edge, with its two adja-
cent faces, determines a dihedral angle, internal to the
polyhedron. Each such angle is 90◦ (at a convex edge)
or 270◦ (at a reflex edge).

Visibility and guarding. Visibility with respect to a
polyhedron P is a relation between points in R

3: point
x sees point y (equivalently, y is visible to x) if xy \ {x}
lies entirely in the interior of P . Note that, according to
the previous definition, the boundary of P occludes vis-
ibility; no portion of xy, except the endpoint x, can lie
on the boundary of P . Also, x is assumed to be invisible
to itself when it belongs to the boundary. Given a point
x ∈ P , its visibility region V (x) is the set of points that
are visible to x. Similarly, the visibility region of a set
X ⊆ R

3, denoted by V (X), is the set of points that are
visible to at least one point in X .
The Art Gallery Problem we consider in this paper

is: given an orthogonal polyhedron P , efficiently select
a (sub)set of its edges e1, e2, . . . , ek, called the guarding

set, so that the whole interior of P is guarded by the
interiors of the selected edges. In other words, the inte-
rior of P must coincide with V (ẽ1)∪V (ẽ2)∪ . . .∪V (ẽk).
Our goal is also to minimize k, the number of selected
edges. We bound k with respect to the total number e
of edges of P , or the number r of its reflex edges.
The notion of ε-guarding implies that each point is

guarded by at least one positive-length segment. Guard-
ing in our open polyhedra model is equivalent to ε-
guarding in that, if a point is guarded, then it is also
guarded by a positive-length segment, lying on some
guard.

A

B

C

D

E F

Figure 2: The six vertex types.

Vertex classification. Based on the number of incident
reflex and convex edges, the vertices of orthogonal poly-
hedra form six distinct classes, denoted here by A, B, C,
D, E and F, and are introduced as follows. Consider the
eight octants determined by the coordinate axes inter-
secting at a given vertex, and place a sufficiently small
regular octahedron around the vertex, such that each
of its faces lies in a distinct octant. By definition, the
set of faces that fall inside (or outside) the polyhedron
is connected: recall that the boundary of a polyhedron
is a 2-manifold. Consider all possible ways of parti-
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tioning the faces of the octahedron into two non-empty
connected sets, up to isometry (refer to Figure 2):

• There is essentially a single way to select 1 face
(resp. 7 faces). This corresponds to an A-vertex
(resp. a B-vertex).

• There is a single way to select 2 faces (resp. 6 faces).
This case does not correspond to a vertex of the or-
thogonal polyhedron: it implies that the considered
point is not a vertex of any face on which it lies.

• There is a single way to select 3 faces (resp. 5 faces).
This corresponds to a D-vertex (resp. a C-vertex).

• There are three ways to select 4 faces. One of them
implies that the point lies in the middle of a face,
hence it does not correspond to a vertex. The other
two choices correspond to an E-vertex and an F-
vertex, respectively.

Auxiliary results. We now present two useful proper-
ties of orthogonal polyhedra that will be employed to
prove our main results. Let us denote by A the number
of A-vertices in a given orthogonal polyhedron, and so
on, for each vertex class.

Lemma 1 In every orthogonal polyhedron with r > 0
reflex edges, 3A+D > 28.

Proof. Consider the bounding cuboid of the polyhe-
dron and the set of orthogonal polygons (perhaps with
holes, without degeneracies), formed by intersection of
the faces of the cuboid and the polyhedron. The vertices
of those polygons are either A-vertices or D-vertices of
the polyhedron (convex vertices are A-vertices, and re-
flex vertices are D-vertices). Our strategy is to only look
at the vertices belonging to the bounding faces and en-
sure that there is a sufficient number of them. Namely,
we only need to show that there are at least

(a) 10 A-vertices, or

(b) 9 A-vertices and 1 D-vertex, or

(c) 8 A-vertices and 4 D-vertices.

Suppose each face of the bounding cuboid contains
exactly one rectangle. If all the vertices of these rectan-
gles coincide with the corners of the bounding cuboid,
then the polyhedron is convex, contradicting the as-
sumptions. Hence, there is a vertex x that is not a
corner of the bounding cuboid. Let f denote a face
containing x. At least one of the vertices, denoted by
y, adjacent to x in the rectangle contained in f , is such
that x̃y does not lie on an edge of the bounding cuboid.
Let f ′ be the bounding face opposite to f , and f ′′ be
the bounding face chosen as shown in Figure 3: out of

x′

y′

x

y

f
f ′

f ′′

Figure 3: An illustration of the proof of Lemma 1.

the 4 faces surrounding f , f ′′ is the one that lies on the
“side” of xy. f and f ′ contain two disjoint rectangles,
and thus exactly 8 distinct A-vertices. Additionally, f ′′

has two extra A-vertices, lying on an edge x′y′ paral-
lel to xy (refer to Figure 3). Collectively, f , f ′ and f ′′

contain at least 10 A-vertices, so (a) holds.
On the other hand, if there exists a bounding face f

whose intersection with the polyhedron is not a single
rectangle, then we need to analyze the following three
cases. Let f ′ be the bounding face opposite to f .

• If f contains at least two polygons (those polygons’
boundaries must be disjoint because f is a bound-
ing face), then collectively f and f ′ contain at least
12 distinct A-vertices, so (a) holds. Indeed, every
orthogonal polygon has at least 4 convex vertices.

• If f contains a polygon with at least one hole, then
the polygon’s external boundary contains at least
4 convex vertices (equiv. A-vertices), and the hole
has at least 4 reflex vertices (equiv. D-vertices). f ′

also contains at least 4 convex vertices (A-vertices).
Together f and f ′ contain at least 8 A-vertices and
4 D-vertices, so (c) holds.

• If f contains just one polygon, which is not convex,
then such a polygon has at least 5 convex vertices
and one reflex vertex. Together with f ′, there are
at least 9 A-vertices and 1 D-vertex, so (b) holds.

�

Theorem 2 For every orthogonal polyhedron with e
edges in total, r > 0 reflex edges and genus g > 0,

1

6
e+ 2g − 2 6 r 6

5

6
e− 2g − 12

holds. Both inequalities are tight for every g.

Proof. Let c = e−r be the number of convex edges. Let
A be the number of A-vertices, etc.. Double counting
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the pairs (edge, endpoint) yields (refer to Figure 2)

2c = 3A+ C + 2D + 3E + 2F, (1)

2r = 3B + 2C +D + 3E + 2F. (2)

The angle deficit (with respect to 2π) of A- and B-
vertices is π/2, the deficit of C- and D-vertices is −π/2,
the defect of E- and F-vertices is −π. Hence, by the
polyhedral version of Gauss-Bonnet theorem (see [2,
Thm. 6.25]),

A+B − C −D − 2E − 2F = 8− 8g. (3)

Finally, since all the variables involved are non-negative,

9B + 3C + 3E + F > 0. (4)

Subtracting 3 times (3) from 2 times (4) yields

−3A+ 15B + 9C + 3D + 12E + 8F > 24g − 24.

Further subtracting (1) and adding 5 times (2) to the
last inequality yields

2c− 10r + 24g − 24 6 0,

which is equivalent to 1

6
e+ 2g − 2 6 r.

To see that the left-hand side inequality is tight for
every r and g, consider the staircase-like polyhedron
with holes depicted in Figure 4. If the staircase has k
“segments” and g holes, then it has a total of 6k+12g+6
edges and k + 4g − 1 reflex edges.

Figure 4: A polyhedron that achieves the tight left-hand
side bound in Theorem 2.

According to Lemma 1, 3A + D > 28, unless the
polyhedron is a cuboid. Then

9A+ 3D + 3E + F > 84. (5)

Subtract 3 times (3) from 2 times (5):

15A− 3B + 3C + 9D + 12E + 8F > 24g + 144.

Subtract (2) and add 5 times (1):

2r − 10c+ 24g + 144 > 0,

which is equivalent to r 6 5

6
e− 2g − 12.

To see that the right-hand side inequality is also tight,
consider a cuboid with a staircase-like well carved in it,
and a number of cuboidal “poles” carved out from the
surface of the well (i.e., the negative version of Figure 4).
If the staircase has k “segments” and g poles, then the
polyhedron has a total of 6k+ 12g+ 18 edges and 5k+
8g + 3 reflex edges. �

Notice that the statement of the previous theorem does
not hold if we change the definition of orthogonal poly-
hedron by dropping the condition of connectedness of
the boundary. Indeed, consider a cube and remove sev-
eral smaller disjoint cubic regions from its interior. The
resulting shape has unboundedly many reflex edges and
just 12 convex edges.
Finally, the next proposition characterizes visibility

regions of points belonging to polyhedra.

Proposition 3 The visibility region of any point in a

polyhedron or on its boundary is an open set.

Proof. Let x be a point in a polyhedron P . Let f
be a face of P , not containing x. The region of space
“occluded” by f is a closed set O(x, f), shaped like a
truncated unbounded pyramid with apex x and base f .
The number of faces is finite. Forming the union of all
O(x, f), for every face f not containing x, we obtain a
closed set O(x).
The region occluded by the faces containing x is the

corresponding (unbounded) solid angle, external with
respect to P , which is a closed set. Its union with O(x)
is again a closed set, and therefore the complement of
O(x) is an open set, which by definition is V (x). �

Observe that the visibility regions of open and closed
edges are also open sets, since they are unions of open
sets.

3 Open vs. closed edge guards

We now establish the relationship between the number
of open and closed edge guards required to guard the
interior of an orthogonal polyhedron.

Theorem 4 Any orthogonal polyhedron guardable by k
closed edge guards is guardable by at most 3k open edge

guards, and this bound is tight.

Proof. Given a set of k closed edges that guard the
entire polyhedron, we first construct a guarding set of
open edges of size at most 3k and then show that this set
also guards the entire polyhedron. The construction is
simple: for each closed edge uv from the original guard-
ing set, place the open edge ũv into the new guarding
set. For the endpoint u, also add a reflex edge ũw with
w 6= v, if such edge exists, or any other edge incident
to u otherwise. Similarly, an incident edge is selected
for the other endpoint v. Hence, for each edge of the
original guarding set, at most 3 open edges are placed
in the new guarding set.
To prove the equivalence of the two guarding sets, we

need to show that the volume that was guarded by an
endpoint u of the closed edge from the original guarding
set, is guarded by some point belonging to the interior
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of uv or the interior of uw, as chosen above, i.e., V (u) ⊆
V (ũv) ∪ V (ũw).
Let x be any point previously guarded by u, x ∈ V (u).

By Proposition 3, a ball B centered at x belongs to
V (x). Then we create a right circular cone C with apex
u, whose base is centered at x and is contained in B.
Clearly, C ⊂ V (u). Let D be a small-enough ball cen-
tered at u that does not intersect any face of the polyhe-
dron except those containing u (refer to Figure 5). We
prove that D ∩ P ⊆ V (ũv ∩ D) ∪ V (ũw ∩D).
If u is an A-vertex, then D ∩ P ⊆ V (ũv ∩ D). If

u is a B-vertex (as illustrated), then of the 8 octants
determined by orthogonal planes crossing at u, one is
external to P . Out of the 7 octants that need to be
guarded, 6 are guarded by ũv ∩ D. The same holds for
ũw, and together they guard all 7 octants (two of the
octants guarded by ũv are missing a face, but those two
faces are guarded by ũw).
In all other cases (u is a C-, D-, E- or F -vertex),

either uv or uw is a reflex edge. Assume without loss
of generality that uv is reflex. Then, ũv ∩ D sees all of
D ∩ P (refer to Figure 2).

D

C

B

u

v

w

y

x

z

ρ

Figure 5: Construction from the proof of Theorem 4.

The boundaries of D and C intersect at a circle of
radius ρ > 0. Let y be the center of that circle. There
is a point z on ũv ∩ D or on ũw ∩ D that sees y, and
hence the entire open segment ũz sees y. Pick a point t
on ũz such that ||ut|| < ρ. Then t sees x.
A similar argument holds for the visibility region of

the other endpoint, v, of uv.
To see that 3 is the best achievable ratio between

the number of open and closed edge guards, consider
the polygon in Figure 6 and extrude it to an orthogo-
nal prism. Each large dot in that figure represents the
projection of some distinguished point located in the in-
terior of the prism. The only (closed) edges that can see
more than two selected points are the highlighted edges
(on the lower or upper base of the prism). Picking those
edges as guards yields the minimum set of guards, and
together they guard the entire polyhedron. On the other
hand, the relative interior of any edge can see at most

Figure 6: Matching ratio in Theorem 4. Notice that the
same example also solves the corresponding problem for
2D polygons.

one point of interest. At least as many open edge guards
as there are distinguished points are necessary. �

Note that the above analysis does not hold in the case
of closed polyhedra, i.e., when the boundary does not
obstruct visibility, since we can no longer argue that a
single closed edge guard is locally dominated by 3 open
edge guards.

4 Upper bound

We now establish an upper bound on the number of
open edge guards required to guard an orthogonal poly-
hedron.

Theorem 5 Every orthogonal polyhedron with e edges

in total and r reflex edges is guardable by ⌊ e+r
12

⌋ open

edge guards.

Proof. Let ex and rx be the number of X-parallel edges
and reflex edges, respectively; ey, ez, ry, rz are simi-
larly defined. Without loss of generality, assume X is
the direction that minimizes the sum ex + rx, so that
ex + rx 6 e+r

3
. Of course, a guard on every X-parallel

edge suffices to cover all of P , but we can do much better
with a selected subset of these edges. We argue below
that selecting the three types of X-parallel edges circled
in Figure 7 suffice (as do three other symmetric configu-
rations). Let the number of X-edges of each of the eight
types shown be α, . . . , δ′ as labeled in Figure 7.
Hence we could place α+β′+ δ′ guards, or γ+β′+ δ′

guards, or β + α′ + γ′ guards, or δ + α′ + γ′ guards.
By choosing the minimum of these four sums, we

place at most

(α+ β + γ + δ + 2α′ + 2β′ + 2γ′ + 2δ′) /4

=
ex + rx

4
6

e+ r

12

guards.
Next we prove that our guard placement works.
We consider any point p in P and show that p is

guarded by the edges selected in Figure 7. Let ω be the
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α β

γδ

α′ β′

γ′δ′

Figure 7: Possible configurations of X-edges. The X-
axis is directed toward the reader. The circled configu-
rations are those selected in the proof of Theorem 5.

X-orthogonal plane containing p and let Q be the inter-
section of the (open) polyhedron P with ω. To prove
that p is guarded, we first shoot an axis-parallel ray from
p. For our choice of guarding edges, the ray is directed
upward. Let q be the intersection point of the ray and
the boundary of Q that is nearest to p. Next, grow left-
wards a rectangle whose right side is pq until it hits a
vertex v of Q. If it hits several simultaneously, let v be
the topmost. There are three possible configurations for
v, shown in Figure 8, and each corresponds to a selected
configuration in our placement of guards (Figure 7). If
v lies in the interior of the guarding edge, then p is
guarded. If v is an endpoint of such an edge, then we
show that p is guarded by a sufficiently small neighbor-
hood of v that belongs to the guarding edge. Every face
of P that does not intersect ω has a positive distance
from ω. Let d be the smallest such distance. Then, the
points of the guarding edge at distance strictly less than
d from v see p.
If a different triplet of guarding edges is chosen, the

above construction is suitably rotated by a multiple of
90◦. �

ppp

qqq
vv

v

Figure 8: An illustration of the proof of Theorem 5.

Our placement of guards in the single slices resembles
a construction given in [1], in a slightly different model.
By combining the results of Theorem 5 with those of

Theorem 2, we obtain two corollaries.

Corollary 6 Let e denote the number of edges of an

orthogonal polyhedron and let g denote its genus. Then
11

72
e− g

6
− 1 open edge guards are sufficient to guard the

interior of the polyhedron.

Corollary 7 Let r denote the number of reflex edges

of an orthogonal polyhedron and let g denote its genus.

Then 7

12
r−g+1 open edge guards are sufficient to guard

the interior of the polyhedron.

5 Conclusions

We have elucidated the relationship between the re-
quired number of closed edge guards and open edge
guards. We also improved the current state of the art
and obtained a better upper bound (11

72
e vs. the pre-

viously known e
6
) on the number of edge guards that

suffice for coverage.
We remark that, due to the observation following

Theorem 2 , our methods do not improve on the e
6
upper

bound when applied to orthogonal shapes with discon-
nected boundary. Indeed, in this case the e+r

12
given

by Theorem 5 still holds, but the r to e ratio can be
arbitrarily close to 1.
We conclude with a few possible future directions.

The same construction used in Theorem 5 could be an-
alyzed more closely to achieve a tighter upper bound. In
contrast with the fact that the polyhedra with highest r
to e ratio are responsible for the worst cases in our anal-
ysis, such polyhedra are nonetheless intuitively easy to
guard by selecting a small fraction of their reflex edges.
Isolating these cases and analyzing them separately may
yield an improved overall bound.
We also conjecture that suitably placing guards on

roughly half of the (open) reflex edges solves our Art
Gallery Problem in any orthogonal polyhedron, which
would imply that 1

2
r + O(1) guards suffice (this many

are needed in Figure 4 when g = 0).
Observe that our construction in Theorem 5 places

guards in just one direction. It would be interesting to
investigate this restriction of the Art Gallery Problem
(i.e., with the additional constraint that edge guards
are mutually parallel), perhaps showing that the lower
bound given in Figure 1 can be improved in this more
restrictive scenario.
On the other hand, refining our construction by plac-

ing guards in all three directions, according to some
local properties of the boundary, is likely to yield better
upper bounds.
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