
CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

Kinetic Data Structures for the Semi-Yao Graph and All Nearest Neighbors
in Rd

Zahed Rahmati∗ Mohammad Ali Abam† Valerie King∗ Sue Whitesides∗

Abstract

This paper presents kinetic data structures (KDS’s) for
maintaining the Semi-Yao graph, all the nearest neigh-
bors, and all the (1 + ε)-nearest neighbors of a set of
moving points in Rd.

Our technique provides the first KDS for the Semi-
Yao graph in Rd. It generalizes and improves on the
previous work on maintaining the Semi-Yao graph in R2.

Our KDS for all nearest neighbors is deterministic.
The best previous KDS for all nearest neighbors in Rd
is randomized. Our structure and analysis are simpler
and improves on the previous work.

Finally, we provide a KDS for all the (1 + ε)-nearest
neighbors, which in fact gives better performance than
the exact KDS’s for all nearest neighbors.

1 Introduction

Let P be a set of n points in Rd. Finding the nearest
neighbor to a query point, which was called the post of-
fice problem by Donald Knuth in 1973, is fundamental
in computational geometry. The all nearest neighbors
problem, a variant of the post office problem, is to find
the nearest neighbor to each point p ∈ P . Given any
ε > 0, the all (1 + ε)-nearest neighbors problem is to
find some q̂ ∈ P for each point p ∈ P , such that the Eu-
clidean distance |pq̂| between p and q̂ is within a factor of
(1+ε) of the Euclidean distance between p and its near-
est neighbor. The nearest neighbor graph is constructed
by connecting each point p ∈ P to its nearest neigh-
bor. The closest pair problem is to find the endpoints
of the edge in the nearest neighbor graph with minimum
length. The Semi-Yao graph (or theta-graph) is a well-
studied sparse proximity graph [12, 15]. This graph can
be constructed by partitioning the space around each
point p ∈ P into c cones Cl(p), 1 ≤ l ≤ c, with p the
shared apex of the cones, and then connecting the point
p to a point q inside each of these cones, such that the
point q ∈ P ∩Cl(p) has the minimum length projection
on the vector in the direction of the axis of Cl(p). By

∗This work was partially supported by a British Columbia
Graduate Student Fellowship and by NSERC discovery grants.
Department of Computer Science, University of Victoria, Canada,
{rahmati,val,sue}@uvic.ca
†Department of Computer Engineering, Sharif University of

Technology, Iran, abam@sharif.edu

treating the number c of cones at each point as a param-
eter of the Semi-Yao graph, one obtains an important
class of sparse graphs, t-spanners, with different stretch
factors t [6, 9, 10, 11].

The maintenance of attributes (e.g., the closest pair)
of sets of moving points has been studied extensively
over the past 15 years [2, 3, 5, 7, 14, 18, 19, 20, 21]. A
basic framework for this study is that of a kinetic data
structure (KDS), which is in fact a set of data structures
and algorithms to track the attributes of moving points.
The problem of maintaining all the nearest neighbors,
the closest pair, and the Semi-Yao graph on moving
points are called the kinetic all nearest neighbors prob-
lem, the kinetic closest pair problem, and the kinetic
Semi-Yao graph, respectively.

The kinetic maintenance of attributes is generally
considered in two models: the standard KDS model [7]
and the black-box KDS model [13]. In the black-box
model, the locations of the objects are received at regu-
lar time steps. In the standard model, each object has
a flight plan known in advance, and during the motion
the object can change its flight plan at some times which
are not known in advance. This paper considers the all
nearest neighbors problem and the Semi-Yao graph in
Rd for the standard KDS model and improves previous
results. In addition, it offers results on all (1+ε)-nearest
neighbors in Rd.

Standard KDS framework. Basch, Guibas, and Her-
shberger [7] introduced a kinetic data structure frame-
work to maintain the attributes of moving points. The
d coordinates of the trajectory of each point p in Rd,
which determine the position of p as a function of time,
are d algebraic functions of at most constant degree s.
The correctness of an attribute over time is determined
based on correctness of a set of certificates. A certifi-
cate is a boolean function of time, and its failure time
is the next time after the current time at which the cer-
tificate will become invalid. When a certificate fails, we
say that an event occurs. Using a priority queue of the
failure times of the certificates, we can know the next
time after the current time that an event occurs. When
the failure time of the certificate with highest priority in
the priority queue is equal to the current time we invoke
the update mechanism to reorganize the data structures
and replace the invalid certificates with new valid ones.

26th Canadian Conference on Computational Geometry, 2014

To analyse the performance of a KDS there are four
standard criteria. A KDS distinguishes between two
types of events: external events and internal events.
An event that changes the desired attribute itself is
called an external event, and those events that cause
only some internal changes in the data structures are
called internal events. If the ratio between the total
number of events and the number of external events is
O(polylog(n)), the KDS is efficient. If the response time
of the update mechanism to an event is O(polylog(n)),
the KDS is responsive. The compactness of a KDS
refers to size of the priority queue: if the KDS uses
O(n.polylog(n)) certificates, it is compact. The KDS is
local if the number of events associated with any point
in the KDS is O(polylog(n)). The locality of a KDS is
an important criterion; if a KDS satisfies locality, the
KDS can be updated quickly when a point changes its
trajectory.

Related work. Basch, Guibas, and Hershberger
(SODA’97) [7] provided a KDS for maintenance of
the closest pair in R2. Their KDS uses linear space
and processes O(n2β2s+2(n) log n) events, each in time

O(log2 n). Here, βs(n) = λs(n)
n is an extremely slow-

growing function and λs(n) is the maximum length of
Davenport-Schinzel sequences of order s on n symbols.

A common way to maintain attributes of moving
points in Rd is to use kinetic multidimensional range
trees [8, 4, 1]. Basch et al. [8] and Agarwal et al. [4] use
dynamic balanced trees to implement a kinetic range
tree. Using rebalancing operations, they handle events
to maintain a range tree. In particular, in their ap-
proaches, when an event between two points p and q
occurs, we must delete p and q and reinsert them into
the range tree. The range tree can be maintained over
time using a dynamic range tree. One of the approaches
to update the range trees is to carry out local and global
rebuilding after a few operations, which gives O(logd n)
amortized time per operation [16]. Another approach,
which uses merge and split operations, gives worst-case
time O(logd n) per operation [23]. To avoid rebalanc-
ing the range tree after each operation, Abam and de
Berg [1] introduced a variant of the range trees, a rank-
based range tree (RBRT), which gives worst-case time
O(logd n) per operation.

Basch, Guibas, and Zhang (SoCG’97) [8] used mul-
tidimensional range trees to maintain the closest pair.
For a fixed dimension d, their KDS uses O(n logd−1 n)
space and processes O(n2β2s+2(n) log n) events, each in
worst-case time O(logd n). Their KDS is responsive, ef-
ficient, compact, and local.

Using multidimensional range trees, Agarwal, Ka-
plan, and Sharir (TALG’08) [4] gave KDS’s for both
maintenance of the closest pair and all the nearest neigh-
bors in Rd. The closest pair KDS by Agarwal et al.,

which supports insertions and deletions of points, uses
O(n logd−1 n) space and processes O(n2β2s+2(n) log n)
events, each in amortized time O(logd n); this KDS is
efficient, responsive (in an amortized sense), local, and
compact. Agarwal et al. gave the first efficient KDS to
maintain all the nearest neighbors in Rd. For the effi-
ciency of their KDS, they implemented range trees by
using randomized search trees (treaps). Their random-
ized kinetic approach uses O(n logd n) space and pro-
cesses O(n2β2

2s+2(n) logd+1 n) events; the expected time

to process all events is O(n2β2
2s+2(n) logd+2 n). Their

all nearest neighbors KDS is efficient, responsive (in an
amortized sense), compact, but in general is not local.

Rahmati, King, and Whitesides (SoCG’13) [17] gave
the first KDS for maintenance of the Semi-Yao graph
in R2. They use a constant number of kinetic De-
launay triangulations to maintain the Semi-Yao graph.
Their Semi-Yao graph KDS uses linear space and pro-
cesses O(n2β2s+2(n)) events with total processing time
O(n2β2s+2(n) log n). Using the kinetic Semi-Yao graph,
they improved the previous KDS by Agarwal et al. to
maintain all the nearest neighbors in R2. In partic-
ular, their deterministic kinetic algorithm, which is
also arguably simpler than the randomized kinetic al-
gorithm by Agarwal et al., uses O(n) space and pro-
cesses O(n2β2

2s+2(n) log n) events with total processing

time O(n2β2
2s+2(n) log2 n). With the same complexity

as their KDS for maintenance of all the nearest neigh-
bors, they maintain the closest pair over time. Their
KDS’s for maintenance of the Semi-Yao graph, all the
nearest neighbors, and the closest pair are efficient, re-
sponsive (in an amortized sense), compact, but in gen-
eral are not local.

Our technique, results, and improvements. For a set
of n moving points in fixed dimension d, where the tra-
jectory of each point is an algebraic function of at most
constant degree s, we provide a simple, deterministic
KDS for maintenance of all the nearest neighbors. Our
kinetic approach is based on maintaining the edges of
the Semi-Yao graph, a sparse graph whose edge set in-
cludes the pairs of nearest neighbors as a subset. We
use a constant number of range trees to apply necessary
changes to the Semi-Yao graph over time.

Our Semi-Yao graph KDS uses O(n logd n) space
and processes O(n2) events with total processing time
O(n2β2s+2(n) logd+1 n). The KDS is compact, efficient,
responsive (in an amortized sense), and it is local. Our
KDS generalizes the previous KDS for the Semi-Yao
graph by Rahmati et al. [17] that only works in R2.
Also, our kinetic approach yields improvements of the
KDS for maintenance of the Semi-Yao graph by Rah-
mati et al. [17]: Our KDS is local, but their KDS is
not. In particular, each point in our KDS participates
in O(1) events, but in their KDS each point partici-

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

pates in O(n) events. Our KDS handles O(n2) events,
but their KDS handles O(n2β2s+2(n)) events in R2.

Our KDS for maintenance of all the near-
est neighbors uses O(n logd n) space and processes
O(n2β2

2s+2(n) log n)) events; the total processing time

to handle all the events is O(n2β2s+2(n) logd+1 n). Our
KDS is compact, efficient, responsive (in an amor-
tized sense), but it is not local in general. For each
point p ∈ P in the Semi-Yao graph we construct a
tournament tree to maintain the edge with minimum
length among the edges incident to the point p. Sum-
ming over elements of all the tournament trees in our
KDS is linear in n, which leads to a total number
of events O(n2β2

2s+2(n) log n), which is independent of
d. This improves with simpler structure and analy-
sis the previous randomized kinetic algorithm by Agar-
wal et al. [4]: The expected total size of the tournament
trees in their KDS is O(n logd n); thus their KDS pro-
cesses O(n2β2

2s+2(n) logd+1 n) events, which depends on
d. Also, we improve their KDS by a factor of log n in
the total cost. Furthermore, on average, each point in
our KDS participates in O(1) events, but in their KDS
each point participates in O(logd n) events.

For maintaining all the nearest neighbors, neither our
KDS nor the KDS by Agarwal et al. is local in the worst-
case, and furthermore, each event in our KDS and in
their KDS is handled in a polylogarithmic amortized
time. To satisfy the locality criterion and to get a worst-
case processing time for handling events, we provide a
KDS for all the (1 + ε)-nearest neighbors. In particular,
for each point p we maintain some point q̂ such that
|pq̂| < (1 + ε).|pq|, where q is the nearest neighbor of p
and |pq| is the Euclidean distance between p and q. This
KDS uses O(n logd n) space, and handles O(n2 logd n)
events, each in worst-case time O(logd n log log n); it is
compact, efficient, responsive, and local.

Paper organization. Section 2 describes the construc-
tion of the Semi-Yao graph and gives a solution to the all
nearest neighbors problem in Rd. In Section 3, we show
how the Semi-Yao graph can be maintained. Using the
kinetic Semi-Yao graph, we give a KDS for maintenance
of all the nearest neighbors in Section 4. Section 5 shows
how to maintain all the (1 + ε)-nearest neighbors.

2 The Construction

In the following we describe the construction of the
Semi-Yao graph and construction of all the nearest
neighbors, which will aid in understanding how our ki-
netic approach works.

Let −→v be a unit vector in Rd with apex at the origin
o, and let θ be a constant. We define the infinite right
circular cone with respect to −→v and θ to be the set
of points x ∈ Rd such that the angle between −→ox and

−→v is at most θ/2. A polyhedral cone inscribed in this
infinite right circular cone is formed by intersection of d
distinct half-spaces such that all the half-spaces contain
o. The angle between any two rays inside the polyhedral
cone emanating from o is at most θ. The d-dimensional
space around o can be covered by a collection of disjoint
polyhedral cones C1, ..., Cc, where c = O(1/θd−1) [4, 1].
Denote by xl the vector in the direction of the unit
vector −→v of Cl, 1 ≤ l ≤ c, with the origin at o. Let
Cl(p) denote a translated copy of Cl with apex at p (see
Figure 1(a)). From now on, we assume d is arbitrary
but fixed, so c is constant.

Given a point set P in Rd, the Semi-Yao graph is
constructed by connecting each point p ∈ P to the point
in P∩Cl(p), 1 ≤ l ≤ c, whose xl-coordinate is minimum.
Figure 1(b) depicts some edges incident to the point
p in the Semi-Yao graph in R2 where θ = π/3; here
x1 = −x4, x2 = −x5, and x3 = −x6.

The following lemma is used in [7, 4, 17] to maintain
the closest pair and all the nearest neighbors for a set
P of moving points (see Figure 1(c)).

Lemma 1 (Lemma 8.1. of [4]) Let p be the near-
est point to q and let Cl(p) be a cone of opening angle
θ ≤ π/3 that contains q. Then q has the minimum xl-
coordinate among the points in P ∩ Cl(p).

For a set of points in the plane, Rahmati et al. [17]
used Lemma 1 to show that the Semi-Yao graph is a
super-graph of the nearest neighbor graph. The follow-
ing lemma gives the same result for a set of points in
higher dimensions.

Lemma 2 The Semi-Yao graph of a set of points in Rd
is a super-graph of the nearest neighbor graph.

Proof. Let (p, q) be an edge in the nearest neighbor
graph such that p is the nearest neighbor to q. The
point q is in some cone Cl(p). The restriction θ ≤ π/3
of the cone Cl(p) together with Lemma 1 imply that the
point q has minimum length projection on xl among the
points in P ∩Cl(p); this implies that (p, q) is an edge of
the Semi-Yao graph. �

For a fixed dimension d, there is a constant number of
cones Cl. Denote by f1, ..., fd the bounding half-spaces
of the cone Cl and let ui be the coordinate axis orthog-
onal to fi, 1 ≤ i ≤ d; Figure 1(a) depicts u1 and u2 of
the half-spaces f1 and f2 of the cone Cl. Correspond-
ing to each cone Cl, we construct a ranked-based range
tree (RBRT) Tl [1], which is described below, and for
each point p in Tl, we find the point in P ∩Cl(p) whose
xl-coordinate is minimum; this gives a construction for
the Semi-Yao graph.

26th Canadian Conference on Computational Geometry, 2014

p

p

q

(a) (b) (c)

u2

u1

o xl

f2

f1

p

Cl(p)

C̄l(p)

Cl

θ/2o

u2

u1

xl +−

xl

o

Figure 1: (a) The cone Cl and its translated copy with apex at p. (b) The point p is connected to the point in
P ∩Cl(p) that has minimum xl-coordinate. The dotted lines are orthogonal to the cone axes. (c) The point p is the
nearest neighbor to q and, so q has the minimum xl-coordinate among the points in P ∩ Cl(p).

Ranked-based range tree. The RBRT Tl is a vari-
ant of the range trees and has the following property.
When two points exchange their order along an axis ui,
the RBRT can be updated without rebalancing the sub-
trees. The points at the level i of the RBRT Tl are sorted
at the leaves in ascending order according to their ui-
coordinates. The skeleton of an RBRT is independent
of the position of the points in Rd and depends on the
ranks of the points in each of the ui-coordinates. The
rank of a point in a tree at level i of the RBRT is its po-
sition in the sorted list of all the points ordered by their
ui-coordinates. Any tree at any level of the RBRT is a
balanced binary tree, and no matter how many points
are in the tree, it is a tree on n ranks [1].

Let v be an internal node at level d of Tl. Denote by
R(v) the set of points at the leaves of the subtree rooted
at v. The set P ∩ Cl(p) is the union of O(logd n) sets
R(.); all these O(logd n) sets can be reported in time
O(logd n+ k), where k is the cardinality of P ∩ Cl(p).

For each node v at level d of Tl we define another set
B(v). Denote by Pp the path from the parent of p to
the root of a tree at level d of Tl. A point p belongs
to B(v) if v is the right child of some node v̄ ∈ Pp; a

point p is in B(v) if R(v) is one of the O(logd n) sets
encountered while reporting the points of P ∩ Cl(p).

Let C̄l(p) = −Cl(p) be the reflection of Cl(p) through
p; C̄l(p) is formed by following the lines through p in
the half-spaces of Cl(p); see Figure 1(a). Similar to the
way that we report the points of P inside a query cone
Cl(q), we can also report the points of P inside a query
cone C̄l(q). The set P ∩ C̄l(q) = ∪vB(v), where the
nodes v are on the paths Pq.

The set of all the pairs (B(v), R(v)), for all the inter-
nal nodes v at level d of Tl, is called a cone separated
pair decomposition (CSPD) for P with respect to Cl;

denote this set by ΨCl
= {(B1, R1), ..., (Bm, Rm)}. The

CSPD ΨCl
has the following properties [1]:

• For the two points p ∈ P and q ∈ P , where q ∈
Cl(p), there exists a unique pair (Bi, Ri) ∈ ΨCl

such that p ∈ Bi and q ∈ Ri.

• For the pair (Bi, Ri) ∈ ΨCl
, if p ∈ Bi and q ∈ Ri,

then q ∈ Cl(p) and p ∈ C̄l(q).

Reporting all the nearest neighbors. Let r(v) be the
point with minimum xl-coordinate among the points in
R(v). Denote by lc(v) and rc(v) the left and the right
child of the node v, respectively. For each node v, the
value of r(v) is generated from the values of it chil-
dren, r(lc(v)) and r(rc(v)), namely from the one which
stores the point with minimum xl-coordinate. Thus for
all internal nodes v at level d of the RBRT Tl, we can
find all the r(v) in O(n logd−1 n) time. Since for each
point p ∈ P the point with minimum xl-coordinate in
P ∩ Cl(p) is chosen among O(logd n) points r(.), the
following lemma results.

Lemma 3 The Semi-Yao graph of a set of n points in
Rd can be constructed in time O(n logd n).

Vaidya [22] gave an O(n log n) time algorithm to solve
the all nearest neighbors problem. Given the Semi-Yao
graph in Rd, by examining the edges incident to any
point, we can find the nearest neighbor to the point.
Since the Semi-Yao graph has O(n) edges, we obtain
the following.

Lemma 4 Given the Semi-Yao graph, the all nearest
neighbors problem in Rd can be solved in O(n) time.

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

3 Kinetic Semi-Yao Graphs

Fix a cone Cl and the corresponding coordinate axes
u1, ..., ud, and xl. When the points are moving, the
Semi-Yao graph remains unchanged as long as the order
of the points in each of the coordinates u1, ..., ud, and xl
remains unchanged. To maintain the Semi-Yao graph
over time, we distinguish between two types of events:
(i) u-swap event: Such an event occurs if two points
exchange their order in the ui-coordinate. This event
can change the structure of the range tree. (ii) x-swap
event: This event occurs if two points exchange their
xl-order. The range tree structure remains unchanged
when this event occurs.

To track the above changes, we maintain sorted lists
L(u1), ..., L(ud), and L(xl) of the points in each of the
coordinates u1, ..., ud, and xl, respectively. For each two
consecutive points in each sorted list L(ui) we define a
certificate that certifies the order of the two points in the
ui-coordinate. To track the closest time to the current
time we put the failure times of all the certificates in a
priority queue; the element with the highest priority in
the queue gives the closest time.

Our Semi-Yao graph KDS is based on maintenance of
the RBRT Tl. Abam and de Berg describe how to main-
tain an RBRT. Their approach uses O(n logd n) space,
and a u-swap event can be handled in time O(logd n)
without rebalancing the subtrees of the RBRT [1].

For the point w ∈ P , the set P ∩Cl(w) =
Sj=k
j=1 R(vj),

where the nodes vj are the right child nodes of the nodes
on the paths Pw. Denote by ẅl the point in P ∩ Cl(w)
with minimum xl-coordinate. To maintain the Semi-
Yao graph, for each point w ∈ P we must track ẅl,
which in fact is the point in {r(v1), ..., r(vk)} whose xl-
coordinate is minimum. To apply changes to the ẅl,
for all w ∈ P , in addition r(v), we need to maintain
more information at each internal node v at level d of
the RBRT Tl. We describe the extra information in the
next paragraph.

Allocate a label to each point in P . Let B′(v) =
{(w, ẅl)| w ∈ B(v)} and let L(B′(v)) be a sorted list of
the pairs of B′(v) according to the labels of the second
components ẅ of the pairs (w, ẅl). This sorted list is
used to answer the following query while processing x-
swap events: Given a query point p, find all the points
w ∈ B(v) such that ẅl = p. Since we perform inser-
tions/deletions into the sorted lists L(B′(.)) over time,
we implement them using a dynamic binary search tree
(e.g., a red-black tree); each insertion/deletion operation
is performed in worst-case time O(log n). Furthermore,
we maintain a set of links between each point w ∈ P
and the pair (w, ẅl) in the sorted lists L(B′(.)) where
w ∈ B(.); denote this set by Link(w). Since the point
w is in at most O(logd n) sets B(.), the cardinality of
the set Link(w) is O(logd n).

p

q

w1

w2w3

w4

Figure 2: A u-swap between p and q does not change
the points in other cones Cl(wi).

In the preprocessing step before the motion, for any
internal node v at level d of the RBRT and for any point
w ∈ P , we find r(v) and ẅl, and then we construct
L(B′(v)) and Link(w).

Handling the events. Now let the points move.
The following shows how to maintain and reorganize
Link(.), L(B′(.)) and r(.) when a u-swap event or an
x-swap event occurs. Note that maintenance of the sets
Link(w), for all w ∈ P , gives a kinetic maintenance of
the Semi-Yao graph.

u-swap event. When two points p and q exchange
their order in the ui-coordinate, we swap them in the
sorted list L(ui) and update the invalid certificates with
new valid ones; applying O(1) changes to the priority
queue takes O(log n) time. Then we delete p and q and
reinsert them into the RBRT with their new ranks [1].
Next we update the values r(v) where the nodes v are
ancestors of p and q. A change to some r(v) can only
change r(vpar), where vpar is the parent of v. These

updates can easily be done in O(logd n) time.

Let q ∈ Cl(p) (resp. q /∈ Cl(p)) before the event. Af-
ter the event, q moves outside (resp. inside) the cone
Cl(p); see Figure 2. Note that this event does not change
the points in cones Cl(w) of other points w ∈ P . There-
fore, the only change that can happen to the Semi-Yao
graph is deletion of an edge incident to p inside the cone
Cl(p) and addition of a new one.

We perform the following steps when such an event
occurs. We first delete the pairs (p, p̈l) of the sorted lists
L(B′(.)) where p ∈ B(.); by using the links in Link(p),
this can be done in time O(logd+1). Then we delete
the members of Link(p). Next we find the point p̈l in
P ∩Cl(p) whose xl-coordinate is minimum. Recall that
vj , j = 1, ..., O(logd n), are the right child nodes of the
nodes on the paths Pp. Since we might get a new value
for p̈l among all the r(vj), we must add the new pair
(p, p̈l), according to the label of the new value of p̈l, into
all the sorted lists L(B′(vj)) where p ∈ B(vj). Finally
we construct Link(p) of the new links between p and

26th Canadian Conference on Computational Geometry, 2014

p
qw

xl

w

pw

q

(a) (b)

Ri
Ri

Rj

o xl
o

Figure 3: Two cases when an x-swap between p and q
occurs.

the pair (p, p̈l) of the sorted lists L(B′(vj)), which takes

O(logd+1 n) time.

Since the number of swaps between the points in
L(ui), 1 ≤ i ≤ d, is O(n2), the following results.

Lemma 5 For maintenance of the Semi-Yao graph,
our KDS handles O(n2) u-swap events, each in worst-
case time O(logd+1 n).

x-swap event. Let p and q be two consecutive points
with p preceding q in the sorted list L(xl): xl(p) <
xl(q) before the event. When p and q exchange their
order, we swap them in L(xl) and update the invalid
certificates with new valid ones, which takes O(log n)
time. This event does not change the structure of Tl;
but it might change the second components of the pairs
in some sorted lists L(B′(.)) and if so, we must apply
the necessary changes to the Semi-Yao graph.

The number of all changes to the Semi-Yao graph
depends on how many points w ∈ P have both p and
q in their cones Cl(w). While reporting the points in
P ∩ Cl(w), note that w can have both p and q in the
same set Ri (see Figure 3(a)) or in two different sets Ri
and Rj (Figure 3(b)). To find such points w, (i) we seek
internal nodes vpq at level d of Tl where {p, q} ⊆ R(vpq),
which means that the nodes vpq are common ancestors
of p and q, (ii) we look for internal nodes vp and vq
where p ∈ R(vp) and q ∈ R(vq). In the first case, it is
obvious that we must find any point w ∈ B(vpq) such
that p is the point with minimum xl-coordinate in the
cone Cl(w), meaning that ẅl = p. Then we replace p
by q (ẅl = q), which means we replace the edge wp of
the Semi-Yao graph with wq.

Note that in the second case there is no point w′ ∈
B(vp) such that ẅ′l = q, because xl(p) < xl(q). Also
note that if there is a point w′′ ∈ B(vp) such that

ẅ′′l = p, we change the value of ẅ′′l to q if q ∈ Cl(w′′).
Since we can find w′′ in B(vq), we do not need to check
whether such points w′′ are in B(vp) or not. Therefore,
for the second case, we only need to check whether there

is a point w ∈ B(vq) such that ẅl = p; if so, we change
the value of ẅl to q (ẅl = q).

From the above discussion, the following steps sum-
marize the update mechanism of our KDS to maintain
the Semi-Yao graph when an x-swap event occurs.

1. Find all the internal nodes v at level d of Tl such
that {p, q} ⊆ R(v) and r(v) = p (see Figure 3(a)).
Also, find all the internal nodes v where r(v) = q
(see Figure 3(b)).

2. For each node v (from Step 1), find all the pairs
(w, ẅl) in the sorted list L(B′(v)) where ẅl = p.

3. For each w (from Step 2), using the links in Link(w),
find all the corresponding sorted lists L(B′(.)),
delete the pair (w, ẅl) from them, change the value
of the second component ẅl to q, and add (w, ẅl)
into the sorted lists according to the label of q.

The number of edges incident to a point p in the Semi-
Yao graph is O(n). Thus when an x-swap event between
p and some point q occurs, it might cause O(n) changes
to the Semi-Yao graph. The following shows that an x-
swap event can be handled in polylogarithmic amortized
time.

Lemma 6 For maintenance of the Semi-Yao graph,
our KDS handles O(n2) x-swap events with total pro-
cessing time O(n2β2s+2(n) logd+1 n).

Proof. All the internal nodes v at Step 1 can be found
in O(logd n) time.

For each internal node v of Step 2, the update mecha-
nism spends O(log n+ kv) time where kv is the number
of all the pairs (w, ẅl) ∈ B′(v) such that ẅl = p. For all
the internal nodes v, the second step takes O(logd+1 n+P
v kv) time. Note that

P
v kv is equal to the number of

exact changes to the Semi-Yao graph. Since, the number
of changes to the Semi-Yao graph of a set of n moving
points in a fixed dimension d is O(n2β2s+2(n)) [17], the
total processing time of Step 2 for all the O(n2) x-swap
events is O(n2 logd+1 n+n2β2s+2(n)) = O(n2 logd+1 n).

The processing time to apply changes to the KDS for
each w of Step 3, which in fact is a change to the Semi-
Yao graph, is O(logd+1 n). Thus the update mechanism
spends O(n2β2s+2(n) logd+1 n) time to handle all the
O(n2) events.

Therefore, the total cost to handle all the O(n2) x-
swap events in our KDS is O(n2β2s+2(n) logd+1 n). �

The following gives the complexity of our Semi-Yao
graph KDS.

Theorem 7 Our KDS for maintenance of the Semi-
Yao graph of a set of n moving points in Rd, where
the trajectory of each point is an algebraic func-
tion of at most constant degree s, uses O(n logd n)

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

space and handles O(n2) events with a total cost of
O(n2β2s+2(n) logd+1 n). The KDS is compact, efficient,
responsive (in an amortized sense), and local.

Proof. The total cost to process all the O(n2) events
is O(n2β2s+2(n) logd+1 n) (by Lemmas 5 and 6); this
means that the KDS is responsive in an amortized sense.

Since
P
v |B(v)| = O(n logd n) and the number of the

certificates is O(n), the KDS uses O(n logd n) space, and
the KDS is compact.

A particular point in a sorted list L(ui) participates
in two certificates, one certificate is created with the
previous point and one with the next point. Therefore,
the number of events associated to a particular point at
any time is O(1); this implies that the KDS is local.

Since the number of the external events is
O(n2β2s+2(n)) and the number of the events that the
KDS processes is O(n2), the KDS is efficient. �

4 Kinetic All Nearest Neighbors

Given the kinetic Semi-Yao graph, a super-graph of the
nearest neighbor graph over time, from Section 3, we
can easily maintain the nearest neighbor to each point
p ∈ P . Using a dynamic and kinetic tournament tree
(DKTT) [4], we can maintain the edge with minimum
length among the edges in the Semi-Yao graph incident
to p; this gives the nearest neighbor to p over time.

Now we can get the following lemma.

Lemma 8 Given a KDS for maintenance of the Semi-
Yao graph, all the nearest neighbors can be main-
tained by using a kinetic algorithm that generates
O(n2β2

2s+2(n) log n) tournament events, for a total cost

of O(n2β2
2s+2(n) log2 n). Each event can be handled in

the worst-case time O(log2 n). The number of events
associated to a particular point is constant on average.

Proof. Let Inc(p) be the set of edges in the Semi-Yao
graph incident to the point p. Denote by T T p the dy-
namic and kinetic tournament tree (DKTT) correspond-
ing to the point p. The elements of T T p are the edges
in Inc(p). The root of the T T p maintains the edge with
minimum length between the edges in Inc(p). Let mp

be the number of all insertions/deletions into the set
Inc(p) over time.

For a sequence of mp insertions and deletions into
the T T p, whose maximum size T T p at any time is n,
the T T p generates at most O(mpβ2s+2(n) log n) tour-
nament events, for a total cost of O(mpβ2s+2(n) log2 n);
each update can be handled in the worst-case time
O(log2 n) (from Theorem 3.1. of [4]). Therefore, the
number of all events for maintenance of all the near-
est neighbors is equal to O(

P
p∈P mpβ2s+2(n) log n) =

O(β2s+2(n) log n
P
p∈P mp). Inserting (resp. deleting)

an edge pq in the Semi-Yao graph makes one inser-
tion (resp. deletion) in T T p and one in T T q. ThusP
p∈P mp is in order of the number of exact changes to

the Semi-Yao graph. Since
P
p |Ins(p)| =

P
p |T T p| =

O(n), and since the number of all changes (edge inser-
tions and edge deletions) to the Semi-Yao graph is equal
to O(n2β2s+2(n)) [17], the proof obtains.

�

The following theorem summarizes the KDS for main-
tenance of all the nearest neighbors. The proof follows
from Theorem 7 and Lemma 8.

Theorem 9 Our kinetic data structure for all the near-
est neighbors of a set of n moving points in Rd, where
the trajectory of each point is an algebraic function of
at most constant degree s, has the following properties.

1. The KDS uses O(n logd n) space.

2. It processes O(n2) u-swap events, each in the worst-
case time O(logd+1 n).

3. It processes O(n2) x-swap events, for a total cost
of O(n2β2s+2(n) logd+1 n).

4. The KDS processes O(n2β2
2s+2(n) log n) tourna-

ment events, and processing all the events takes
O(n2β2

2s+2(n) log2 n) time.

5. The KDS is compact, efficient, responsive in an
amortized sense, and local on average, meaning that
each point participates in a constant number of cer-
tificates on average.

5 Kinetic All (1 + ε)-Nearest Neighbors

Let q be the nearest neighbor of p and let q̂ be some
point such that |pq̂| < (1 + ε).|pq|. We call q̂ the (1 + ε)-
nearest neighbor of p. In this section, we maintain some
(1 + ε)-nearest neighbor for any point p ∈ P .

Consider a cone Cl of opening angle θ, which is
bounded by d half-spaces. Let xl be a vector inside
the cone Cl that passes through the apex of Cl. Recall
a CSPD ΨCl

= {(B1, R1), ..., (Bm, Rm)} for P with re-
spect to the cone Cl. Figure 4 depicts the cone Cl and
a pair (Bi, Ri) ∈ ΨCl

.
Let bi (resp. ri) be the point with the maximum

(resp. minimum) xl-coordinate among the points in Bi
(resp. Ri). Let El = {(bi, ri)| i = 1, ...,m}. We call
the graph G(P,El) the relative nearest neighbor graph
(or RNNl graph for short) with respect to Cl. Call the
graph G(P,∪lEl) the RNN graph. The RNN graph has
the following interesting properties: (i) It can be con-
structed in O(n logd n) time by using a d-dimensional
RBRT, (ii) it has O(n logd−1 n) edges, and (iii) the de-
gree of each point is O(logd n). Lemma 10 below shows
another property of the RNN graph which leads us to
find some (1 + ε)-nearest neighbor for any point p ∈ P .

26th Canadian Conference on Computational Geometry, 2014

RiBi

p q

q̂

xl
Cl

θ
o

Figure 4: A pair (Bi, Ri) ∈ ΨCl
.

Lemma 10 Between all the edges incident to a point p
in the RNN graph, there exists an edge (p, q̂) such that
q̂ is some (1 + ε)-nearest neighbor to p.

Proof. Let q be the nearest neighbor to p and let q ∈
Cl(p). From the definition of a CSPD with respect to
Cl, for p and q there exists a unique pair (Bi, Ri) ∈ ΨCl

such that p ∈ Bi and q ∈ Ri. From Lemma 1, p has the
maximum xl-coordinate among the points in Bi.

Let q̂ be the point with the minimum xl-coordinate
among the points in Ri. For any ε > 0, there exist an
appropriate angle θ and a vector xl such that |pq̂| +
(1 + ε).|qq̂| ≤ (1 + ε).|pq| [1]; this satisfies that |pq̂| ≤
(1 + ε).|pq|.

Therefore, the edge (p, q̂) which is an edge of the RNN
graph gives some (1 + ε)-nearest neighbor. �

Consider the set El of the edges of the RNNl graph.
Let Nl(p) = {ri| (bi, ri) ∈ El and bi = p}. Denote
by nl(p) the point in Nl(p) whose xl-coordinate is mini-
mum. Let L(Nl(p)) be a sorted list of the points inNl(p)
in ascending order according to their xl-coordinates; the
first point in L(Nl(p)) gives nl(p).

From Lemma 10, if the nearest neighbor of p is in
some set Ri, then ri gives some (1+ ε)-nearest neighbor
to p. Note that we do not know which cone Cl(p), 1 ≤
l ≤ c, of p contains the nearest neighbor of p, but it is
obvious that the nearest point to p among these c points
n1(p), ..., nc(p) gives some (1 + ε)-nearest neighbor of p.
Thus for all l = 1, ..., c, we track the distances of all
the nl(p) to p over time. A kinetic sorted list (or a
tournament tree) of size c with O(1) certificates can be
used to maintain the nearest point to p.

Similar to Section 3 we handle two types of events,
u-swap events and x-swap events. Note that we do
not need to define a certificate for each two consecu-
tive points in L(Nl(.)). The following shows how to
apply changes (e.g., insertion, deletion, and exchanging
the order between two consecutive points) to the sorted
lists L(Nl(.)) when an event occurs.

Each event can make O(logd n) updates to the edges
of El. Consider an updated pair (bi, ri) that the value
of ri (resp. bi) changes from p to q. For this update, we
must delete p (resp. ri) form the sorted list L(Nl(bi))

(resp. L(Nl(p))) and insert q (resp. ri) into L(Nl(bi))
(resp. L(Nl(q))). If the event is an x-swap event, we
must find all the subscripts i where ri = q and check
whether nl(bi) = p or not; if so, p and q are in the same
set Nl(.) and we need to exchange their order in the
corresponding sorted list L(Nl(.)).

Now the following theorem gives the main result of
this section.

Theorem 11 Our KDS for maintenance of all the
(1 + ε)-nearest neighbors of a set of n moving points
in Rd, where the trajectory of each one is an algebraic
function of constant degree s, uses O(n logd n) space and
handles O(n2 logd n) events, each in the worst-case time
O(logd n log log n). The KDS is compact, efficient, re-
sponsive, and local.

Proof. The proof of the preprocessing time and space
follows from the properties of an RNN graph. Each
event can make O(logd n) changes to the edges of the
RNN graph. Each update to a sorted list L(Nl(.)) can
be done in O(log log n). Thus an event can be handled
in worst-case time O(logd n log log n).

Since each event makes O(logd n) changes to the val-
ues of nl(.), and since the size of each kinetic sorted list
is constant, the number of all events to maintain all the
(1 + ε)-nearest neighbors is O(n2 logd n).

Each point participates in a constant number of cer-
tificates in the kinetic sorted lists corresponding to the
coordinate axes ui and xl. Since the degree of each
point in the RNN graph is O(logd n), a change to the
trajectory of a point may causes O(logd n) changes in
the certificates of the kinetic sorted lists corresponding
to n1(.), ..., nc(.). Therefore, each point participates in
O(logd n) certificates. �

6 Discussion

We have provided exact KDS’s for maintenance of
both the Semi-Yao graph and all the nearest neighbors.
These KDS’s are responsive in an amortized sense. A
future direction is to give exact KDS’s for the Semi-Yao
graph and all the nearest neighbors such that each event
can be handled in a polylogarithmic worst-case time.
Another open direction is to design an exact KDS for
maintenance of all the nearest neighbors that is local in
the worst-case.

References

[1] M. A. Abam and M. de Berg. Kinetic span-
ners in Rd. Discrete & Computational Geometry,
45(4):723–736, 2011.

[2] M. A. Abam, Z. Rahmati, and A. Zarei. Kinetic
pie delaunay graph and its applications. In Pro-
ceedings of the 13th Scandinavian Symposium and

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

Workshops on Algorithm Theory (SWAT ’12), vol-
ume 7357 of LNCS, pages 48–58, 2012.

[3] P. K. Agarwal, L. Arge, and J. Erickson. Indexing
moving points. Journal of Computer and System
Sciences, 66:207–243, 2003.

[4] P. K. Agarwal, H. Kaplan, and M. Sharir. Kinetic
and dynamic data structures for closest pair and
all nearest neighbors. ACM Transactions on Algo-
rithms, 5:4:1–37, 2008.

[5] G. Alexandron, H. Kaplan, and M. Sharir. Kinetic
and dynamic data structures for convex hulls and
upper envelopes. Computational Geometry: The-
ory and Applications, 36(2):144–158, 2007.

[6] L. Barba, P. Bose, J.-L. De Carufel, A. van
Renssen, and S. Verdonschot. On the stretch fac-
tor of the theta-4 graph. In Proceedings of the 13th
International Conference on Algorithms and Data
Structures (WADS ’13), volume 8037 of LNCS,
pages 109–120, 2013.

[7] J. Basch, L. J. Guibas, and J. Hershberger. Data
structures for mobile data. In Proceedings of the 8th
Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA ’97), pages 747–756,1997.

[8] J. Basch, L. J. Guibas, and L. Zhang. Proximity
problems on moving points. In Proceedings of the
13th Annual Symposium on Computational Geom-
etry (SoCG ’97), pages 344–351, 1997.

[9] N. Bonichon, C. Gavoille, N. Hanusse, and D. Il-
cinkas. Connections between theta-graphs, delau-
nay triangulations, and orthogonal surfaces. In
Proceedings of the 36th International Conference
on Graph-theoretic Concepts in Computer Science
(WG’10), volume 6410 of LNCS, pages 266–278,
2010.

[10] P. Bose, P. Morin, A. van Renssen, and S. Ver-
donschot. The θ5-graph is a spanner. In Pro-
ceedings of the 39th International Workshop on
Graph-Theoretic Concepts in Computer Science
(WG ’13), volume 8165 of LNCS, pages 100–114,
2013.

[11] P. Bose, A. van Renssen, and S. Verdonschot. On
the spanning ratio of theta-graphs. In Proceed-
ings of the 13th Workshop on Algorithms and Data
Structures (WADS ’13), volume 8037 of LNCS,
pages 182–194, 2013.

[12] K. Clarkson. Approximation algorithms for short-
est path motion planning. In Proceedings of the
19th Aannual ACM Symposium on Theory of Com-
puting (STOC ’87), pages 56–65, 1987.

[13] M. de Berg, M. Roeloffzen, and B. Speckmann. Ki-
netic convex hulls and delaunay triangulations in
the black-box model. In Proceedings of the 27th
Annual ACM Symposium on Computational Geom-
etry (SoCG ’11), pages 244–253, 2011.

[14] M. I. Karavelas and L. J. Guibas. Static and kinetic
geometric spanners with applications. In Proceed-
ings of the 12th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA ’01), pages 168–176,
2001.

[15] J. M. Keil. Approximating the complete euclidean
graph. In Proceedings of the 1st Scandinavian
Workshop on Algorithm Theory (SWAT ’88), pages
208–213, 1988.

[16] K. Mehlhorn. Data structures and algorithms
3: multi-dimensional searching and computational
Geometry. Springer-Verlag New York, Inc., New
York, NY, USA, 1984.

[17] Z. Rahmati, V. King, and S. Whitesides. Kinetic
data structures for all nearest neighbors and closest
pair in the plane. In Proceedings of the 29th Sym-
posium on Computational Geometry (SoCG ’13),
pages 137–144, 2013.

[18] Z. Rahmati, S. Whitesides, and V. King. Kinetic
and stationary point-set embeddability for plane
graphs. In Proceedings of the 20th International
Symposium on Graph Drawing (GD ’12), volume
7704 of LNCS, pages 279–290, 2013.

[19] Z. Rahmati and A. Zarei. Kinetic Euclidean min-
imum spanning tree in the plane. Journal of Dis-
crete Algorithms, 16(0):2–11, 2012.

[20] N. Rubin. On topological changes in the delaunay
triangulation of moving points. In Proceedings of
the 28th Symposium on Computational Geometry
(SoCG ’12), pages 1–10, 2012.

[21] N. Rubin. On kinetic delaunay triangulations: A
near quadratic bound for unit speed motions. In
Proceedings of the 54th Annual IEEE Symposium
on Foundations of Computer Science (FOCS ’13),
volume 0, pages 519–528, 2013.

[22] P. M. Vaidya. An O(n log n) algorithm for the all-
nearest-neighbors problem. Discrete & Computa-
tional Geometry, 4(2):101–115, 1989.

[23] D. E. Willard and G. S. Lueker. Adding range
restriction capability to dynamic data structures.
Journal of the ACM, 32(3):597–617, 1985.

	Introduction
	The Construction
	Kinetic Semi-Yao Graphs
	Kinetic All Nearest Neighbors
	Kinetic All (1+)-Nearest Neighbors
	Discussion

