
CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

An Incidence Geometry approach to Dictionary Learning∗

Meera Sitharam† Mohamad Tarifi‡ Menghan Wang§

Abstract

We study the Dictionary Learning (aka Sparse Coding)
problem of obtaining a sparse representation of data
points, by learning dictionary vectors upon which the
data points can be written as sparse linear combina-
tions. We view this problem from a geometry per-
spective as the spanning set of a subspace arrange-
ment, and focus on understanding the case when the
underlying hypergraph of the subspace arrangement is
specified. For this Fitted Dictionary Learning prob-
lem, we completely characterize the combinatorics of
the associated subspace arrangements (i.e. their under-
lying hypergraphs), using incidence geometry. Specif-
ically, a combinatorial rigidity-type theorem is proven
that characterizes the hypergraphs of subspace arrange-
ments that generically yield (a) at least one dictionary
(b) a locally unique dictionary (i.e. at most a finite num-
ber of isolated dictionaries) of the specified size. We
are unaware of prior application of combinatorial rigid-
ity techniques in the setting of Dictionary Learning, or
even in machine learning. We also provide a systematic
classification of problems related to Dictionary Learning
together with various approaches, assumptions required
and performance.

1 Introduction

Dictionary Learning (aka Sparse Coding) is the problem
of obtaining a sparse representation of data points, by
learning dictionary vectors upon which the data points
can be written as sparse linear combinations.

Problem 1 (Dictionary Learning) A point set X =
[x1 . . . xm] in Rd is said to be s-represented by a dic-
tionary D = [v1 . . . vn] for a given sparsity s < d, if
there exists Θ = [θ1 . . . θm] such that xi = Dθi, with
‖θi‖0 ≤ s. Given an X known to be s-represented by
an unknown dictionary D of size |D| = n, Dictionary
Learning is the problem of finding any dictionary D́ sat-
isfying the properties of D, i.e. |D́| ≤ n, and there exists

Θ́i such that xi = D́θ́i for all xi ∈ X.
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The Dictionary Learning problem arises in various con-
texts such as signal processing and machine learning.
The dictionary under consideration is usually overcom-
plete, with n > d. However we are interested in asymp-
totic performance with respect to all four variables
n,m, d, s. Typically, m � n � d > s. Both cases
when s is large relative to d and when s is small relative
to d are interesting.

1.1 Previous approaches and challenges

Several traditional Dictionary Learning algorithms work
by alternating minimization, i.e. iterating the two steps
of Vector Selection which finds a representation Θ of X
in an estimated dictionary, and updating the Dictionary
estimation by solving an optimization problem that is
convex in D when Θ is known [25, 20, 19].

For an overcomplete dictionary, the general vector se-
lection problem is ill defined and has been shown to be
NP-hard [21]. One is then tempted to conclude that
Dictionary Learning is also NP-hard. However, this can-
not be directly deduced in general, since even though
adding a witness D turns the problem into an NP-hard
problem, it is possible that the Dictionary Learning so-
lution produces a different dictionary D́. On the other
hand, if D satisfies the condition of being a frame, i.e.
for all θ such that ‖θ‖0 ≤ s, there exists a δs such that

(1 − δs) ≤ ‖Dθ‖22
‖θ‖22

≤ (1 + δs), it is guaranteed that the

sparsest solution to the Vector Selection problem can be
found via l1 minimization [8, 7].

One popular alternating minimization method is the
Method of Optimal Dictionary (MOD) [9], which uses a
maximum likelihood formalism, and compute D via the
pseudoinverse. Another method k-SVD [2] updates D
by taking every atom in D and applying SVD to X and
Θ restricted to only the columns that have contribution
from that atom.

Though alternating minimization methods work well
in practice, there is no theoretical guarantee that the
their results will converge to a true dictionary. Several
recent works give provable algorithms under stronger
constraints on X and D. Spielman et. al [24] give an
l1 minimization based approach which is provable to
find the exact dictionary D, but requires D to be a
basis. Arora et. al [3] and Agarwal et. al [1] indepen-
dently give provable non-iterative algorithms for learn-
ing approximation of overcomplete dictionaries. Both
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of their methods are based on an overlapping cluster-
ing approach to find data points sharing a dictionary
vector, and then estimate the dictionary vectors from
the clusters via SVD. However, their algorithms require
the dictionaries to be pairwise incoherent which is much
stronger than the frame property.

In this paper, we understand the Dictionary Learn-
ing problem from an intrinsically geometric point of
view. Notice that each x ∈ X lies in an s-dimensional
subspace suppD(x), which is the span of s vectors
v ∈ D that form the support of x. The result-
ing s-subspace arrangement SX,D = {(x, suppD(x)) :
x ∈ X} has an underlying labeled (multi)hypergraph
H(SX,D) = (I(D), I(SX,D)), where I(D) denotes the
index set of the dictionary D and I(SX,D) is the set of
(multi)hyperedges over the indices I(D) corresponding
to the labeled sets (x, suppD(x)). The word “multi” ap-
pears because if suppD(x1) = suppD(x2) for data points
x1, x2 ∈ X with x1 6= x2, then that support set of dictio-
nary vectors (resp. their indices) is multiply represented
in SX,D (resp. I(SX,D)) as labeled sets (x1, suppD(x1))
and (x2, suppD(x2)). We denote the sizes of these mul-
tisets as |SX,D| (resp. |I(SX,D)|).

Note that there could be many dictionaries D for the
same set X of data points and for each D, many possible
subspace arrangements SX,D that are solutions to the
Dictionary Learning problem.

2 Contributions

In this paper, we focus on the version of Dictionary
Learning where the underlying hypergraph is specified.

Problem 2 (Fitted Dictionary Learning) Let X be a
given set of data points in Rd. For an unknown dictio-
nary D = [v1, . . . , vn] that s-represents X, we are given
the hypergraph H(SX,D) of the underlying subspace ar-

rangement SX,D. Find any dictionary D́ of size |D́| ≤ n
consistent with the hypergraph H(SX,D).

Our contributions in this paper are as follows:

• As the main result, we use combinatorial rigidity
techniques to obtain a complete characterization of
the hypergraphs H(SX,D) that generically yield (a)
at least one solution dictionary D, and (b) a lo-
cally unique solution dictionary D (i.e. at most a
finite number of isolated solution dictionaries) of
the specified size (see Theorem 2). To the best
of our knowledge, this paper pioneers the use of
combinatorial rigidity for problems related to Dic-
tionary Learning.

• We are interested in minimizing |D| for general X.
However, as a corollary of the main result, we ob-
tain that if the data points in X are highly general,
for example, picked uniformly at random from the

sphere Sd−1, then when s is fixed, |D| = Ω(|X|)
with probability 1 (see Corollary 4).

• As a corollary to our main result, we obtain an Dic-
tionary Learning algorithm for sufficiently general
data X, i.e. requiring sufficiently large dictionary
size n (see Corollary 5).

• We provide a systematic classification of problems
related to Dictionary Learning together with var-
ious approaches, conditions and performance (see
Section 4).

Note that although our results are stated for uniform
hypergraphs H(SX,D) (i.e. each subspace in SX,D has
the same dimension), they can be easily generalized to
non-uniform underlying hypergraphs.
Remark on technical significance: in this paper, we fol-
low [4] and [31] to give a complete combinatorial charac-
terization for the Fitted Dictionary Learning problem,
starting from the initial representation as a nonlinear al-
gebraic system. For more details of technical challenges
and significance, see Section 3.4.

3 Main Result: Combinatorial Rigidity Characteri-
zation for Dictionary Learning

In this section, we present the main result of the
paper, i.e. a combinatorial characterization of the
(multi)hypergraphs H such that the existence and local
uniqueness of a dictionary D is guaranteed for generic
X satisfying H(SX,D) = H.

Since the magnitudes of the vectors in X or D are
uninteresting, we treat the data and dictionary points
as living in the projective (d−1) space and use the same
notation to refer to both original d-dimensional and
projective d − 1 dimensional versions when the mean-
ing is clear from the context. We rephrase the Fitted
Dictionary Learning problem as the following Pinned
Subspace-Incidence problem for the convenience of ap-
plying machinery from incidence geometry.

Problem 3 (Pinned Subspace-Incidence Problem)

Let X be a given set of m points (pins) in Pd−1(R).
For every pin x ∈ X, we are also given the hyperedge
suppD(x), i.e, an index subset of an unknown set
of points D = {v1, . . . , vn}, such that xi lies on the
subspace spanned by suppD(x). Find any such set D
that satisfies the given subspace incidences.

3.1 Algebraic Representation

We represent the Pinned Subspace-Incidence problem in
the tradition of geometric constraint solving [6, 23], and
view the problem as finding the common solutions of a
system of polynomial equations (finding a real algebraic
variety).
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Consider a pin xk on the subspace spanned by points
vk1 , v

k
2 , . . . , v

k
s . Using homogeneous coordinates, we can

write this incidence constraint by letting all the s × s
minors of the (d− 1)× s matrix

Ek =
[
vk1 − xk vk2 − xk . . . vks − xk

]
be zero, where vki = (vki,1, v

k
i,2, ..., v

k
i,d−1) and xk =

(xk,1, xk,2, ..., xk,d−1). So each incidence can be writ-

ten as
(
d−1
s

)
equations, where any d − s of them are

independent.
As the hypergraph H = H(SX,D) of the underly-

ing subspace arrangement has m (multi)hyperedges, the
pinned subspace-incidence problem now reduces to solv-
ing a system of m

(
d−1
s

)
equations denoted as

(H,X)(D) = 0 (1)

where (H,X)(D) is a vector valued function from

Rn(d−1) to Rm(d−1
s ) parameterized by X.

Without any pins, the points in D have in total
n(d− 1) degrees of freedom, and every pin (hyperedge)
potentially removes (d− s) degrees of freedom.

We use the underlying (multi)hypergraph H(SX,D) =
(I(D), I(SX,D)) to define a pinned subspace-incidence
framework (H,X,D), where X : {x1, . . . , xm} ⊆
Rd−1 → I(SX,D) is an assignment of a given set of
pins xk to edges X(xk) = suppD(xk) ∈ I(SX,D), and
D : I(D) → Rd−1 is an embedding of each vertex j
into a point vj ∈ Rd−1, such that each pin xk lies on
the subspace spanned by {vk1 , vk2 , . . . , vks }. Two frame-
works (H1, X1, D1) and (H2, X2, D2) are equivalent if
H1 = H2 and X1 = X2, i.e. they satisfy the same alge-
braic equations for the same labeled hypergraph and
ordered set of pins. They are congruent if they are
equivalent and D1 = D2.

The pinned subspace-incidence system (H,X)(D) is
independent if none of the algebraic constraints is in
the ideal generated by the others. Generally, indepen-
dence implies the existence of a solution D to the system
(H,X)(D), where X is fixed. The system is rigid if there
exist at most finitely many (real or complex) solutions.
The system is minimally rigid if it is both rigid and inde-
pendent. Rigidity is often defined (slightly differently)
for individual frameworks. A framework (H,X,D) is
rigid (i.e. locally unique) if there is a neighborhood
N(D), such that any framework (H,X,D′) equivalent
to (H,X,D) with D′ ∈ N(D) is also congruent to
(H,X,D). A rigid framework (H,X,D) is minimally
rigid if it becomes flexible after removing any pin.

We are interested in characterizing minimal rigidity of
the pinned subspace-incidence system and framework.
However, checking independence relative to the ideal
generated by the variety is computationally hard and
best known algorithms, such as Grobner basis, are ex-
ponential in time and space [17]. However, the algebraic

system (H,X)(D) can be linearized at generic or regular
(non-singular) points whereby independence and rigid-
ity reduces to linear independence and maximal rank at
generic frameworks.

In algebraic geometry, a property being generic intu-
itively means that the property holds on the open dense
complement of an (real) algebraic variety. Formally,

Definition 1 A framework (H,X,D) is generic w.r.t.
a property Q if and only if (H,X,D) avoids an alge-
braic variety VQ specific to Q. In other words, there ex-
ists a neighborhood N(D) such that for all frameworks
(H,X,D′) with D′ ∈ N(D), (H,X,D′) satisfies Q if
and only if (H,X,D) satisfies Q.

A property Q of frameworks is generic (i.e. becomes
a property of the hypergraph alone) if for all graphs H,
either all generic (w.r.t. Q) frameworks satisfies Q, or
all generic (w.r.t. Q) frameworks do not satisfy Q.

Once an appropriate notion of genericity is defined, we
can treat Q as a property of a hypergraph. The primary
activity of the area of combinatorial rigidity is to give
purely combinatorial characterizations of such generic
properties Q.

3.2 Linearization as Rigidity Matrix and its Generic
Combinatorics

Next we follow the approach taken by traditional com-
binatorial rigidity theory [4, 12] to show that rigidity
and independence (based on nonlinear polynomials) of
pinned subspace-incidence systems are generically prop-
erties of the underlying hypergraph H(SX,D), and can
furthermore be captured by linear conditions in an in-
finitesimal setting. Specifically, Lemma 1 shows that
rigidity of a pinned subspace-incidence system is equiv-
alent to the existence of a full rank rigidity matrix, ob-
tained by taking the Jacobian of the algebraic system
(H,X)(D) at a regular point.

A rigidity matrix of a framework (H,X,D) is a ma-
trix whose kernel is the infinitesimal motions (flexes)
of (H,X,D). A framework is infinitesimally indepen-
dent if the rows of the rigidity matrix are independent.
A framework is infinitesimally rigid if the space of in-
finitesimal motion is trivial, i.e. the rigidity matrix has
full rank. A framework is infinitesimally minimally rigid
if it is both infinitesimally independent and rigid.

To define a rigidity matrix for a pinned subspace-
incidence framework (H,X,D), we take the Jacobian
JX(D) of the algebraic system (H,X)(D) by taking par-
tial derivatives w.r.t. the coordinates of vi’s. In the Ja-
cobian, each vertex vi has d−1 corresponding columns,
and each pin / hyperedge has

(
d−1
s

)
corresponding rows,

of which any d − s rows are independent and span the
rest. This m

(
d−1
s

)
by n(d− 1) matrix is called the sym-

metric rigidity matrix M of the framework. If we choose
d− s rows per hyperedge in M , the obtained matrix M̂
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is a rigidity matrix of size m(d − s) by n(d − 1). The
framework is infinitesimally rigid if and only if there is
an M̂ with full rank. Note that the rank of a generic
matrix M̂ is at least as large as the rank of any specific
realization M̂(H,X,D).

Defining generic as non-singular, for a generic frame-
work (H,X,D), infinitesimal rigidity is equivalent to
generic rigidity.

Lemma 1 If D and X are regular / non-singular with
respect to the system (H,X)(D), then generic infinites-
imal rigidity of the framework (H,X,D) is equivalent to
generic rigidity.

Remark: Pinned subspace-incidence frameworks are
generalizations of related types of frameworks, such
as pin-collinear body-pin frameworks [14], direction
networks [32], slider-pinning rigidity [27], the molec-
ular conjecture in 2D [22], body-cad constraint sys-
tem [13, 16], k-frames [31], and affine rigidity [11].

3.3 Statement of main results

We study the rigidity matrix to obtain the following
combinatorial characterization of (a) sparsity / inde-
pendence, i.e. existence of a dictionary, and (b) rigidity,
i.e. the solution set being locally unique / finite, for a
pinned subspace-incidence framework.

Theorem 2 (Main Theorem) A pinned subspace-
incidence framework is generically minimally rigid if
and only if the underlying hypergraph H(SX,D) =
(I(D), I(SX,D)) satisfies (d − s)|I(SX,D)| = (d −
1)|I(D)| (i.e. (d − s)|X| = (d − 1)|D|), and (d −
s)|E′| ≤ (d − 1)|V ′| for every vertex induced subgraph
H ′ = (V ′, E′). The latter condition alone ensures the
independence of the framework.

This combinatorial condition is actually (d − 1, 0)-
tightness of the hypergraph, which is a special case of
the (k, l)-tightness condition that was widely studied
in the geometric constraint solving and combinatorial
rigidity literature before it was given a name in [15]. A
hypergraph H = (V,E) is (k, 0)-tight if |E| = k|V |, and
for any V ′ ⊂ V , the induced subgraph H ′ = (V ′, E′)
satisfies |E′| ≤ k|V ′|.

The proof of Theorem 2 adopts an approach by [31], in
proving rigidity of k-frames, with the following outline:

• We obtain an expanded multihypergraph of
H(SX,D) by replacing each hyperedge with (d− s)
copies, in order to apply the (k, 0)-tightness condi-
tion.

• We show that for a specific form of the rows of a
matrix defined on a map-graph (a relevant concept
from hypergraph matroids corresponding to cycles
of graphs), the determinant is not identically zero.

• Using a lemma from [26], which generalizes Tutte-
Nash Williams [28, 18] and states that a hyper-
graph H is composed of k edge-disjoint map-graphs
if and only if H is (k, 0)-tight, we apply Laplace de-
composition to the (d − 1, 0)-tight expanded mul-
tihypergraph as a union of d − 1 maps. We then
substitute in the result for map-graph and show
that the determinant of the rigidity matrix is not
identically zero, as long as the framework avoids a
certain polynomial.

• The resulting polynomial is called the pure con-
dition which characterizes the badly behaved cases
(i.e. the conditions of non-genericity that the frame-
work has to avoid for the combinatorial character-
ization to hold).

Example 1 Figure 1 shows a pinned subspace-
incidence framework with d = 4, s = 2. The ex-
panded multihypergraph (replacing each hyperedge with
2 copies) satisfies (3, 0)-tightness condition, and the
framework is minimally rigid.

Figure 1: A minimally rigid pinned subspace-incidence
framework of 6 pins and 4 vertices, with d = 4, s = 2.

One particular situation avoided by the pure condition
is that there cannot be more than s − 1 hyperedges
containing the same set of vertices, namely, more than
s− 1 pins on the same subspace spanned by the dictio-
nary vectors. Otherwise, s pins completely determine
an s-subspace, whereby the vertices of the correspond-
ing hyperedge have their degrees of freedom restricted
and simple counterexamples to the characterization of
the main theorem can be constructed.

Example 2 Consider the framework in Figure 2 with
d = 3, s = 2. There are s = 2 pins on each sub-
space. The expanded multihypergraph of the framework
is (2, 0)-tight. However, the framework is obviously not
minimally rigid.

Figure 2: A pinned subspace-incidence framework of 8
pins and 4 vertices, with d = 3, s = 2, that violates the
pure condition.

We relate the Fitted Dictionary Learning problem to
the general Dictionary Learning problem, and give the
lower bound of dictionary size for generic data points as
a corollary to the main theorem.
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Corollary 3 (Lower bound for generic data) Given
a set of m points X = {x1, .., xm} in Rd, generically
there is a dictionary D of size n that s-represents
X only if (d − s)m ≤ (d − 1)n. Conversely, if
(d− s)m = (d−1)n and the supports of xi (the nonzero
entries of the θi’s) are known to form a (d− 1, 0)-tight
hypergraph H, then generically, there is at least one
and at most finitely many such dictionaries.

Quantifying the term “generically” in Corollary 3 yields
Corollaries 4 and 5 below, because the pure-conditions
fail (i.e. the framework becomes non-generic) only on
a measure-zero subset of the space of frameworks, and
the number of possible underlying multi-hypergraphs is
finite for a given set of pins.

Corollary 4 (Lower bound for highly general data)

Given a set of m points X = {x1, .., xm} picked uni-
formly at random from the sphere Sd−1, a dictionary
D that s-represents X has size at least ( d−sd−1 )m with
probability 1. In other words, |D| = Ω(X) if s and d
are constants.

Corollary 5 (Straightforward Learning Algorithm)

Given a set of m points X = [x1 . . . xm] picked uni-
formly at random from the sphere Sd−1, we have a
straightforward algorithm to construct a dictionary
D = [v1 . . . vn] that s-represents X, where n = ( d−sd−1 )m.

The algorithm has two major parts: (1) constructing the
underlying hypergraph H(SX,D), and (2) constructing
the s-subspace arrangement SX,D and the dictionary
D. Part (1) starts from a minimal minimally rigid hy-
pergraph H0, and each following step appends a base
structure B of d − s vertices and d − 1 edges to the
same set of base vertices in H0. Both H0 and B can
be constructed using a modified version of the pebble
game algorithm from [26]. Part (2) follows the graph
construction of Part (1) by solving the size O(d) alge-
braic system corresponding to B at each step, which
takes O(1) time when d is constant. Although there
is more than one choice of solution for each step, since
every graph construction step is based on the same set
of base vertices, generically any choice will result in a
successful solution for the entire sequence of steps.

3.4 Technical significance

In this paper, (1) we formulate the Pinned Subspace-
Incidence problem as a nonlinear algebraic system
(H,X)(D). (2) We apply Asimow and Roth [4] to
generically linearize (H,X)(D), and (3) we apply White
and Whiteley [31] to combinatorially characterize the
rigidity of the underlying hypergraph H(SX,D) and give
the pure conditions. (4) Finally, in order to generalize
the proof of (2) to hypergraphs, we use the map-graph
characterization of Streinu and Theran [26], and adapt

H(SX,D) as expanded multihypergraphs. To our best
knowledge, the only known results with a similar flavor
are [13, 16] which characterize the rigidity of Body-and-
cad frameworks. However, these results are dedicated
to specific frameworks in 3D instead of arbitrary dimen-
sion subspace arrangements and hypergraphs, and their
formulation process start directly with the linearized Ja-
cobian.

4 Systematic classification of problems closely re-
lated to Dictionary Learning and previous ap-
proaches

By imposing a systematic series of increasingly strin-
gent constraints on the input, we classify a whole set
of independently interesting problems closely related to
Dictionary Learning. A summarization of the input con-
ditions and results of these different types of Dictionary
Learning approaches can be found in Table 1 in Ap-
pendix A.

A natural restriction to the general Dictionary Learn-
ing is the following. We say that a set of data points
X lies on a set S of s-dimensional subspaces if for all
xi ∈ X, there exists Si ∈ S such that xi ∈ Si.

Problem 4 (Subspace Arrangement Learning) Let
X be a given set of data points known to lie on a set S of
s-dimensional subspaces of Rd, with |S| ≤ k. Subspace
arrangement learning finds any subspace arrangement
Ś of s-dimensional subspaces of Rd satisfying these
conditions, i.e. |Ś| ≤ k, X lies on Ś.

There are several known algorithms for learning sub-
space arrangements. The Random Sample Consen-
sus (RANSAC) method [29] learns subspace arrange-
ments by isolating, one subspace at a time, via ran-
dom sampling. Another method called Generalized
PCA (GPCA) [30] uses techniques from algebraic ge-
ometry for subspace clustering, by factoring a homoge-
neous polynomial of degree k that is fitted to the points
{x1 . . . xm}.

The next problem is obtaining a minimally sized dic-
tionary from a subspace arrangement.

Problem 5 (Smallest Spanning Set for Arrangement)

Let S be a given set of s-dimensional subspaces of
Rd. Assume their intersections are known to be
s-represented by a set I of vectors with |I| at most n.
Find any set of vectors Í that satisfies these conditions.

The smallest spanning set is not necessarily unique in
general. This problem is closely related to the intersec-
tion semilattice of subspace arrrangement [5, 10].

When X contains sufficiently dense data to solve
Problem 4, Dictionary Learning reduces to Problem 5,
i.e. we can find D using the following two steps: (1)
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Learn an s-subspace arrangement S for X. (2) Recover
D by finding the smallest Spanning Set of S.

A natural restriction of this is when the data set X
is given in support-equivalence classes. For a given sub-
space t in the subspace arrangement SX,D (respectively
hyperedge h in the hypergraph’s edge-set I(SX,D)), let
Xt = Xh ⊆ X be the equivalence class of data points x
such that span(suppD(x)) = t. We call the data points
x in a same Xh as support-equivalent.

Problem 6 (Dictionary Learning for Partitioned Data)

Given data X partitioned into Xi ⊆ X,
1. What is the minimum size of X and Xi’s guarantee-
ing that there exists a locally unique dictionary D for
a s-subspace arrangement SX,D satisfying |D| ≤ n, and
Xi represents the support-equivalence classes of X with
respect to D?
2. How to find such a dictionary D?

With regard to the problem of minimizing |D|, very
little is known for simple restrictions on X. For example
the following question is open.

Question 1 Given a general position assumption on
X, are smaller dictionaries possible than indicated by
Corollary 4? Conversely, what is the best lower bound
on |D| under such an assumption?

The combinatorial characterization by Theorem 2 leads
to the following question for general Dictionary Learn-
ing.

Question 2 What is the minimum size of a data set X
such that the Dictionary Learning Problem for X has
a locally unique solution dictionary D of a given size?
What are the geometric characteristics of such an X?

A summarization of the input conditions and results of
these different types of Dictionary Learning problems
can be found in Table 1 in Appendix A.

5 Conclusion

In this paper, we approached Dictionary Learning from
a geometric point of view.

We investigated Fitted Dictionary Learning theoreti-
cally using machinery from incidence geometry. Specif-
ically, a combinatorial rigidity type theorem (our main
result) is obtained which completely characterizes the
subspace arrangements that are guaranteed to recover
a finite number of dictionaries, using a purely combina-
torial property on the supports. As corollaries of the
main result, we gave lower bound for the size of dictio-
nary when the data points are picked uniformly at ran-
dom, and provided an algorithm for Dictionary Learning
for such general data points. Additionally, we compare
several closely related problems of independent interest,
leading to different directions for future work.
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A Classification of Dictionary Learning problems

A summarization of the input conditions and results of differ-
ent types of Dictionary Learning problems is given in Table
1.

B Proof of Results

In this section, we provide details and proof for the results
in Section 3.

In the following, we denote a minor of a matrix A using the
notation A[R,C], where R and C are index sets of the rows
and columns contained in the minor, respectively. In ad-
dition, A[R, · ] represents the minor containing all columns
and row set R, and A[ · , C] represents the minor containing
all rows and column set C.

B.1 Algebraic Representation

In this section, we provide the details in deriving the alge-
braic system of equations (H,X)(D) = 0 (1).

Consider a pin xk on the subspace spanned by points
vk1 , v

k
2 , . . . , v

k
s . Using homogeneous coordinates, we can write

this incidence constraint by letting all the s × s minors of
the (d− 1)× s matrix

Ek =
[
vk1 − xk vk2 − xk . . . vks − xk

]
be zero, where vki = (vki,1, v

k
i,2, . . . , v

k
i,d−1) and xk =

(xk,1, xk,2, . . . , xk,d−1). So each incidence can be written as(
d−1
s

)
equations:

Ek[R(l), · ] = 0, 1 ≤ l ≤

(
d− 1

s

)
(2)

where R(l) enumerates all the s-subsets of rows of Ek. Note
that only d − s of these

(
d−1
s

)
equations are independent,

as the subspace spanned by vk1 , v
k
2 , . . . , v

k
s is a s-dimensional

subspace in a d-dimensional space, which only has s(d − s)
degrees of freedom.

Given the hypergraph H = H(SX,D) of the underlying
subspace arrangement, the pinned subspace-incidence prob-
lem now reduces to solving a system of m

(
d−1
s

)
equations

(or, equivalently, m(d − s) independent equations), each of
the form (2). The system of equations sets a multivariate
function (H,X)(D) to 0:

(H,X)(D) =


. . .

Ek[R(l), · ] = 0

. . .

(1)

When viewing X as a fixed parameter, (H,X)(D) is a vector

valued function from Rn(d−1) to Rm(d−1
s ) parameterized by

X.
Without any pins, the points in D have in total n(d −

1) degrees of freedom. In general, putting r pins on an s-
dimensional subspace of d-dimensional space gives an (s−r)-
dimensional subspace of a (d− r)-dimensional space, which
has (s − r)((d − r) − (s − r)) = (s − r)(d − s) degrees of
freedom left. So every pin potentially removes (d−s) degrees
of freedom.
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Traditional Dictionary Learning Dictionary Learn-
ing via subspace
arrangement and
spanning set

Dictionary
Learning for
Segmented Data

Fitted Dictio-
nary Learning
(this paper)

Alternating
Minimization
Approaches

Spielman et.
al [24]

Arora et. al
[3], Agarwal
et. al [1]

Input and Con-
ditions

D satis-
fies frame
property

X generated
from hidden
dictionary D
and certain
distribution
of Θ; D
is a basis;
s ≤ d1/2

X generated
from hidden
dictionary D
and certain
distribution
of Θ; D
is pairwise
incoherent;
s ≤ d1/2

X with promise
that each sub-
space/dictionary
support set is shared
by sufficiently many
of the data points in
X

Partitioned / seg-
mented Data X

Generic data
points X (satisfy-
ing pure condition)
with underly-
ing hypergraph
specified

Minimum m
guaranteeing
existence of a
locally unique
dictionary of a
given size n

Question 2 O(n logn) O(n2 log2 n) Minimum number of
points to guarantee a
unique subspace ar-
rangement that will
give a spanning set of
size n

Problem 6
d− s

d− 1
n (Theo-

rem 2); Unknown
for general position
data (Question 1)

Dictionary
Learning algo-
rithms

MOD, k-
SVD, etc.

Algorithm
from [24]

Algorithms
from [3, 1]

Subspace Arrange-
ment Learning Algo-
rithms (Problem 4)
and Spanning Set
Finding ( Problem 5)

Problem 6 and
Spanning Set
Finding ( Prob-
lem 5)

Straightforward
algorithm (Corol-
lary 5)

Minimum m
guaranteeing
efficient dictio-
nary learning

Unknown O(n2 log2 n) Unknown Unknown Unknown

Illustrative
example

(a) (b) (c)

Table 1: Classification of Problems

B.2 Linearization as Rigidity Matrix and its Generic
Combinatorics

Adapting [4], we now show that rigidity and indepen-
dence (based on nonlinear polynomials) of pinned pubspace-
incidence systems are generically properties of the underly-
ing hypergraph H(SX,D), and can furthermore be captured
by linear conditions in an generic infinitesimal setting. Re-
call that a rigidity matrix of a framework (H,X,D) is a
matrix whose kernel is the infinitesimal motions (flexes) of
(H,X,D). A framework is infinitesimally minimally rigid
if the rows of the rigidity matrix are independent, and the
rigidity matrix has full rank.

To define a rigidity matrix for a pinned subspace-incidence
framework (H,X,D), we take the Jacobian JX(D) of the
algebraic system (H,X)(D), by taking partial derivatives
w.r.t. the coordinates of vi’s. In the Jacobian, each pin xk
has

(
d−1
s

)
corresponding rows, and each vertex vi has d− 1

corresponding columns. Each equation Ek[R(l), · ] = 0 (2)
gives the corresponding row in the Jacobian:

rk(l) = [0, . . . , 0, 0, V k1,1(l), V k1,2(l), . . . , V k1,d−1(l), 0, 0,

. . . . . .

. . . , 0, 0, V ks,1(l), V ks,2(l), . . . , V ks,d−1(l), 0, 0, . . . , 0]

Let Dk = {vki , 1 ≤ i ≤ s} be the vertices of the hy-
peredge corresponding to xk. Each vertex vki has the entries
V ki,1(l), V ki,2(l), . . . , V ki,d−1(l) in its d−1 columns. For j ∈ R(l),

the entry V ki,j(l) stands for the (s−1)-dimensional volume, of
the (s−1)-simplex formed by the vertices (Dk \{vki })∪{xk},
projected on the coordinates R(l) \ {j}, which is generically
non-zero. All the other entries, including the terms V ki,j(l)
where j /∈ R(l), and the entries corresponding to vertices not
on the hyperedge xk, are zero. Notice that for every pair of
vertices vki and vki′ , the projected volumes on different coor-

dinates all have the same ratio:
V ki,j2(l)

V ki,j1(l)
=
V ki′,j2(l)

V ki′,j1(l)
for all

1 ≤ j1, j2 ≤ d−1, j1 ∈ R(l), j2 ∈ R(l). So we can divide each
row rk(l) by

∑s
i=1 V

k
i,j∗(l), where j∗ is the smallest index in

R(l), and simplify rk(l) to

[0, . . . , 0, 0, b1a1, b2a1 . . . , bd−1a10, 0, . . . . . . ,

. . . , 0, 0, b1as−1, b2as−1, . . . , bd−1as−1, 0, 0,

. . . , 0, 0, b1

(
1 −

s−1∑
i=1

ai

)
, b2

(
1 −

s−1∑
i=1

ai

)
,

. . . , bd−1

(
1 −

s−1∑
i=1

ai

)
, 0, 0, . . . , 0] (3)
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where the values of ai and bj are related to l and k, and
bj = 0 if j /∈ R(l).

A B

C
D

x1

x2

x3

x4
x5

x6

Figure 3: A pinned subspace-incidence framework of 6
pins and 4 vertices, with d = 4, s = 2.

Example 3 Figure 3 shows a pinned subspace-incidence
framework with d = 4, s = 2. If we denote α1,1 = A1 −
x1,1, α1,2 = A2−x1,2, β1,2 = B2−x1,2, etc, the edge AB will
have the following three rows in the Jacobian:[

βα1,2 −βα1,1 0 −α1,2 α1,1 0 0 0 0 0 0 0
βα1,3 0 −βα1,1 −α1,3 0 α1,1 0 0 0 0 0 0

0 βα1,3 −βα1,2 0 −α1,3 α1,2 0 0 0 0 0 0

]
and the corresponding rows in the simplified Jacobian has
the following form[

b1,1a1 b1,2a1 0 b1,1(1− a1) b1,2(1− a1) 0 0 0 0 0 0 0
b2,1a2 0 b2,2a2 b2,1(1− a2) 0 b2,2(1− a2) 0 0 0 0 0 0

0 b3,1a3 b3,2a3 0 b3,1(1− a3) b3,2(1− a3) 0 0 0 0 0 0

]

For a pinned subspace-incidence framework (H,X,D), we
define the symmetric rigidity matrix M to be the simplified
Jacobian matrix obtained above, of size m

(
d−1
s

)
by n(d−1),

where each row has the form (3). If we choose d−s rows per
hyperedge in M , the obtained matrix M̂ is a rigidity matrix
of size m(d−s) by n(d−1). The framework is infinitesimally
rigid if and only if there is an M̂ with full rank. Note that
the rank of a generic matrix M̂ is at least as large as the
rank of any specific realization M̂(H,X,D).

Defining generic as non-singular, we prove Lemma 1 show-
ing that for a generic framework (H,X,D), infinitesimal
rigidity is equivalent to generic rigidity.

Proof. [Proof Sketch of Lemma 1] First we show that if
a framework is regular, infinitesimal rigidity implies rigid-
ity. Consider the polynomial system (H,X)(D) of equations.
The Implicit Function Theorem states that there exists a
function g, such that D = g(X) on some open interval, if
and only if the Jacobian JX(D) of (H,X)(D) with respect
to D has full rank. Therefore, if the framework is infinites-
imally rigid, then the solutions to the algebraic system are
isolated points (otherwise g could not be explicit). Since the
algebraic system contains finitely many components, there
are only finitely many such solution and each solution is a
0 dimensional point. This implies that the total number of
solutions is finite, which is the definition of rigidity.

To show that generic rigidity implies generic infinitesimal
rigidity, we take the contrapositive: if a generic framework
is not infinitesimally rigid, we show that there is a finite flex.
Let M̂ be the m(d− s) by n(d− 1) rigidity matrix obtained
from the Jacobian JX(D) which has the maximum rank. If
(H,X,D) is not infinitesimally rigid, then the rank r of M̂

is less than n(d−1). Let E∗ be a set of edges in H such that
|E∗| = r and the corresponding rows in the Jacobian JX(D)
are all independent. In M̂ [E∗, · ], we can find r independent
columns. Let D∗ be the components of D corresponding
to those r independent columns and D∗⊥ be the remain-
ing components. The r-by-r submatrix M̂ [E∗, D∗], made
up of the corresponding independent rows and columns, is
invertible. Then, by the Implicit Function Theorem, in a
neighborhood of D there exists a continuous and differen-
tiable function g such that D∗ = g(D∗⊥). This identifies
D′, whose components are D∗ and the level set of g corre-
sponding to D∗, such that (H,X)(D′) = 0. The level set
defines the finite flexing of the framework. Therefore the
system is not rigid. �

B.3 Required Hypergraph Properties

This section formally introduces the (k, 0)-sparsity condition
that will be used for proving Theorem 2.

Definition 2 A hypergraph H = (V,E) is (k, 0)-sparse if
for any V ′ ⊂ V , the induced subgraph H ′ = (V ′, E′) satisfies
|E′| ≤ k|V ′|. A hypergraph H is (k, 0)-tight if H is (k, 0)-
sparse and |E| = k|V |.

This is a special case of the (k, l)-sparsity condition that
was formally studied widely in the geometric constraint solv-
ing and combinatorial rigidity literature before it was given
a name in [15]. A relevant concept from graph matroids is
map-graph, defined as follows.

Definition 3 An orientation of a hypergraph is given by
identifying as the tail of each edge one of its endpoints. The
out-degree of a vertex is the number of edges which identify
it as the tail and connect v to V − v. A map-graph is a hy-
pergraph that admits an orientation such that the out degree
of every vertex is exactly one.

The following lemma from [26] follows Tutte-Nash
Williams [28, 18] to give a useful characterization of (k, 0)-
tight graphs in terms of maps.

Lemma 6 A hypergraph H is composed of k edge-disjoint
map-graphs if and only if H is (k, 0)-tight.

B.4 Proof of Main Theorem and Corollaries

In this section, we prove the main theorem, Theorem 2,
a combinatorial characterization of the existence of finitely
many solutions for a pinned subspace incidence framework.
The proof adopts an approach by [31], in proving rigidity of
k-frames.

First notice that the graph property from Theorem 2 is
not directly a (k, 0)-tightness condition, so we modify the
underlying hypergraph by duplicating each hyperedge into
(d− s) copies.

Definition 4 (Expanded multihypergraph) Given the
underlying hypergraph H = (I(D), I(SX,D)) of a Pinned
Subspace-Incidence problem, the expanded multihypergraph
Ĥ = (V, Ê) of H is obtained by letting V = I(D), and re-
placing each hyperedge in I(SX,D) with (d− s) copies in Ê.
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The rigidity matrix M̂ for a pinned subspace-incidence
framework is a (d − s)|Ê| by (d − 1)|V | matrix according
to the expanded multihypergraph Ĥ = (V, Ê), where each
hyperedge xk ∈ I(SX,D) has (d− s) rows, one for each copy.
The (d− s) rows are arbitrarily picked from the

(
d−1
s

)
rows

of xk in the symmetric rigidity matrix M .

Theorem 2 can be restated on the expanded multihyper-
graph:

Theorem 7 A pinned subspace-incidence framework is
generically minimally rigid if and only if the underlying ex-
panded multihypergraph is (d− 1, 0)-tight.

Since Theorem 7 is equivalent to Theorem 2, we only need
to prove Theorem 7 in the following.

We first consider the generic rank of particular matrices
defined on a single map-graph.

Lemma 8 A matrix N defined on a map-graph H = (V,E),
such that columns are indexed by the vertices and rows by
the edges, where the row for hyperedge xk ∈ E has non-zero
entries only at the s indices corresponding to vki ∈ xk, with
the following pattern:

[0, . . . , 0, ak1 , 0, . . . , a
k
2 , 0, . . . . . . , 0, a

k
s−1, 0, . . . , 1−

s−1∑
i=1

aki , 0, . . . , 0]

(4)
is generically full rank.

Proof. According to the definition of a map-graph, the
function t : E → V assigning a tail vertex to each hyperedge
is a one-to-one correspondence. Without loss of generality,
assume that for any xk, the corresponding entry of t(xk) in
N is 1 −

∑
i a
k
i (notice that we can arbitrarily switch the

variable names ak1 , . . . , a
k
s−1, 1−

∑
i a
k
i ). The determinant of

the map N is:

det(N) = ±
∏
k

(1−
∑
i

aki ) +
∑
σ

sgn(σ)

n∏
i=1

N [i, σi] (5)

where σ enumerates all other permutations of |N |, excluding
that of the first term ±

∏
k(1−

∑
i a
k
i ).

Notice that each term
∏n
i=1N [i, σi] has at least one aki as

a factor. If we use the specialization with aki = 0 for all i
and k, the summation over σ will all be zero, and det(N)
will be ±

∏
k(1−

∑
i a
k
i ) = ±1. So generically, N must have

full rank. �

Now we are ready to prove the main theorem by decom-
posing the expanded multihypergraph as a union of d − 1
maps, and applying Lemma 8.

Proof. [Proof of Main Theorem] First we show the only if
direction. For a generically minimally rigid pinned subspace-
incidence framework, the determinant of M̂ is not identically
zero. Since the number of columns is n(d − 1), it is trivial
that n(d − 1) copied edges in M̂ , namely n d−1

d−s pins, are
necessary. It is also trivial to see that (d − 1, 0)-tightness
is necessary, since any subgraph H ′ = (V ′, E′) of Ĥ with
|E′| > (d − 1)|V ′| is overdetermined and generically has no
solution.

Next we show the if direction, that n(d− 1) copied edges
arranged generically in a (d − 1, 0)-tight pattern imply in-
finitesimal rigidity.

We first group the columns according to the coordinates.
In other words, we have d− 1 groups Cj , where all columns
for the first coordinate belong to C1, all columns for the
second coordinate belong to C2, etc. This can be done by
applying a Laplace expansion to rewrite the determinant of
the rigidity matrix M̂ as a sum of products of determinants
(brackets) representing each of the coordinates taken sepa-
rately:

det(M̂) =
∑
σ

(
±
∏
j

det M̂ [Rσj , Cj ]

)
where the sum is taken over all partitions σ of the rows
into d−1 subsets Rσ1 , R

σ
2 , . . . , R

σ
j , . . . , R

σ
d−1, each of size |V |.

Observe that for each M̂ [Rσj , Cj ],

det(M̂ [Rσj , Cj ]) = (bσj1 . . . bσjn ) det(M ′[Rσj , Cj ])

for some coefficients (bσj1 . . . bσjn ), and each row of
det(M ′[Rσj , Cj ]) is either all zero, or of pattern (4). By

Lemma 6, the expanded multihypergraph Ĥ can be decom-
posed into (d− 1) edge-disjoint maps. Each such decompo-
sition has some corresponding row partitions σ, where each
column group Cj corresponds to a map Nj , and Rσj contains
rows corresponding to the edges in that map. Observe that
M̂ [Rσj , Cj ] contains an all-zero row r, if and only if the row

r has the jth coordinate entry being zero in M̂ . Recall for
each hyperedge xk, we are free to pick any d − s rows to
include in M̂ from the

(
d−1
s

)
rows in the symmetric rigidity

matrix M . We claim that

Claim 1 Given a map decomposition, we can always pick
the rows of the rigidity matrix M̂ , such that there is a
corresponding row partition σ∗, where none of the minors
M̂ [Rσ

∗
j , Cj ] contains an all-zero row.

Given a map decomposition, for any map Nj , there are
(
d−2
s−1

)
among these

(
d−1
s

)
rows with the jth coordinate being non-

zero. Also, it is not hard to show that for all 2 ≤ s ≤ d− 1,(
d−2
s−1

)
≥ d − s. So for any Nj containing kj copies of a

particular hyperedge, since all the other maps can pick at
most (d − s) − kj rows from its

(
d−2
s−1

)
choices, it still has(

d−2
s−1

)
− ((d− s)− kj) ≥ kj choices. Therefore, given a map

decomposition, we can always pick the rows in the rigidity
matrix M̂ , such that there is a partition of each hyperedge’s
rows, where each map Nj get its required rows with non-
zeros at coordinate j. This concludes the proof of the claim.

So by Lemma 8, the determinate of each such minor
M̂ [Rσ

∗
j , Cj ] is generically non-zero. We conclude that

det(M̂) =
∑
σ

(
±
∏
j

(
(bσj1 . . . bσjn ) det

(
M ′[Rσj , Cj ]

)))
Observe that each term of the sum has a unique multi-linear
coefficient (bσj1 . . . bσjn ) that generically do not cancel with
any of the others since det(M ′[Rσj , Cj ]) are independent of

the b’s. This implies that M̂ is generically full rank, thus
completes the proof. Moreover, substituting the values of
det(M ′[Rσj , Cj ]) from Lemma 8 gives the pure condition for
genericity. �
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Example 4 Consider the pinned subspace-incidence frame-
work in Example 3. The expanded multihypergraph satisfies
(3, 0)-tightness condition. The rigidity matrix M̂ has the fol-
lowing form:

b1,1a1 b1,2a1 0 b1,1ā1 b1,2ā1 0 0 0 0 0 0 0
b2,1a2 0 b2,2a2 b2,1ā2 0 b2,2ā2 0 0 0 0 0 0

0 0 0 b3,1a3 b3,2a3 0 b3,1ā3 b3,2ā3 0 0 0 0
0 0 0 b4,1a4 0 b4,2a4 b4,1ā4 0 b4,2ā4 0 0 0
0 0 0 0 0 0 b5,1a5 b5,2a5 0 b5,1ā5 b5,2ā5 0
0 0 0 0 0 0 b6,1a6 0 b6,2a6 b6,1ā6 0 b6,2ā6

b7,1a7 b7,2a7 0 0 0 0 0 0 0 b7,1ā7 b7,2ā7 0
b8,1a8 0 b8,2a8 0 0 0 0 0 0 b8,1ā8 0 b8,2ā8
b9,1a9 b9,2a9 0 0 0 0 b9,1ā9 b9,2ā9 0 0 0 0
b10,1a10 0 b10,2a10 0 0 0 b10,1ā10 0 b10,2ā10 0 0 0

0 0 0 b11,1a11 b11,2a11 0 0 0 0 b11,1ā11 b11,2ā11 0
0 0 0 b12,1a12 0 b12,2a12 0 0 0 b12,1ā12 0 b12,2ā12


where āi stands for 1− ai.

After grouping the coordinates, it becomes

b1,1a1 b1,1ā1 0 0 b1,2a1 b1,2ā1 0 0 0 0 0 0
b2,1a2 b2,1ā2 0 0 0 0 0 0 b2,2a2 b2,2ā2 0 0

0 b3,1a3 b3,1ā3 0 0 b3,2a3 b3,2ā3 0 0 0 0 0
0 b4,1a4 b4,1ā4 0 0 0 0 0 0 b4,2a4 b4,2ā4 0
0 0 b5,1a5 b5,1ā5 0 0 b5,2a5 b5,2ā5 0 0 0 0
0 0 b6,1a6 b6,1ā6 0 0 0 0 0 0 b6,2a6 b6,2ā6

b7,1a7 0 0 b7,1ā7 b7,2a7 0 0 b7,2ā7 0 0 0 0
b8,1a8 0 0 b8,1ā8 0 0 0 0 b8,2a8 0 0 b8,2ā8
b9,1a9 0 b9,1ā9 0 b9,2a9 0 b9,2ā9 0 0 0 0 0
b10,1a10 0 b10,1ā10 0 0 0 0 0 b10,2a10 0 b10,2ā10 0

0 b11,1a11 0 b11,1ā11 0 b11,2a11 0 b11,2ā11 0 0 0 0
0 b12,1a12 0 b12,1ā12 0 0 0 0 0 b12,2a12 0 b12,2ā12


where the red rows inside each column group corresponding
to a map decomposition of the expanded multihypergraph.

The combinatorial characterization in Theorem 2 leads to
the proof of Corollary 3, which gives a lower bound of dic-
tionary size for generic data points in the general Dictionary
Learning problem.

Proof. [Proof of Corollary 3 (Lower bound of dictionary
size for generic data points)] We first prove one direction,
that there is generically no dictionary of size |D| = n if
(d − s)m > (d − 1)n. For any hypothetical s-subspace ar-
rangement SX,D, the expanded multihypergraph Ĥ(SX,D) -
with the given bound for |D| - cannot be (d − 1, 0)-sparse.
Hence generically, under the pure conditions of Theorem 2,
the rigidity matrix - of the s-subspace framework H(SX,D)
- with indeterminates representing the coordinate positions
of the points in D - has dependent rows. In which case, the
original algebraic system (H,X)(D)(whose Jacobian is the
rigidity matrix) will not have a (complex or real) solution
for D, with X plugged in.

The converse is implied from our theorem since we are
guaranteed both generic independence (the existence of a
solution) and generic rigidity (at most finitely many solu-
tions). �

By characterizing the term “generically” in Corollary 3,
we prove Corollary 4 which gives a lower bound of dictionary
size for data points picked uniformly at random from the
sphere Sd−1.

Proof. [Proof of Corollary 4 (Lower bound of dictio-
nary size for highly general data points)] To quantify the
term “generically” in Corollary 3, we note that the pure-
conditions fail only on a measure-zero subset of the space
of frameworks SX,D. Since the number of possible multi-
hypergraphs representing the s-subspace arrangements is

finite for a given set of pins, it follows that except for
a measure-zero subset of the space of pin-sets X, there
is no (real or complex) solution to the algebraic system
(H,X)(D) = 0 when (d − s)m > (d − 1)n. Thus when
X is picked uniformly at random from the sphere Sd−1, if
|D| is less than

(
(d−1)/(d−s)

)
|X|, with probability 1, there

is no solution. �

B.5 Straightforward Dictionary Learning Algorithm
for highly general data points

In this section, we present the algorithm in Corollary 5,

which constructs a dictionary of size n =

(
d− s
d− 1

)
m, given

m data points picked uniformly at random from the sphere
Sd−1. The algorithm has two major parts: (1) constructing
the underlying hypergraph H(SX,D), and (2) constructing
the s-subspace arrangement SX,D and the dictionary D.

(1) Algorithm for constructing the underlying hy-
pergraph H(SX,D) for a hypothetical s-subspace ar-
rangement SX,D:

1. We start by constructing a minimal minimally rigid
hypergraph H0 = (V0, E0), using the pebble game al-
gorithm introduced below. Here |V0| = k(d − s),
|E0| = k(d−1), where k is the smallest positive integer
such that

(
k(d−s)
s

)
(s− 1) ≥ k(d− 1), so it is possible to

construct E0 such that no more than s− 1 hyperedges
in E0 containing the same set of vertices in V0. The
values |V0| and |E0| are constants when we think of d
and s as constants.

2. We use the pebble game algorithm to append a set V1

of d − s vertices and a set E1 of d − 1 hyperedges to
H0, such that each hyperedge in E1 contains at least
one vertex from V1, and the obtained graph H1 is still
minimally rigid. The subgraph B1 induced by E1 has
vertex set VB1 = V1

⋃
VB , where VB ⊂ V0. We call the

vertex set VB the base vertices of the construction.

3. Each of the following construction step i appends a set
Vi of d − s vertices and a set Ei of d − 1 hyperedges
such that the subgraph Bi induced by Ei has vertex set
Vi
⋃
VB , and Bi is isomorphic to B1. In other words,

at each step, we directly append a basic structure the
same as (V1, E1) to the base vertices VB . It is not hard
to verify that the obtained graph is still minimally rigid.

The pebble game algorithm by [26] works on a fixed finite
set V of vertices and constructs a (k, l)-sparse hypergraph.
Conversely, any (k, l)-sparse hypergraph on vertex set V can
be constructed by this algorithm. This algorithm initializes
by putting k pebbles on each vertex in V . There are two
types of moves:

• Add-edge: adds an hyperedge e (e must contain at least
l + 1 pebbles), removes a pebble from a vertex v in e,
and assign v as the tail of e;

• Pebble-shift : for a vertex v1 ∈ e which contains at least
one pebble, let v2 be the tail of e, move one pebble from
v1 to v2, and change the tail of e to v1.

At the end of the algorithm, if there are exactly l pebbles in
the hypergraph, then the hypergraph is (k, l)-tight.
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Our algorithm runs a slightly modified pebble game algo-
rithm to find a (d − 1, 0)-tight expanded multihypergraph.
We require that each add-edge move adding (d−s) copies of
a hyperedge e, so a total of d− s pebbles are removed from
vertices in e. Additionally, the multiplicity of a hyperedge
(not counting the expanded copies) cannot exceed (s − 1).
For constructing the basic structure of Stage 2, the algo-
rithm initializes by putting d − 1 pebbles on each vertex in
V1. In addition, an add-edge move can only add a hyperedge
that contains at least one vertex in V1, and a pebble-shift
move can only shift a pebble inside V1.

The pebble-game algorithm takes O
(
s2|V0|

(|V0|
s

))
time

in Step 1 and O
(
s2 (|V0|+ (d− s))

(|V0|+(d−s)
s

))
time in

Step 2. Since the complete underlying hypergraph H(SX,D)
has m = |X| edges, Step 3 will be iterated O(m/(d − 1))
times, and each iteration takes constant time. Therefore
the overall time complexity for constructing H(SX,D) is

O
(
s2 (|V0|+ (d− s))

(|V0|+(d−s)
s

)
+ (m/(d− 1))

)
, which is

O(m) when d and s are regarded as constants.

(2) Algorithm for constructing the s-subspace ar-
rangement SX,D and the dictionary D:

The construction of the s-subspace arrangement SX,D
naturally follows from the construction of the underlying
hypergraph. For the initial hypergraph H0, we get a
pinned subspace-incidence system (H0, X0)(D0) by arbitrar-
ily choose |X0| = |E0| pins from X. Similarly, for Step 2 and
each iteration of Step 3, we form a pinned subspace-incidence
system (Bi, Xi)(Di) by arbitrarily choosing |Xi| = d−1 pins
from X.

Given X0, we know that the rigidity matrix - of the s-
subspace framework H0(SX0,D0) - with indeterminates rep-

resenting the coordinate positions of the points inD0 - gener-
ically has full rank (rows are maximally independent), under
the pure conditions of Theorem 2; in which case, the orig-
inal algebraic subsystem (H0, X0)(D0) (whose Jacobian is
the rigidity matrix), with X0 plugged in, is guaranteed to
have a (possibly complex) solution and only finitely many
solutions for D0. Since the pure conditions fail only on a
measure-zero subset of the space of pin-sets X0, where each
pin is in Sd−1, it follows that if the pins in X0 are picked
uniformly at random from Sd−1 we know such a solution
exists for D0 (and SX0,D0) and can be found by solving the
algebraic system H0(SX0,D0).

Once we have solved (H0, X0)(D0), for each following con-
struction step i, Bi is also rigid since coordintate positions of
the vertices in VB have been fixed (this actually follows from
the generalization of our main result to non-uniform hyper-
graphs, by thinking of each vertex in VB as being spanned
by a single pin). So similarly, we know a solution exists for
Di (and SXi,Di) and can be found by solving the algebraic
system Bi(SXi,Di), which is of constant size O(d). Although
there can be more than one choice of solution for each step,
since every construction step is based on base vertices VB ,
the solution of one step will not affect any other steps, so
generically any choice will result in a successful solution for
the entire construction sequence, and we obtain D by taking
the union of all Di’s.

When we regard d and s as constants, the time complex-
ity for Stage (2) is the constant time for solving the size
O(|V0|) algebraic system (H0, X0)(D0), plus O(m/(d − 1))
timed by the constant time for solving the size O(d) sys-
tem (Bi, Xi)(Di), that is O(m). Therefore the overall time
complexity of the dictionary learning algorithm is O(m).


