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Abstract

Classical propositional STRIPS planning is nothing
but the search for a path in the state-transition graph
induced by the operators in the planning problem.
What makes the problem hard is the size and the
sometimes adverse structure of this graph. We con-
jecture that the search for a plan would be more effi-
cient if there were only a small number of paths from
the initial state to the goal state. To verify this con-
jecture, we define the notion of reduced operator sets
and describe ways of finding such reduced sets. We
demonstrate that some state-of-the-art planners run
faster using reduced operator sets.

Keywords: STRIPS planning, preprocessing

Introduction

A major focus of research in AI planning has been
on improving the efficiency of planners, in particu-
lar STRIPS planners. The STRIPS planning problem
is, loosely speaking, characterised by the assumptions
that operator effects are deterministic and uncondi-
tionai, and that the initial state is completely known.
Under these assumptions, the planning problem re-
duces to that of finding a path in the state-transition
graph induced by the operators. What makes the prob-
lem still hard is the size, and perhaps sometimes ad-
verse structure, of this graph.

However, the use of the STRIPS representation
also gives the state-transition graph structure which
can be exploited to gain efficiency. The use of rep-
resentations such as planing graphs (Blum & Ftust
1997), of state-of-the-art SAT technology (Kautz 
Selman 1996), and of automatic extraction of heuris-
tic information and domain invariants from the prob-
lem representation (Bonet, Loerincs, & Geffner 1997;
Fox & Long 1998) has meant that STRIPS planners
today solve problems that seemed impossible not too
long ago.

Based on the view of planning as the search for a
path in the state-transition graph, we conjecture that

planning will, at least in some instances, be faster if
the density of the graph is reduced; ideally, we would
like to reduce the graph to a minimal spanning tree
(actually, a minimal equivalent digraph). To motivate
this, perhaps controversial, conjecture, consider that
the complexity of graph search is O(ba), where b 
the branching factor and d the solution depth. For
search in a spsnn;ug tree of the graph, the complexity
is O(aC), where a < b, since the tree has fewer edges,
and c/> d, since the shortest path to a solution in the
graph may not be available in the tree. Clearly there
is a gain if the decrease in branching factor is large and
the increase in depth small.

Our belief that the state-transition graph of a plan-
ning problem is often more dense than necessary comes
from the observation that some operators in some do-
mains are, in a certain sense, redundant. Consider,
for example, the well known Blocksworld domain, and
the operator move(A,B,C), meaning "move block 
from on top of block B to block C". This operator is
redundant, since we can replace any occurence of this
operator in a plan by the sequence move(A,B,Table),
move(A,Table,C).

To put this conjecture to the test, we define the no-
tion of operator redundancy and construct a method
to find and remove redundant operators or operator
instances from a planning problem, creating what we
call a reduced problem. Though an efficient algorithm
for computing at least an approximation of the min-
imal equivalent digraph exists, it is of no use to us
since it works on the graph explicitly. We need meth-
ods that can be applied on the level of description at
which the problem is given, i.e. to the set of opera-
tors. The reduction process we use preserves solution
existence, i.e. the reduced planning problem has a
solution if and only if the original problem was solv-
able. We have implemented the reduction in the form
of a preprocessor and compared the runtimes of sev-
eral planners on reduced planning problems to that
on the original problems. In some cases, considerable
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speed-up was observed.

Related Work

Examples of the use of domain analysis techniques to
improve the performance of pl~n~ers are not rare in
the literature. Well known examples are the automatic
generation of abstraction hierarchies (Knoblock 1994)
and the postponement of threats with the aid of op-
erator graphs (Peot & Smith 1993). The information
provided by these methods, however, is useful only to
planners of a certain design.

The method suggested by Nebel et al. (1997) for
removing irrelevant facts and operators from planning
problems is not in this way specific to a certain planner
or kind of planner. This technique has been shown to
yield quite impressive results, although only for plan-
ners whose performance is impaired by kzelevant facts.
It must also be noted that the method is not solution-
preserving.

The "redundant sequence of actions" (RSA) con-
cept defined by Scholz (1999) is very similar to our
notion of redundancy, although it is restricted only to
sequences of length 2. Scholz, however, makes use of it
in a way different from ours, by integrating it as a con-
straint into the planning mechanism to exclude plans
that contain the, longer, redundant sequence.

A number of other transformations on planning
problems have been suggested, but Hmed to reduce an
expressive representation language into a simpler lan-
guage rather than to increase the performance of the
planner. Interesting examples are (Gazen & Knoblock
1997), (Koehler et al. 1997) and (B~ckstr6m lgg5).

Definition of Reduced Operator Sets
We begin this section by defining the syntax and se-
mantics of the STRIPS planning problem. We avoid
the elaborate STRIPS semantics defined by Lifschitz
(1986) in favor of an essentially propositional formu-
lation, similar to e.g. McAllester & Rosenblitt (1991)
and Bylander (1994). We assume complete knowledge
of the initial state and complete determinism in the
effects of all operators. We also restrict operator pre-
conditions and goals to contain only positive literals,
i.e. atoms.

Definition 1 (STRIPS Syntax and Semantics)
A STRIPS operator, o, is a triple (Po, Ao, Do) where
each component is a set of atoms, representing precon-
ditions, added atoms and deleted atoms, respectively.
We assume that operators are consistent, i.e. that
AoNDo --- 0.

A state, s, is represented by the set of atoms that are
true in the state. We say that an operator o is applica-
ble in s iff Po C s. The state resulting from applying

the operator o in state s is (s- Do)UAo. We also say 
sequence of operators, o,,... , on, is applicable in s iff
oi is applicable in s and for each i > I, oi is applicable
in the state resulting from executing oi .... , o~-i.

A p]~n,lng problem instance is a triple P =
(O, I, G), where O is a set of STRIPS operators, I 
the set of initially true atoms and G the set of goal
atoms. We say a sequence of operators is a plan for P
ff the sequence is applicable in I and all atoms g E G
hold in the state resulting from executing the sequence.

When the operator set is dear from the context, we
abbreviate a problem instance (I, G). We also denote
by DiP) the domain of the problem instance, i.e. the
set of all atoms mentioned in P.

In a planning problem, it is often the case that cer-
tain combinations of atoms will never occur together
in any reachable state; they are in some sense inconsis-
tent. This property of atom sets wRl be important in
our definition of redundancy. Strictly logically speak-
ing, a set of atoms can of course not be inconsistent.
Therefore, the inconsistency relation can not be deter-
mined from the domain and operator set alone.

Definition 2 (The Inconsistency Relation)
For a set of atoms A and an atom a, we say that a
is inconsistent with A if there is no state s reachable
fromI such that A C s and a E s. We denote by
INC(A) the set of atoms that are inconsistent with A.

An approximation of INC(A) can be computed using
a fixpoint computation similar to that of Boner and
Geffner (1999). It is approximate in the sense that 
compute a subset, possibly equal, of INC(A). This
approximation is sound, but not always complete.

The next two definitions provide the foundations for
our definition of the concept of operator redundancy.

Definition 3 (Cumulative Effects)
We define the curnulatire preconditions, positive and
negative effects of a sequence of STRIPS operators, de-
noted Cp(.), CA(’) and Co(.)respectively, inductively
as

Cv(o) = Po
CA(O) = Ao (~)
Co(o) = 

and

Cv(ol,..., o,, o) 
Cp(o~,.. . , o,) u (Po - CA(Ol , o,))

CA(Ol,... , o,~, o) (ii)(CA(o1,... , o.) - Do) 
Co(ol,... , o,, o) 

(Co(Ol,. ̄  ¯ ,o,~) - Ao) Do
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iff CD(Ol, . .. , On) (’] Po --- andundefined othe rwise.

The cumulative preconditions and effects of a sequence
of operators summarise the conditions under which the
sequence will be applicable and the effects of applying
it, respectively, much in the same way as the precon-
ditions and effects of a single operator do. Therefore,
it provides a natural way of defining precisely when an
operator may be replaced by a sequence of alternative
operators, i.e. when the operator is redundant.

Definition 4 (The Implements Relation)
We say a sequence of operators oi,... , on implements
an operator o, iff

(0 o does not occur in the sequence,

(ii) Cv(o~,... ,o.) c_ 

(iii) Ao C C’A(ot,..., On), and

(iv) Co(or,... , on) (DoU INO(Po)).

Definition 5 (Redundant, Reduced)
For a set of operators O and an operator o E O, we
say that o is redundant with respect to 0 iff there
exists some sequence of operators in O - {o} which
implements o.

We call the set O reduced iff there are no redundant
operators in O.

Items (0-(ii0 of definition 4 are rather straightfor-
ward. Since the intention is to eliminate the opera-
tor o by substituting for it the sequence or,... ,on,
we have to require that o is not part of the sequence,
that the sequence is applicable whenever o is, and that
it makes true at least the same atoms as does o. Fi-
nally, we have to ensure that the substituted sequence
does not delete anything that would not have been
deleted by o. The natural way to state this require-
ment, CD(oi,... ,o,~) C_ Do, turns out to be to re-
strictive. To capture the intuitive meaning of operator
redundancy, we have also to allow that the sequence
ot .... ,on deletes some atoms that o does not, as long
as those atoms are such that can not be true in any
state where o is applicable.

Example 1
Consider the Blocksworld domain, and the operator
move(A,B,C), meaning "move block A from on top
of block B to block C". We would expect this oper-
ator to be redundant, since we can replace any oc-
curence of this operator in a plan by the sequence
move(A,B,Table), move(A,Table,C). The cumula-
tive effects of this sequence, however, include the dele-
tion of the atom on_table(A), which is not deleted

by the operator move(A,B,C). But, for any normal
initial state, this atom is inconsistent with on(A,B),
which is a precondition of the replaced operator.

In principle, there is no reason why we should not
make similar exceptions in items (ii) and (iii). We
could allow the implementing sequence or,... , o, to
require additional precondition atoms, or to fail to add
some of the atoms added by the operator o, as long as
those atoms were "entailed" by the preconditions of
o and the set of atoms added by o (or required and
not deleted), respectively. The reasons for not doing
so are two: First, there appears to be no easy way to
compute this entailment relation between atoms, and
second, judging from our experiments it does not seem
necessary.

We do, however, use a simple analysis to detect
static atoms (atoms that can never change truth value
from their value in the initial state) and remove not
only operators whose preconditions are statically false
but also statically true atoms from the preconditions
of remaining operators. Although this analysis is in-
complete, it can help in finding redundant operators.

Example 2
In the Grid domain there is a robot which can move
between adjacent nodes, arranged in a grid, provided
the node moved to is not locked (denoted by the atom
open(n)). A node which is initially locked can later
become unlocked, but a node which is initially un-
locked can never become locked.

Because the statically true open(n) preconditions
are removed, some instances of the move operator
can be implemented by a "semi-circular" sequence of
three move operators. For example, move(n0-0,n0-
1) could be implemented by the sequence move(n0-
0,nl-0), move(nl-0,nl-l), move(nl-l,n0-1)), 
vided open(n1-0) and open(n1-1) are statically true.

Correctness and Complexity
In this section, we show that reducing an operator set
preserves solution existence, i.e. it does not render
any planning problem that was previously solvable in-
solvable. We also show that in general, the problem of
computing a reduced set of operators is very hard. In
the next section, we describe the more efficient approx-
imate methods that we have used in our experiments.

Lemma 1
Let oa,.. ¯, on be a sequence of operators such that the
cumulative preconditions and effects are defined, and
let s be a state such that

Cp(01,... ,On) (f-_ (i)
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Then the operator sequence is applicable in s and the
resulting state is

s’ = (s - coCo1,... ,o,)) u CA(Ol,... ,o,0. (ii)
Proof." By induction on n, the length of the sequence.
For n = 1, the cumulative preconditions and effects
of the sequence are the preconditions and effects of
its single operator, and the claims follow immediately
from definition 1.

Assuming the lemma holds for n <~ k, consider a se-
quence or,..., Ok,Ok+i. From definition 3(ii), we see
that the cumnlative preconditions of an operator se-
quence are non-decresing w.r.t, appending an opera-
tor, Le.

Cp(ol,... , Ok) C_ C~,(o~,... , ok, Ok+l) (iii)
This is because Cp (oi,... , ok, ok+l) is the union of the
cumulative preconditions of the sequence or,..., ok
and a, possibly empty, subset of the preconditions of
the appended operator, ok. Therefore, it follows from
(z) that

Cp(o~,..., ok) c_ ~ (i~)
which, by the induction assumption, implies that the
sequence o~,... ,ok is applicable in s, and that the
resulting state is

¯ " = (s-Co(o~,... ,ok))u CA(Ol,... (v)
Since the cumulative preconditions of oi,..., ok, ok÷1
are defined, we must have that CD(Oz,... ,ok)A
Pok+~ = ¢; thus, for any atom a E Po~+1, a E s" if
a E s or a ¯ CA(Or,... ,Ok). If u ¢. CA(01,... ,ok),
then a E Cp(o1,... , ok, ok+z), by definition 3(iz), 
therefore s E s by (i) above. Consequently, Pok+, C_ s",
which shows that the entire sequence oi,..., ok, ok+1
is applicable in s. Next, note that

s’ = (((s - Co(o~,..., ok)) u CA(o~,..., 
--Doh+l) U Aok+l

= ((s (CD(OZ,... ,o k) tJ Doh+=))U
(CA(Ol,... ,ok) - Do~+,)) u Ao~+,

= (s - ((CD(Oz,... ,ok) - Aok.~)UDo~,.z))U
((CA(Ol,.. ¯ ,ok) Doj=+,) U Aok+l)

= (s - C~(o~,..., ok, ok+~))u
CA(o~,... , ok, ok+~)

which proves the identity (i~) above. 

Lemma 2
Let P = (0, I, G) be a planning problem instance,
o E O a redundant operator and oi,... , o, a sequence
of operators that implements o. Then, in any state s
reachable from I,

(i) if o is applicable in s, then oI,... , o, is applicable
in s, and

({i) if s’ is the result of applying o in s and s" the
result of applying oi,... , on in s, then s’ C s".

Proof." Since, by definition of the implements relation,
Cp(o1,..., o,) C_ Po, claim (i) follows by Lemma 1.
Also by Lemma 1, applying oi,..., on in s results in

¯ " = (s- C~(o1,..,o,)) u CA(o~,...,o,) (iii)

Consider an atom a E s’ = (s-Do)UAo. We then have
that a E s" iff either a E s and a ¢. Co(o1,... ,o,)
or a E CA(Ol,... ,o,). In the first case, a can not
be in INC(Po), since because o is applicable in s we
must have Po C_ s, and thus a ¢. CD(Ol,... ,o,) C
Do U INC(o), which means a E s". In the second
case, we have because Ao C CA(Ol,... ,o~) that a E
CA(Ol,... , o,) and therefore a E s". This gives (ii).
[]

Proposition 3
For any planning problem instance, P = (0, I, G), re-
moving a redundant operator from 0 preserves solu-
tion existence.
Proof: Consider a plan o1,... , om for P and suppose
operator o= in this plan is redundant. Since o~ is redun-
dant, there exists by definition a sequence of operators
o~,... , o: which implements oi.

Because oi,... ,o,, is a plan for P, the sequence
must be applicable in I, which also means o, must
be applicable in the state resulting from executing
oi,...,oi_i. Therefore, by Lernma 2, dr,... ,o~ is
also applicable in this state, and in the state result-
ing from executing the sequence in place of oi at least
the atoms that would have been true after oi had been
executed hold. Since preconditions are only positive,
having more atoms true in a state can not make any
operator following o¢ in the plan inapplicable, and nei-
ther can it make any goal atom in the final state false.
[]

Thus, an operator set O can be transformed to a re-
duced set O’ by enumerating the operators in the set
and successively removing any operator that is redun-
dant with respect to the operators currently remaining
in the set. The resulting reduced set is, however, not
unique; depending on the order of enumeration, differ-
ent reduced sets can be obtained. Moreover, not all
reduced subsets of O are equal in size.
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Example 3
Consider the operator set

0 = { o1: ({p}, {q}, {p}),
o2: ({q}, {P}, {q}),
o,: ({p},
04:
os: ({q},{r},{q}),

o5: ({r}, {q}, {r}) 

A reduced subset of O is {ol,o2,o3, o4} (o2,o3 im-
plements 05 and o4, ol implements o6). Another is
{oz, 04,05} (o5,04 implements 02, oz, os implements 03
and 04,01 implements o6). Yet another is {02, 03, o5}.

Complexity

In the worst case, deciding if an operator, o, is redun-
dant with respect to a set of operators, O, is as hard as
solving the general planning problem. To see this, con-
sider any pl~nnlug problem P : (O, I, G) and create
the operator o with

Po = /
Ao = G
Do = D(P) - G

It is easily seen that a plan for P implements o, and
thus that o is redundant with respect to O if and only
if P has a solution.

Finding a minimal reduced subset of a set of opera-
tors is an even harder problem.

Proposition 4
For a given set of operators O, finding a minimal re-
duced set O’ C_ 0 is NP-hard, even with the assump-
tion that the redundancy of an operator o 60 with
respect to some subset of O can be decided in polyno-
mial time.
Proof: By reduction from the minimal equivalent di-
graph problem, which is stated as follows (Garey 
Johnson 1979): Given a directed graph G = (1/, E),
find the smallest subset E’ C_ E such that, for every or-
dered pair of vertices v, v’ 6 V, the graph G’ : (V, E’)
contains a (directed) path from v to v’ if and only 
G does.

For a given graph, G = (1/, E), we create a set 
pl~nnlng operators over a domain equal to V, the ver-
tices of G. For each edge (v, v’) 6 E, we create the op-
erator o, with P° = {v}, Ao = {v’} and Do = {v}. Let
0 be the set of all such operators. Deciding whether
an operator o 6 0 is redundant can be decided in poly-
nomial time by breadth-first search, since the length
of any path in G is no more than V. Because the con-
struction yields a one-to-one correspondence between

the operators in O and the edges of G, a minimal re-
duced set O’ C O corresponds to minimal a subgraph
G’ = (V, E’) of G satisfying the requirement of path
equivalance.

Finally, note that the construction is linear in the
size of E. []

Note again that this shows the problem of finding
a minimal reduced set to be NP-hard under the as-
sumption that the redundancy of an operator can be
decided in polynomial time. The problem of decid-
ing redundancy is, as shown above, actually PSPAC~,-
hard, which means that finding a minimal set i8 cer-
tainiy harder, though exactly how much harder we can
not say.

Computing Reduced Sets

Computing a minimal reduced set of operators breaks
down in two problems, both of which were in the pre-
ceeding section shown to be hard. Fortunately, we can
use simple and efficient approximations to both prob-
lems, and still achieve acceptable results.

Detecting Redundancy

Faced with a set of operators, O, and an operator
o 6 O, how do we determine if O is redundant, i.e.
if there exists a sequence of operators that implements
o? To a first approximation, we can state this as a
planning problem: Find a plan for initial state Po and
goal Ao, utilising only operators in O - {o}. This ap-
proach, however, fails to take into account item (iv)
of definition 4; we need to enforce the constraint that
the plan preserves all atoms not in Do U INC(Po).
To achieve this, we search in the space of operator
sequences of increasing length and compute the cumu-
lative preconditions and effects directly according to
definition 3. The search is guided by an automatically
extracted heuristic function, like that of (Boner, Loer-
incs, & Geffner 1997). To further reduce the branching
factor of the search, we make use of the fact that the
cumulative preconditions of a sequence of operators
are non-decreasing with respect to appending an oper-
ator (c/. equation (iii) in the proof of Lemma 1) 
therefore any operator sequence whose cumulative pre-
conditions are not a subset of Po can never be extended
to one which implements o.

The sequence implementing a redundant operator
can be up to 2iD(P)I steps long. We can obtain a sound

but incomplete algorithm by limiting the length of se-
quences considered. In practice, the implementing se-
quences appear for the most part to be very short.
Table 1 shows, for a number of problems in the do-
mains where we have found redundancy, the number
of instantiated operators (excluding operators that can
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Problem # operators # redundant
~5 ~3 42

blocks-11 1210 990 990 990
blocks-15 3150 2730 2730 2730
logistic.a 210 12 12 12
logistic.b 192 24 24 24
logistic.c 256 24 24 24
grid-1 2384 1866 1858 1800
grid-2 4140 3346 3334 3240

Table 1: Number of
bounded search.

redundant operators found with

never be applied due to unreachable preconditions)
and the number of redundant operators found with
varying bounds on the length of the implementing se-
quence. Each operator has been tested for redundancy
with respect to the set of all other operators and there-
fore it is not necessarily the case that all the redundant
operators can be removed.

The reader should also keep in mind that the incon-
sistency relation we compute and make use of when
testing for redundancy is only an approximation of the
one described in definition 2.

Approximating the Minimal Set

Although the minimal equivalent digraph problem is
NP-hard, there exists a polynomial time approxima-
tion algorithm guaranteed to return a solution within
1.75 of the optimal (Khuller, Raghavachari, & Young
1995). However, the algorithm is polynomial (slightly
above linear) time in the size of the graph. It also re-
quires space linear in the size of the graph. Since for
planning problems the state-transition graph is expo-
nential in size, this makes it unusable in practice.

We use instead a simple greedy algorithm, which re-
moves each redundant operator as soon as it is found
and checks for redundancy with respect to the cur-
rently remaining set of operators. The redundancy
check uses bounded search, so it is incomplete.

In the worst case, this may result in removing only a
small fraction of the potentially redundant operators.
Consider the graph in figure 1; the edges of a minimal
set are indicated by dashed lines. However, a non-
minimal reduced set can be formed by deleting only
the two edges between any pair of adjacent nodes.

Table 2 shows, for the same collection of planning
problems, the number of operators in a minimal re-
duced set and the number of operators in the reduced
set found by our algorithm. Clearly, the algorithm
achieves a far from optimal result, but, as the results
of the next section show, in practice this seems to have
relatively little effect.

Figure 1: A graph on which the greedy approximation
pefformes badly.

Problem #operators reduced minimal
blocks-11 1210 220 220
blocks-15 3150 420 420
logistic.a 210 206 204
logistic.b 192 180 176
logistic.c 256 244 240

Table 2: Number of operators in reduced and minimal
reduced sets.

Experiments

To test the conjecture that pl~,~-i-g with a reduced
operator set yields an increase in efficiency, we im-
plemented a preprocessorI which converts a plau~g
problem specified in PDDL to an equivalent problem
with a reduced operator set and compared the run-
times of several different planners on reduced problems
to that on the same problems without reduction. The
planners we used were all competitors in the STRIPS
track of the AIPS98 pJ~,nlug competition, where they
all performed well. Two of them, STAN (Fox & Long
1998) and BLACKBOX (Kautz & Selman 1999), are 
part based on the use of planning graphs, but the third,
HSP (Boner, Loerincs, & Geffner 1997), is not. We also
included GRAPHPLAN in the test suite.

The results are summarised in table 3. The times
shown are the average of a varying number of trials.
HsP and BLACKBOX show large variations in runtime
from one trial to another, up to +17% and ±42%, re-
spectively (with the exception of the non-reduced ver-

IThe software is available from the authors upon re-
quest.
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sion of the logistic, c problem, on which BLACKBOX
shows a deviation of over 200% from the average). For
BLACKBOX in particular, the deviation measured as a
percentage of average tends to be greater the longer
the average runtime. For problems solved within a few
seconds, the largest deviations were only a few percent.
The other planners consistently stay within a few per-
cent of the average. A dash indicates that the program
exhausted the available memory, or crashed.

Because the preprocessor works with instantiated
(propositional) formulas and operators, the reduced
domain descriptions are also propositional. As already
mentioned, the preprocessor also finds and eliminates
static propositions, actions that are never applicable,
etc. To make the comparison fair, the non-reduced
version of each problem was also instantiated, and the
same static analysis applied. The planners used in
the experiments are likely not designed for proposi-
tional input (normally, the domain description is pa-
rameterised and the planner handles instantiation in-
ternally), which may have been the cause of some prob-
lems. Notably, we could not run HsP on the Grid do-
main, or any planner on the grid-2 problem.

We also ran STAN and BLACKBOX on minimal re-
duced versions of the logistic.b and logistic.c
problems, devised by hand. The results are shown in
table 4.

Table 5 shows the time taken to preprocess the prob-
lems used in the experiments. Besides the total time,
the percentage spent in computing the atom inconsis-
tency relation and the reduction of the operator set is
given.

Discussion of the Results

Though the results of the experiments for the most
part support our conjecture, there were also some sur-
prises. First, redundancy is not as common as we ini-
tially believed. In the standard benchmark domains,
including the domains from the AIPS’98 competition,
we found only three to contain redundant operators:
the Blocksworld, Logistics and Grid domains.

Second, not all planners benefit equally from reduc-
tion of the operator set. This we expected, but that the
plangraph-based plznners seem to gain the most from
reduction is a bit surprising, as the plans found using
a reduced operator set are longer, both in number of
actions and number of time steps, than the plans found
using the original set. It is for this reason we included
GRAPHPLAN in the test suite, since the tendency that
appears in the results of STAN and Br.ACKBOX is ex-
hibited even more clearly by GRAPHPLAN.

There seems to be no simple relationship between
the number of operators removed and the decrease in

STAN

Problem Operator set
original reduced

blocks-ll 2.4 sec. 0.2 sec.
blocks-15 1 min. 41 sec. 0.9 sec.
logistic, a 3.0 sec. 1.7 sec.
logistic.b 6.1 sec. 0.6 sec.
logistic, c - 8.0 sec.
grid-I 3.3 1.6

BLACKBOX
Problem Operator set

original reduced
blocks-ll 9.0 sec. 0.4 sec.
blocks-15 - 4.3 sec.
logistic.a 2.0 sec. 1.2 sec.
logistic.b 13.1 sec. 2.0 sec.
logistic.c 12 rain. 2 sec. 5.3 sec.
grid-I 7.5 sec. I0.I sec.

GRAPHPLAN

Problem Operator set
original reduced

blocks-ll 3.7 sec. 0.3 sec.
blocks-15 - 4.5 sec.
logistic.a 7 rain. 25 sec. 3 rain. 15 sec.
logistic.b 8 rain. 32 sec. 1 rain. 38 sec.
logistic, c - -
grid-I 3.9 sec. 3.5 sec.

HsP
Problem Operator set

original reduced
blocks-ll 0.9 sec. 0.6 sec.
blocks-15 5.6 sec. 1.7 sec.
logistic, a 1.2 sec. 1.9 sec.
logistic.b 1.1 sec. 0.9 sec.
logistic, c 1.5 sec. 2.1 sec.

Table 3: Runtimes using original and reduced operator
sets.

Table 4:
sets.

Problem STAN BLACKBOX
logistic.b 0.6 sec. 2.0 sec.
logistic, c 3.7 3.4 sec.

Runtimes using minimal reduced operator
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Problem Time Inc. Red.
blocks-ll 6.4 sec. 33% 5970
blocks-15 51.5 sec. 37% 60%
logistic, a 0.4 sec. 317o 23%
logistic.b 0.5 sec. 17% 17%
logistic, c 0.7 sec. 2570 25%
grid-1 1 mln. 52 sec. 30% 65%

Table 5: Total preprocessing time and percent spent
computing atom inconsistency and reduced operator
set.

planning time. The greatest gain was shown in the
Logistics domain, were the reduced set contains only a
few operators less than the original. The experiments
with minimal reduced operator sets indicate that min-
imaiity is not as important as irredundancy, though
the data set is really too small to draw any general
conclusion on this question.

Sources of Redundancy in the Example
Domains

We can distinguish two different kinds of redundant
operators in the example domains. The first kind is
distinguished by the fact that they are not a neces-
sary part of the implementing sequence for some other
redundant operator, which means all redundant oper-
ators of this kind can be removed. We find examples
of this kind in the Blocksworld domain, where all op-
erators that move a block from on top of another block
directly to another block are redundant (as shown in
example 1) and all such operators can be removed.

The other kind is a subset of operators which "imple-
ment each other"; we find an example in the Logistics
domain, where all instances of the fly-airplane oper-
ator are redundant, w.r.t the set of all other instances,
since any airplane can reach any airport as long as the
remaining operators form a strongly connected span-
ning subgraph between the cities. However, obviously
not all of them can be removed.

The Grid domain contains both the above sorts of
redundacy. All instances of the pickup-and-loose op-
erator, which cause the robot to pick up a key and drop
another, can be implemented by a two-step sequence
(first dropping, then picking up). Some of the move
operators are redundant, as shown in example 2, but
this is redundancy of the second kind; in a "circle" of
four adjacent nodes, only one of the four move oper-
ators can be removed. Similarly, some of the unlock
operators, which unlock a locked grid node, provided
the robot is in an adjacent node, can be implemented
by moving the robot to another adjacent node, unlock-
ing from there, and moving the robot back.

Conclusions

We have introduced and defined the concept of redun-
dant operators in planning and reduction of an oper-
ator set, and shown how an approximate reduced set
can be computed. We have also provided some exper-
imental evidence that reducing the operator set can
significantly speed-up planning. What is lacking, how-
ever, is an adequate explanation of this phenomenon.
According to the argument put forth in the introduc-
tion, the time to search for a plan should decrease if the
decrease in the branching factor caused by reduction
is large and the increase in solution depth is relatively
small. In the Logistics domain, where the gain was
greatest, the redundant fly-airplane operators are
certainly few compared to the number of loading and
unloading operators. The increase in solution depth
for reduced problems in this domain is also significant.

We have made one more observation which may shed
some light on this issue. For planners based on plan-
ning graphs, the number of "failed levels" (i.e. the
number of levels in the planning graph between the
first where all goal atoms occur non-mutex and the
first level where they can actually be achieved) tend
to be fewer when using a reduced operator set than
when using the original set. Viewing the plan graph
construction as being in fact the computation of an ad-
missible (underestimating) heuristic, as suggested 
Boner and Geffner (lggg), we may hypothesise that re-
ducing the operator set eliminates some of the "short-
cuts" in the state-transition graph, which causes the
heuristic to make an estimate closer to the actual cost.
The difference in failed levels is, however, quite small
(at most two, and usually only one, level).

Another important question concerns the applica-
bility of the reduction method to real-world prob-
lems. We have noted that redundant operator sets
are not very common in planning problems. For in-
stance, among the problems for the AIPS’98 compe-
tition, only the Blocksworld, Logistics and Grid do-
mains were found to contain redundant operators. On
the other hand, the detection of redundant operators
is a relatively cheap computational task (at least in the
approximative sense used in this paper). In the final
analysis, it should of course also be kept in mind that
while reduction preserves solution existence, it does
not preserve solution length: Plans in reduced domains
tend to be longer and, from an execution perspective,
this is not a trivial price to pay.

Even though this particular method may not be ap-
plicable in that many cases, we are quite convinced
that preprocessing of planning domains is in general a
good idea, and that the range of possible techniques
has been far from exhausted. Perhaps results of this
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paper contribute more to the understanding of the
weaknesses of plangraph based planners, and a bet-
ter way to achieve the same increase in performance is
to develop more accurate heuristics.
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