
Sos: Accommodation on the fly with ACCESS

Phelan D., Strahan R., Collier R., Muldoon C., O'Hare G.M.P.

Department of Computer Science
University College Dublin

Ireland
Donnacha.Phelan@ucd.ie, Robin.Strahan@ucd.ie, Rem.Collier@ucd.ie, Conor.Muldoon@ucd.ie, Gregory.OHare@ucd.ie

Abstract
This paper introduces Sos, a location aware and context -
sensitive accommodation finding service for mobile citizens
who require help finding somewhere to stay when they
arrive at their chosen destination. Specifically, Sos helps
users to find and book hotel accommodation that is most
appropriate to their current context. This context combines
the users’ current location, personal preferences, hotel
availability and agenda (e.g. business meeting, tour of city).
Sos has been realized as an agent-based application that has
been deployed using the Agents Channelling ContExt
Sensitive Services (ACCESS) architecture, an open agent-
based architecture that supports the development and
deployment of multiple heterogeneous context -sensitive
services.

1. Introduction.
Pervasive Computing is recognised as a key growth area
for the computer industry (Pearce, 2003) (Crease, 2003).
The vision of Pervasive Computing is often held as one of
“smart” devices operating seamlessly and dynamically,
forming ad-hoc networks with other related devices,
presenting the user with a truly ubiquitous intelligent
environment. This vision offers many similarities with the
concept of intelligent agents where autonomous entities,
known as agents, interact with one another forming ad-hoc
alliances and working both reactively, and pro-actively, to
achieve individual and common goals.
Perhaps the key distinction between these two visions is
that agent technologies are viewed more as enabling
technologies than end-user technologies. As such,
Pervasive Computing is recognised as one of the key
research areas for applications of agent technologies (Luck
et al., 2003). This has led to the development of a number
of exemplar agent-based systems which showcase how
agent technologies might be utilised effectively to realise
Pervasive Computing applications (Mihailescu and Binder,
2001) (Keegan and O'Hare, 2002).
A consequence of the emergence of such exemplar systems
is the recognition that most location-aware context

.Copyright © 2004, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

sensitive applications exhibit a common functional core.
These include a location-sensing capability typically
Global Positioning System (GPS) augmented with Radio
Frequency IDentification (RFID) tags, dynamic generation
and acquisition of user specific map fragments, support for
management of the users context, and service brokerage.
This paper introduces Sos1, a location-aware and context -
sensitive accommodation location service for mobile
citizen. The primary focus of Sos is in providing assistance
for users who arrive at a given destination without prior
bookings and who require help finding somewhere to stay
when they arrive at their chosen destination. Specifically,
Sos helps users to find and book hotel accommodation that
is most appropriate to their current context. This context
combines the users current location, personal preferences,
hotel availability, and agenda (e.g. business meeting, tour
of city). Sos has been realized as an agent-based
application that has been deployed using the Agents
Channelling ContExt Sensitive Services (ACCESS)
architecture, an open agent-based architecture that supports
the development and deployment of multiple
heterogeneous context sensitive services (Muldoon, 2003).

2. Motivation: Our Intrepid and Disorganized
Traveler

There exist a number of scenarios in which a traveller
arrives at their destination with either no accommodation
booked, or else, finding that their reservation has not been
honoured. For example, consider the scenario in which
Greg decides at the last minute to attend a conference in
Miami and books tickets for the journey. A busy work
schedule distracts Greg from the ancillary task of booking
hotel accommodation. As a result, Greg arrives in Miami
without accommodation. Subsequently, Greg finds out
that the UEFA Under 21 Soccer World Cup is also taking
place in Miami, and that accommodation is hard to find.
Having arrived at 8pm in the evening, Greg’s options are
limited since the tourist information offices are closed.
The option of walking around the city searching for
accommodation, is neither appealing nor safe

1 Our application takes its name from the Irish word for rest – Sos, the
associations with emergency situations are also not coincidental.

This scenario is compounded by Greg’s lack of local
knowledge – including a rudimentary command of the
local native language, what telephone numbers (if any) to
ring, where best to search for a hotel, and more mundane
items such as the location of the town center. Dilemmas
such as Greg’s have inspired the development of Sos, a
location-aware context -sensitive hotel accommodation
finder. Through Sos, we are able to marshal this local
knowledge and present relevant details using an intuitive
map-based interface providing the traveler with a context
in which he is able to understand both what his options are,
receive assistance in the selection of the hotel most
appropriate for his particular needs, together with securing
the appropriate reservation.

3. Related Work
Considerable research has been invested of late in the
deployment of ubiquitous and pervasive services, a number
of such services have been targeted at the accommodation
and tourism sector. Hypergeo2 is one such system, which
developed a prototype tourism service for the delivery of
location and user sensitive information taking into account
new information technologies, geographic information and
new communication infrastructures. Hypergeo includes a
hotel information service that presents a list of hotels that
is ordered by both user preference and locality. However,
the information provided is locational, and does not
consider availability or provide mechanisms for enabling
the user to make a reservation.
A second system under development is NEXUS (Volz and
Klinec 1999). This system aims to develop a generic
platform that supports the delivery of location-based
services. This includes the implementation of a location
aware hotel finding service in which the user specifies the
region in which they wish to stay. Unfortunately, no
prototype application currently exists.
From the commercial perspective, companies such as
TomTom (the Varta Guide)3 and the Collinson Group
(Pocket Travel Plan)4 offer static hotel information that can
be downloaded onto Personal Digital Assistants (PDAs).
A third alternative is sino.net, which offers a mobile hotel
portal that offers information on Asian hotels and provides
an e-mail/phone-based hotel room booking service.
Cheyer and Julia (Cheyer and Julia 1995) have developed a
system based around a map-based interface, which
provides tourist information about the city of San
Francisco. Requests expressed in a variety of modalities
can control the scrolling and zoom level of the map,
retrieve information about locations and distances and
display hotels or attractions meeting a user’s preferences.
Where appropriate additional information may be obtained
from live Internet sources. A similar system is described in
(Oviatt, 1996).

2 http://www.hypergeo.org/
3 http://www.tomtom.com/
4 http://www.travelplan.com/

The accommodation finder service that we present in this
paper also uses a map-based interface. However in contrast
to (Cheyer and Julia 1995), Sos provides strong support for
implicit and dynamic user profiling and context sensitivity.
Sos also provides functionality, currently lacking in
Hypergeo, for checking availability and making
reservations. In addition all locational and hotel
information is harvested dynamically from preexisting web
resources and Sos specific data sources. Consequently Sos
offers superior flexibity and adaptivity, to the Varta Guide
and Pocket Travel Plan. The provision of such
characteristics is primarily achieved through its enabling
technology namely ACCESS.

4. The ACCESS Architecture
The Agents Channeling ContExt Sensitive Services
(ACCESS) architecture is an agent-based architecture that
supports the development and deployment of context
sensitive services (Muldoon 2003). ACCESS has been
realized as an extension of a pre-existing framework for
agent development, known as Agent Factory (Collier
2003). Agent Factory is a cohesive framework that delivers
structured support for the development and deployment of
agent-oriented applications. Specifically, Agent Factory
supports the fabrication of a type of software agent that is:
autonomous, situated, socially able, intentional, rational,
and mobile. It is comprised of four-layers that deliver: an
agent programming language, a distributed run-time
environment that delivers support for the deployment of
agent-oriented applications, an integrated toolkit that
delivers a visually intuitive set of tools, and a software
engineering methodology that specifies the sequence of
steps required to develop and deploy agent-oriented
applications with the preceding layers. Additionally,
Agent Factory provides FIPA-compliance through an
Agent Management System (AMS) agent and a Directory
Facilitator (DF) agent. Agent-oriented applications built
using Agent Factory use these prefabricated agents to gain
access to the infrastructure services provided by the run-
time environment (i.e. yellow and white pages services,
migration services).
ACCESS provides a membrane of agents that augments the
basic infrastructure delivered by Agent Factory through the
provision of a collection of agents that facilitate the rapid
prototyping of, context -sensitive applications. These
agents form a cohesive management layer into which
multiple heterogeneous context -sensitive services may be
plugged. This enables service developers to focus on the
implementation of their service, rather than the
infrastructure required to deliver it.

4.1 ACCESS Management Agents
The ACCESS Management agents implement the core
functionality of the ACCESS architecture, which includes
context management, user profiling, map generation,

Figure 1. Access Management Agents

content delivery, account management, and location
sensing.
The User Profiling Agent provides a mechanism to enable
agents request user preferences, which are used to
configure user specific services. A distinct user profile
exists for every registered user. User profile information is
obtained explicitly from the user preference web form and
implicitly from the activity analyzer. One advantage of
requiring the user to complete a preference form is that it
allows the personalisation of services to begin
immediately, allowing applications to begin tailoring their
services to the needs of specific users prior to observing
users’ behaviour and preferences. The personalisation
process can then further refined as the profile is implicitly
developed as the user interacts with the system. Implicit
profile information is obtained using data mining
techniques on recorded user activity, for instance when
examining service usage its noted what was used, when it
was used, and where is was used.
The Map Agent dynamically generates maps for a
specified location. When a generate map request from a
service agent is made, the size of the map and its location
are specified. The Map Agent contacts its map server, to
retrieve the map segments required to generate a map
centred on the location specified. The generated maps can
subsequently be merged with service specific content
overlay. The Map Agents exist as part of a community of
peers, this enables the distribution of load and also allows
the Map Agents to be geographically bound i.e. Map
Agents are not responsible for generating maps for the
entire globe, they have specified bounds for their locality.
Within the ACCESS architecture, a user’s context is, at
this stage of development, merely considered as a
combination of their location, previous activities, and
preferences. Context is used to help ACCESS understand
where and when to provide services, and more specifically,
what services the user may need. The Context Agent is
responsible for handling context sensitive hotspots within
the ACCESS architecture. Specifically, a hotspot is a
region of space-time that is limited by specified bounds
(e.g. an area of 100 square meters centred around a
particular shop, during the shops business hours). Once a
user breaches a hotspot the Context Agent informs the
Profiling Agent, which may then decipher whether the
hotspot breach is relevant to the user.
In ACCESS, hotspots are created in two ways: (1) through
requests by specific services that wish to know when a user
enters a certain space-time context, (2) through the analysis
of past user activity and/or user preferences. The former
represents a service-centric approach to context
management, while the latter is user-centric.
The Position Agent is responsible for periodically
informing the Context Agent of the users position. It is a
lightweight agent that resides on the users PDA. It
currently uses GPS, however it is envisaged that in the
future other position sensing technologies may be used.
The Service Broker manages the advertising of services to
the user. The order in which adverts are pushed to the user

depends on both the users’ spatial/temporal location and
user preference (this is their context). In order for a service
to be advertised it must register with Service Broker.
The Device Aware Content Delivery Agent (DACDA)
performs the roles of system interface and content
manager. Specifically, it is capable of determining
primitive device characteristics, which it uses to tailor
content delivery. All communication with the user is done
via the DACDA. It is also responsible for registering the
user with the system at start up and registering the user
with any services they wish to use. In addition, the
DACDA is responsible for monitoring user interaction
with ACCESS-compliant interfaces. An ACCESS-
compliant interface constitutes a graphical user interface
that may be dynamically loaded by the DACDA at
runtime. ACCESS-compliant interface components are
displayed within the ACCESS viewer, a purpose-built
interface capable of simultaneously switching between
services. These components are described within an
interface composition script.

4.2 The Service Provider Contract
The Service Provider Contract forms the minimum
requirements necessary for a service to be considered
ACCESS compliant. Roles that must be filled as part of the
Service Provider Contract include the Service Manager and
the Service Delivery Agent. These components constitute
prefabricated components of the ACCESS development
framework and may be extended to provide service
specific functionality. Although the Service Provider
Contract gives two roles that must be provided, it does not
limit the service developer from adding additional roles
and agents that are specific to the application they are
developing. The Service Manager is responsible for
registering the service with the Service Broker. It
communicates with the DACDA when a user wishes to use
the service. Once the DACDA initiates a conversation the
service manager delegates the DACDA to a Service
Delivery Agent, which will be the DACDAs
communication entry point for the service.
The Service Delivery Agent collaborates with the other
service agents to deliver the required content to the user.
The functionality of the Service Delivery Agent will
primarily be service specific, but from the point of view of

the contract it is viewed as the functional data block that
handles or represents the user in the service.
With the provision of the ACCESS architecture, the rapid
development of context sensitive services are possible. One
such service is that of Sos.

5. The Sos Hotel Finder Service
Sos is a location-aware and context -sensitive hotel finding
service for mobile citizens who require help finding
somewhere to stay when they arrive at their chosen
destination. Specifically, Sos helps users to find and book
hotel accommodation that is most appropriate to their
current context. This context combines the users current
location, personal preferences, hotel availability, and
agenda (e.g. business meeting, tour of city).

5.1 The Sos Hotel Finder Architecture
Sos has been realised as an ACCESS-compliant service.
That is, the Sos application uses the generic common core
of functionality that is deployed through the ACCESS
architecture and augments this with service specific
components. Specifically, Sos makes use of 5 aspects of
this common core of functionality:
• The ACCESS Viewer is used as a medium through which

the Sos Service is able to interact with the user.
• The user location sensing capability is used to identify

the users current location.
• The context management functionality is used to set up

hotspots that act to advertise the service to the user.
• The map generation functionality is used to generate

maps that display both the users position as well as hotel
locations.

• The service brokerage functionality is used to register the
service with the ACCESS gateway, allowing users to
manually select the service.

This functional portfolio is delivered via the
implementation of the roles specified in the Service
Provider Contract (section 4.2) in conjunction with a
number of custom service agents. A diagrammatic
overview of the Sos Hotel Finder Service Architecture can
be found in figure 2.
In this architecture, the Sos Manager agent implements the
Service Manager role, and is responsible for registering the
service with the service broker, and setting up the relevant
hotspots for triggering the service. Conversely, the Sos
Delivery agent implements the Service Delivery Agent
role. Its implementation defines how agents deliver the
Sos service. This includes contacting the Map Agent at
relevant times, and interacting with the Matcher Agent
whenever the user initiates a search for a list of hotels.
The remaining functionality of Sos is realised through the
implementation of a number of custom service agents.
Specifically, the Matcher Agent is responsible for handling
user requests for hotels. The request received by the
matcher agent combines a username, target search area,
and a key that is used to uniquely identify the ACCESS
Viewer Panel (see section 4.1) that initiated the request.
Based upon this request, the Matcher Agent retrieves a set
of hotels from the relevant target area, and then ranks those
hotels based upon availability, cost, location, and similarity
to the users preferences (see section 5.2). Availability and
pricing information is obtained through collaboration
between the Matcher agent and a number of Wrapper
agents that interface directly with relevant websites / web
services. Finally, a web-based interface is provided that
enables administrators to update the hotel listings, and
users to register and modify their profiles.
To illustrate the operation of this architecture, we now
describe the principle usage scenario where the system
retrieves a personalized list of hotels for the user. As
stated previously in section 4.1, all interactions with the
user are handled through the ACCESS Viewer. Specific
events relating to this interaction are sensed by the

Figure 2. The Sos Hotel Finder Architecture

associated DACDA and routed to the appropriate Service
Provider Agents (in this case the Sos Manager agent and
Sos Delivery agent). In the scenario where the user
employs Sos to locate a suitable hotel, the users
accommodation requirements (e.g. desired target area,
length of stay, date of arrival) are transmitted to a pre-
assigned Sos Delivery agent via the DACDA. Upon
receipt of these requirements, the Sos Delivery agent
contracts a Matcher agent to generate a personalized list of
hotels. The Matcher agent searches the database for hotels
located in the target area that meet the user’s preferences,
instructing the relevant Hotel wrapper agents to retrieve
hotel availability and pricing information that is relevant to
the users accommodation require ments. Upon completing
this search, the Matcher agent passes the personalized list
to the Sos Delivery agent, which, in turn, routes the list to
the relevant DACDA for presentation to the user.

5.2 Matching Hotels To Users in Sos
Matching of users to hotels is achieved through a similarity
metric that combines location information, user
preferences, hotel availability, and price. The location of
the hotel is evaluated with respect to the target area chosen
by the user (see section 6 for an illustration of this). User
preferences are based upon profiles of both the user and the
hotels. Both profiles combine information on the desired /
achieved Start Rating of the hotel (1 star to 5 star) and the
amenities offered by the hotel (e.g. whether there is a pool,
bar, restaurant, baby changing facilities, etc.). Hotel
availability is used to filter the list of hotels (i.e. hotels that
do not have availability are removed). Finally, the price is
used as the final differentiator between hotels (cheaper is
seen as better). Purpose-built Wrapper agents provide an
agent-oriented interface to hotel web site booking forms
through which they are able to retrieve hotel availability
and pricing information. The similarity Matcher Agent
collates hotel availability and pricing information and uses
this information in conjunction with the similarity metric to
generate a list of hotels.

6. So, what happened to Greg?
Upon arriving in Miami, Greg switches on his Personal
Digital Assistant (PDA), and receives an advert fro m the
Sos Hotel Finder Service. Clicking on the advert brings
Greg to the welcome screen. Detecting that Greg is an
existing user of Sos, the screen instructs Greg to continue.
This leads on to a second screen (figure 3a) in which Greg
is asked to enter various details about his stay in Miami.
This includes the arrival date (the current date by default),
the number of nights and the number of people. Greg is
also prompted to select an area of interest. This drop down
list contains a number of places that may be of interest to
Greg. In this case, Greg is presented with a personalised
list of options that includes the railway station, downtown,
and the venue of the conference he will attend. A fourth

option in the drop-down list is the “Select from map”
option. It is this option that Greg selects.
Upon choosing this option, Greg is presented with a screen
that contains a map that displays his current position.
Various options allow Greg to change the zoom level, to
pan the map, and to select an area on the map. However
the principal purpose of this screen is to get Greg to
identify the area of Miami in which he wishes to stay. This
circular area and is identified by two clicks over the map.
The first click identifies the centre point of the circle, and
the second identifies the radius of the circle. Figure 3b
shows a screen shot of the area that Greg selects. Once an
area has been selected, Greg clicks on the continue option.
Sos now has sufficient information to start a search for
available hotels. This information is sent to a pre-assigned
Sos Delivery agent via the DACDA as described in section
5.1.
Once this search has been completed, a third screen is
presented to the user containing a list of hotels that have
been found (see figure 4a). This list of hotels is filtered for
availability, and is ordered by similarity, price, and
proximity to the centre of the selected area.
Highlighting a hotel, and clicking on the Location option
presents the user with a fourth screen (figure 4b)
containing a map, the Greg’s location, and the available
hotels. The map is centred on the selected hotels location,
but is set at a zoom level that also shows Greg’s current
location. However, if Greg is outside the scope of the
maximum zoom level, then his location is not displayed.
Clicking on one of the hotel icons brings Greg to a screen
that displays details (name, price, description and picture)
of the selected hotel. Once Greg is happy with one of
these hotels, he returns to the Available Hotels screen, and
selects the desired hotel. This causes Sos to generate an
offer that is presented on a screen. This screen allows
Greg some level of customisation of the offer. Once
happy, Greg accepts the offer. A short time later, an
Authorise Payment screen appears asking Greg to confirm

Figure 3. (a) The Hotel Requirements Panel (left)
 (b) The Select Map Panel (right)

the payment. Upon confirming the payment an appropriate
transaction occurs (e.g. a VISA transaction), and a booking
number is generated. This number is dis played to Greg,
and stored in his “My Bookings” container.

7. Conclusions
This paper has introduced Sos a context aware, just-in-time
accommodation location service for mobile users. Sos
distinguishes and differentiates itself from other systems in
several important respects:
• It delivers system adaptivity through the use of a rich user

context yielding a personalized hotel finding service.
• It yields a just-in-time accommodation location and

reservation system.
• It adopts a multi-agent system metaphor facilitating

intelligent push service delivery, dynamic profile
updates, agent migration and system load balancing
across the client server architecture.

• It provides wrapper functionality whereby Sos can access
preexisting web based information sources.

• It provides a support envelop that ensures utmost ease in
the uploading of new hotel entries together with
associated pricing, promotional materials and preferred
subscription tariff bands.

A fully functional prototype has been developed and
demonstrated at (Muldoon 2003). On going research is
investigating the scalability of the service together with
usability trials these will be reported in later work.

Acknowledgements
We gratefully acknowledge the support of Enterprise
Ireland (grant ATRP/01/209) and Science Foundation
Ireland through Modelling Collaborative Reasoners (SFI
Investigator Award).

References
Creese, S. 2003, Future Challenges in Pervasive
Computing Environments , SC Infosec, Mar 5 2003

Keegan, S., and O'Hare, G.M.P. 2002, EasiShop: Context
sensitive Shopping for the Mobile User through Mobile
Agent Technology, In Proceedings of PIMRC 2002 13th
IEEE International Symposium on Personal Indoor and
Mobile Radio Communications, Lisbon, Portugal.: IEEE
Press.

Mihailescu P., and Binder W. 2001, A Mobile Agent
Framework for M-Commerce, In Proceedings of Agents in
E-Business, Vienna, Austria:

Pearce J., 2003, IBM: Pervasive Computing is the future,
ZD Net, Jan 30 2003

Luck, M., McBurney, P., and Preist, C., 2003, Agent
Technology: Enabling Next Generation Computing.
AgentLink 12:1465-3842.

Cheyer A., and Julia L 1995, Multimodal maps: An
agent-based approach. In Proceedings of the International
Conference on Cooperative Multimodal Communication,
Eindhoven, The Netherlands: Springer _

Oviatt. S. L. 1996, Multimodal interfaces for dynamic
interactive maps. In Proceedings of Conference on Human
Factors in Computing Systems 1996, Vancouver, Canada:
ACM Press

Collier, R.W., O'Hare G.M.P., Lowen, T., and Rooney,
C.F.B. 2003, Beyond Prototyping in the Factory of the
Agents, In Proceedings of 3rd Central and Eastern
European Conference on Multi-Agent Systems , Prague,
Czech Republic.

O'Hare, G.M.P. 1996, Agent Factory: An Environment for
the Fabrication of Distributed Artificial Systems, in
O'Hare, G.M.P. and Jennings, N.R. (Eds.), Foundations of
Distributed Artificial Intelligence: Sixth Generation
Computer Series, Wiley Interscience.

Volz, S., and Klinec, D. 1999. Nexus: The Development of
a Platform for Location Aware Applications, In
Proceedings of Third Turkish-German Joint Geodetic Days
– Towards A Digital Age, Istanbul, Turkey.

C. Muldoon, G.M.P. O’Hare, D. Phelan, R. Strahan, R.W.
Collier 2003. "ACCESS: An Agent Architecture for
Ubiquitous Service Delivery", In Proceedings Seventh
International Workshop on Cooperative Information
Agents (CIA), Helsinki, Finland.

Collier, R. 2001, Agent Factory: A Framework for the
Engineering of Agent-Oriented Applications, Ph.D. Thesis,
Computer Science Dept., University College Dublin, Éire .

Figure 4. (a) The Available Hotels Panel (left)
 (b) The View Hotel Location Panel (right)

