
Experience-Based Resource Description and Selection in
Multiagent Information Retrieval

Leen-Kiat Soh

Department of Computer Science and Engineering, University of Nebraska, 115 Ferguson Hall, Lincoln, NE

Tel: (402) 472-6738 E-mail: lksoh@cse.unl.edu

Abstract

In this paper, we propose an agent-centric approach to re-
source description and selection in a multiagent information
retrieval (IR). In the multiagent system, each agent learns
from its experience through its interactions with other
agents their capabilities and qualifications. Based on a dis-
tributed ontology learning framework, our methodology al-
lows an agent to profile other agents in a dynamic transla-
tion table and a neighborhood profile, which together help
determine resource description and selection process. Fur-
ther, we report on the experiments and results of the first
phase of our research, which focuses on the operational is-
sues (e.g., real-time constraints, frequency of queries, num-
ber of threads, narrowness in ontology) on how the agents
handle queries collaboratively.

Introduction
The multi-database model is the alternative to the single
database model. As pointed out in (Callan 2000), the sin-
gle database model can be successful if most of the impor-
tant or valuable information on a network can be copied
easily. However, due to information proprietary, costs
(e.g., access, storage, management, duplication, and trans-
mission), and distributedness of data, the multi-database
information retrieval (IR) model is often times more suit-
able. Callan (2002) outlined three key stages of the multi-
database model: (1) resource description in which the con-
tents of each text database is described, (2) resource selec-
tion in which given an information need and a set of re-
source description, a decision is made about which data-
base(s) to search, and (3) result merging in which the
ranked lists returned by each database are integrated into a
single, coherent ranked list. Resource description is the
discovery and representation of what each database con-
tains, and is usually performed. The resource selection
problem is the ranking of databases by how likely they are
to satisfy the information need.

In this paper, we describe an innovative methodology
based on a distributed ontology learning framework in a
multiagent environment (Soh 2002a). In the multiagent

 Copyright © 2003, American Association for Artificial Intelligence

(www.aaai.org). All rights reserved.

system, each agent, safeguarding its database and process-
ing queries, learns from its experience through its interac-
tions with other agents. As a result of this learning, each
agent learns the resource description of the other agents
that it has come into contact, and learns the selection crite-
ria for choosing which agents to approach to help respond
to a query. The unique characteristic of our methodology
is the agent treatment of resource description and selection:
• Each agent maintains a profile of other agents and thus

keeps a unique set of resource descriptions. For exam-
ple, agent A may think agent B is good at topic T1, but
agent C may think agent B is poor at the same topic.
This agent-centric viewpoint allows the system to be
more adaptive to individual user’s information need and
query behavior.

• Each agent is autonomous and makes decision whether
to handle a query relayed by another agent based on its
current status and availability. Thus, it is possible for
the agent to turn down a request even though it has the
data to satisfy the query. Thus, the decision making
process is decentralized and localized at the agents, al-
lowing the system to be more responsive, modular, and
flexible.

 In the following, we will first discuss some related work.
Then, we briefly outline the overall framework of our re-
search project. Then, we focus on the experience-based
resource description and selection in a multiagent envi-
ronment. Next, we describe the current phase of our pro-
ject which is to understand how multiagent information
retrieval is impacted by operational issues such as queries,
the number of communication (negotiation) threads, the
variability within the translation tables and so on. Finally,
we conclude.

Related Work
Traditionally, resource descriptions can be created manu-
ally, or automatically through a unigram language model,
or distributedly through a technique called query-based
sampling. Manual creations (Voorhees et al. 1995, Chak-
ravarthy and Haase 1995) might be difficult or expensive
to apply in an environment with many databases (Callan
2002). The unigram language models are based on the
frequencies of occurrences of keywords that occur in the
databases (e.g., Callan, Lu and Croft 1995). The query-
based sampling approach (Callan and Connell 2001) is a

distributed, agent-like alternative where each resource pro-
vider cooperates by publishing resource descriptions for its
document databases. The sampling requires minimal co-
operation and makes no assumptions about how each pro-
vider operates internally. Our approach is similar to query-
based sampling. However, our agents perform the sam-
pling as a side effect of real-time query handling. Also,
our resource description is kept dynamically. With our
agent-centric viewpoint, our technique is adaptive to each
agent’s experience and they may have different profiles of
how well a particular agent deals with a particular topic of
queries. Finally, our sampling is done whenever there is an
interaction between two agents—thus the resource descrip-
tion changes constantly.
 The major part of the resource selection problem is rank-
ing resources by how likely they are to satisfy the informa-
tion need (Callan 2000). Conventionally, the desired data-
base ranking is one in which databases are ordered by the
number of relevant documents they contain for a query
(Gravano and García-Molina 1995; French et al. 1998).
Callan and Connell (2001) described CORI, a Bayesian
inference network and an adaptation of the Okapi term
frequency normalization formula, that ranks resources. In
(Si et al. 2002; Xu and Croft 1999), the Kullback-Leibler
(KL) divergence between the word frequency distribution
of the query and the database was used to measure how
well the content of the database matches with the query. Si
and Callan (2003) proposed a ReDDE (Relevant Document
Distribution Estimation) resource selection algorithm that
explicitly tries to estimate the distribution of relevant
documents across the set of available databases, consider-
ing both content similarity and database size when making
its estimates. In particular, Wu and Crestani (2002) pro-
posed a model that considers four aspects simultaneously
when choosing a resource: document’s relevance to the
given query, time, monetary cost, and similarity between
resources. Our resource selection algorithm has several
unique features: (a) it ranks the agents that safeguard the
databases (or resources) instead of the database, based on
the agents’ ability to satisfy a query, (b) it performs a task
allocation and approaches the agents based on the ranking,
and (c) it is based on an agent’s dynamic viewpoint of oth-
ers that the agent maintains through experience.

Framework
In our original framework (Soh 2002a) for distributed on-
tology learning embedded in a multiagent environment, the
objective is to improve communication and understanding
among the agents while preserving agent autonomy. Each
agent maintains a dictionary for its own experience and a
translation table. The dictionary allows the agent to com-
pare and discover relationships between a pair of words or
concepts, while the translation table enables the agent to
learn and record (a selected portion of) the vocabulary of
its neighbors that is useful for the collaboration among the
agents. The motivation for this distributed ontology learn-
ing is that each agent has its own experience and thus

learns its own ontology depending on what it has been ex-
posed to. As a result, different agents may use different
words to represent the same experience. When two agents
communicate, agent A may not understand agent B and that
hinders collaboration. However, equipped with the dis-
tributed ontology learning capabilities, agents are able to
evolve independently their own ontological knowledge
while maintaining translation tables through learning to
help sustain the collaborative effort. Please refer to (Soh
2002a, 2002b) for details on the design.
 Our discussion here is related to (Williams and Tsat-
soulis 2001) where ontology learning was conducted only
between two agents via exchange of concepts (ontologies)
where the agents were neither able to adapt to changes in
concept definitions nor able to handle multiple assertions
from different neighbors. Moreover, our framework ad-
dresses translation and interpretation of concepts, query
processing and composition for collaboration among
agents, and action planning based on traffic and agent ac-
tivities, which indirectly control the learning rates of the
agents.
 The focus of the current phase of our research is on
developing and analyzing the operational components of
our framework, applied to a document retrieval problem.
Each agent interacts with a user who submits queries based
on keywords. These keywords are known as concepts in
the agents. The objective of our design is to satisfy as
many queries as possible and as well as possible. An agent
may turn to its neighbors for help. Thus, this collaboration
motivates the agents to perform distributed ontology
learning to improve their performances.

Methodology and Design
In our design, when an agent receives a query, it checks the
query against its ontology knowledge base. A query comes
with a concept name and the number of documents or links
desired. If the agent cannot satisfy the query, it will con-
tact its neighbors. If the agent recognizes the concept
name but does not have enough documents or links to ful-
fill the requirement, then it will approach its neighbors to
obtain more links. If the agent does not recognize the con-
cept name, then it passes the query to its neighbors. Every
agent is equipped with N number of negotiation threads.
For each contact, an agent has to activate one of these
threads. So, if an agent does not have available inactive
negotiation threads, it will not be able to collaborate with
other agents. Hence, even if the agents do understand each
other’s ontologies, it is possible that due to the query fre-
quency and the resource constraints, the agents may not be
able to utilize that understanding to help solve a query
problem. When an agent obtains help from its neighbors,
we say that collaboration has taken place.

Agent Design
As shown in Figure 1, there are nine modules. We will
describe three here and further discuss the other six in he

next subsections. The Interface module interacts with the
user to obtain queries and to provide queried results. Cur-
rently, we have (simulated) software users that automati-
cally generate timed queries for our experiments. Each
software user submits its queries through a socket connec-
tion with the interface.
 The Query Processor module receives a query from the
Interface module and processes it. It first checks the
agent’s ontology base. If the query matches one of the
concepts in the ontology, the module retrieves the number
of links available. If the query does not find a match in the
ontology, the module examines its translation table. If
there are available translations, that means collaboration is
possible.
 The Activity Monitor module keeps track of the activities
in a job vector—whether the agent is processing a query on
its own, or negotiating with other neighbors for more links,
or entertaining a request by a neighbor.
 The Thread Manager module manages the threads of the
agent. It is a low-level module that activates the threads,
updates and monitors the thread activity.

Figure 1 The current design of the operational components of an
agent in our framework.

 There are three dynamic knowledge or databases: ontol-
ogy, translation table, and profiles. The profiles keep track
of the relationships between the agent and its neighbors,
updating the neighborhood parameters. The ontology is a
dictionary listing the concepts that the agent knows. Each
concept has a list of supporting documents or links. The
translation table consists of translations between each con-
cept that the agent knows and its neighbors. Each transla-
tion is accompanied with a credibility value. In our
framework, we base the credibility value between two con-
cepts on the similarity between the two corresponding sets
of documents defined by the two concepts. Table 1 shows
an example of a translation table for an agent A1. In the
example, A1 has four neighbors. It knows of concepts such
as “basketball” and “car” . For “basketball” , there is a cor-
responding entry “NBA” pointing to neighbor N1, with a
credibility of 2.1, N2’s “Bball” with a credibility of 1.0,
and N4’ s “Basketball” with a credibility of 3.4. However,

it does not have a translation for “basketball” between it-
self and N3.

Concepts N1 N2 N3 N4
basketball NBA

2.1
Bball
1.0

NIL Basketball
3.4

car NIL Auto
2.1

Car 1.0 Move 1.0

…
Table 1 A translation table example.

Resource Description
As previously discussed, we describe our resources by the
agents that safeguard the resources, and not just the re-
sources themselves. In our methodology, an agent is in
charge of a database (resource) and is thus responsible for
interfacing with other agents and users when its database is
to be queried. Thus, the utility of an agent depends on two
components: operational and ontological. For the onto-
logical component, we look at the translation table as the
credibility value captures the quality of the links returned
by the neighboring agents. For the operational component,
we look at the relationship between the agent and each of
its neighbors, through the Neighborhood Profiler. Each
neighbor is profiled along four dimensions: _numHelp (the
number of times the agent provides help to the neighbor),
_numSuccess (the number of times the agent successfully
solicits help from the neighbor), _numRequestFrom (the
number of times the agent receives a request from the
neighbor), and _numRequestTo (the number of times the
agent initiates a request to the neighbor) (Soh and Tsat-
soulis 2002a). Based on these numbers, we derive helpful-
ness, usefulness, importance, and reliance of each
neighbor, from the viewpoint of the agent. We compute a
weighted sum of all the values from both components to
derive a utility measure for each agent and allocate the
query demand proportionally. For example, if the user
specifies that he or she desires K links for his or her query,
then neighbor i with the highest utility will be requested for
the highest number of links.
 The Negotiation Manager module manages the negotia-
tion tasks. In our current design, the interaction between
two agents does not involve negotiations as the two simply
exchange information. However, our long-term plan views
negotiation as an important part of ontology interpretation
and query allocation in a distributed environment. We aim
to have each agent plan its own retrieval schedule to better
utilize its computation. For example, suppose an agent is
searching its database for a query Q1. Now, the agent re-
ceives requests from two neighbors, one for Q2, and the
other for Q3. The agent may opt to perform Q2 as it shares
many keywords with Q1, which the agent is currently
working on, and may opt to reject the request for Q3. The
rejection is provided with the above reason and is commu-
nicated back to the agent that requested help in the first
place. As a result, the requesting agent will be able to
maintain a resource description of the rejecting agent with
a better understanding. We are currently extending our

previous work in reflective negotiations (Soh and Tsat-
soulis 2002b) to distributed ontology in this framework.
Resource Selection
For our resource selection, it is based on the utility of a
neighbor and the current status of the agent. Three mod-
ules are involved at this step: Action Planner, Collabora-
tion Manager, and Query Composer.
 The Action Planner module serves as the main reasoning
component of the agent: (a) If the number of internal links
satisfies the query, then the action planner simply provides
those links through the Interface module to the user; (b)
otherwise, if the agent recognizes the concept (i.e., it does
not have any supporting documents or links for the con-
cept) requested in the query and finds available transla-
tions, it initiates its collaborative activities; (c) if the agent
does not recognize the concept, it will relay the query to
another agent; and (d) finally, if there are no available
translations, the link retrieval process stops and the agent
reports back to the user. Whether collaboration is feasible
depends on the current status of the agent, as recorded by
the Activity Monitor and Thread Manager modules. If the
agent does not have enough resources for collaboration, the
link retrieval process terminates.
 The Collaboration Manager module takes over when the
action planner calls for collaboration. The objective of this
module is to form an appropriate group of neighboring
agents to approach and distribute the query demands (link
allocations) accordingly among them. To design such a
collaboration plan, this module relies on the Neighborhood
Profiler module, and the translation table. Each neighbor
is given a utility measure based on the translation credibil-
ity value and the relationship between the agent and the
neighbor. A neighbor has a high utility if the translation
credibility of the query in question is high, if the past rela-
tionship is strong, and if there is not any current interac-
tion. The collaboration manager ranks these neighbors
based on the utility measure and then assigns the query
demands accordingly, with the help of the Query Com-
poser.
 The Query Composer module composes a specific query
for each neighbor to be approached based on the allocation
of query demands. As previously mentioned, each query is
associated with a link requirement that specifies the num-
ber of links desired. A query will also include the name of
the originator and a time stamp when it is first generated.
If the query is based on a translation, then the translated
concept name is used. If the agent does not recognize a
concept and needs to relay a query it has received to a
neighbor, it simply uses the queried concept directly.

Implementation
We have implemented all the nine modules (some albeit
partially) of our agent as depicted in Figure 1 in C++.
Each agent receives its user queries from a software user
through a socket connection, and communicates with other
agents through a central relay server module through
socket connections as well. Each agent generates and

maintains its neighborhood profile during runtime dynami-
cally.
 For our experiments, each agent is equipped with a
translation table right from the start. Note that in our
original distributed ontology framework (Soh 2002a), the
entries in a translation table are learned over time based on
the experience of each agent. In this paper, we focus on
the operational design of collaborative understanding of
distributed ontologies and assume that each agent has a
translation table to begin with.
 In addition, each agent is equipped with an ontology
database. This database lists all the concept terms that an
agent knows. For each concept, there is a list of links (or
documents) that are examples that illustrate the concept.
Indeed, when interpreting two concepts, we simply com-
pare the similarities of the two lists of links supporting the
two concepts. Currently, we are building this interpreta-
tion module.

Discussion of Results
We have performed a set of experiments, aimed at studying
(a) the learning of useful neighbors for sharing queries, (b)
the efficiency of query handling in different real-time sce-
narios and with different resource constraints, and (c) the
effects of different ontological concepts and query de-
mands on collaborative understanding. In this Section, we
will describe our experimental setup and then discuss the
results. For further details of our experiments and results,
please refer to (Soh 2003).

Experimental Setup
Here is the setup of our experiments, with five agents sup-
porting a software user each.
 All agents are neighbors and can communicate among
themselves. All five agents and their threads are run on the
same CPU. Every agent has a unique set of nine concepts
in its ontology. Each concept has five supporting links.
Each agent has a translation table where each cell of the
table indicates the translation between a local concept and
a foreign concept in a neighbor and the translation’s credi-
bility value. If a translation is not available, we use the
symbol NIL.
 Each software user has a query configuration file. Thus,
instead of manually submitting these queries, the software
user simply reads them from the file and sends them to the
corresponding agent. For each query in a configuration file
there are (a) a cycle number, (b) the queried concept name,
and (c) the number of link desired. The cycle number indi-
cates when the query will be submitted to the agent. (A
cycle’s time varies as this measures a loop of activities of
an agent.) Each configuration file has about 300 cycles,
and two batches of exactly the same query scenarios. We
want to investigate whether the agents are able to improve
in their response time in the second batch after learning
how to form collaborations better through neighborhood
profiling. Query scenarios vary in the number of queries,
“density” of queries within a time period, the degree of

demand (number of links) in the queries, and so on. Some
scenarios impose the need to collaborate on the agents;
some require the agents to process many queries within a
short time, at the same time; some require the agents to
relay the queries.
 Given the above query scenarios, we further vary two
sets of parameters: the number of negotiation threads and
the credibility values in the translation tables. We vary the
number of negotiation threads between 0 and 5. When the
number is 0, the agents do not have collaborative capabili-
ties since they cannot contact other agents. When the
number is 5, an agent can simultaneously conduct 5 nego-
tiations. Thus, this number is relevant to operational con-
straints. There are also six sets of translation tables. In the
first set, all credibility values of all translations are above
zero. In this situation, every concept that one agent knows
has four translations. In the second set, one of the agents
has what term as a “narrow ontology” . That is, its transla-
tion table contains many NIL translations, above 50%. In
the third set, two agents have narrow ontologies. In the
fourth set, three agents do; in the fifth set, four agents do;
finally, all agents do. With these sets, we want to see how
successful the agents are in satisfying high-demand que-
ries. This is relevant to ontological constraints.
 Given the six different numbers of negotiation threads
and six sets of translation tables, we carried out a total of
36 runs using the same set of query scenarios.
 The experiments ran on a Linux platform on a 256 MB
RAM, 1.3 GHz computer.

Parameters Collected
Our experiments concentrated on two sets of parameters:
(1) Neighborhood Profile Parameters: For each neighbor,
an agent collects parameters documenting the outcomes of
their past interactions. These parameters are also used in
the computation of a neighbor’s utility measure, as de-
scribed in our Resource Description section.
(2) Query Result Parameters: For each query, an agent
collects parameters documenting the characteristics of the
query and the query outcome. Table 2 documents the defi-
nitions of these parameters.

Parameters Definitions
_numLinksDesired The # of links desired by the query
_numLinksRetrieved The # of links retrieved at the end of the

retrieval process and presented to the
user, smaller than _numLinksDesired

_successQuality numLinksRetrieved/numLinksDesired
_duration The actual elapsed time between the re-

ceipt of a query and the presentation of
the query results to the user

Table 2 Query result parameters.

Results
For a detailed discussion on the results, please refer to (Soh
2003). Here we briefly report on some observations.
(1) The average _successQuality of a user’s queries in-
creases as expected when the number of threads increases.

This is because for high-demand queries that call for col-
laborations, the agent has more resources to use.
(2) The average _successQuality of a user’s queries drops
significantly whenever the corresponding agent has a nar-
row ontology. However, the drops are more significant
when the number of threads is smaller. This indicates that
link retrieval, in our application, benefits from the collabo-
rative distributed ontology design. Also, with a higher
number of negotiation threads, queries are satisfied more
successfully (high average values), and also more consis-
tently (low standard deviation values).
(4) The number of narrow ontologies does not impact the
success quality. From the operational point of view, this
was not expected. When the number of narrow ontologies
within the multiagent system increases, we expected that
more agents would relay queries to their neighbor, and that
would cause the negotiation threads to be used more fre-
quently, which would in turn cause the system to not be
able to handle subsequent queries and yield a lower suc-
cess quality. We are currently investigating the reasons
behind this observation.
(5) When the number of threads increases, it takes longer
for a query to be responded to. This observation was not
anticipated. However, upon further analysis, we realize the
following. When an agent has more threads, not only it
can approach more neighbors for help, but it also receives
more requests for help from other agents. As a result, the
agent manages more tasks and slows down its processes
for retrieving and supplying results to the software users.
This indicates an oversight in our design with regards to
the efficiency of our implementation.
(6) The multiagent system where the agents do not have
narrow ontologies have the highest average _duration
value. This is because these agents are more resourceful
and able to satisfy queries better in terms of content; and
that also costs the agents more communication and proc-
essing.
(7) An agent is able to negotiate more successfully when
the number of threads increases. This is expected since
with more threads available, an agent is able to entertain
more requests. This would help guide the design of dis-
tributed ontology learning in our work.

Conclusions
In this paper, we have described our work-in-progress with
collaborative understanding of distributed ontologies in a
multiagent framework, focusing on the operational compo-
nents. In general, we see that the number of negotiation
threads available to each agent in the system has a key role
in determining the _successQuality of a query task, the
average _successRate of a negotiation, and the degree of
collaboration among agents. We also see that the number
of “narrow” ontologies influences the agents’ behaviors
negligibly. Our current work includes (1) devising a result
merging scheme based on the response time and utility of
the agents, (2) completing the interpretation module to add
complexity into the negotiation protocols, and (3) investi-

gating the usefulness of the utility measure and its impact
on the accuracy of translation.
 In our design, each agent is able to learn. Currently, it
learns the distributed ontologies and stores this information
in its translation table. It also learns about the helpfulness
and usefulness of the neighbors and captures this informa-
tion in its neighborhood profile. To have a more robust
system for resource description and selection, and result
merging, we are developing our agents to also:
(1) Learn to recommend another agent. For example, if an
agent realizes that a neighbor N1 has constantly provided
the best links for a query that it receives from user U2, then
it should inform U2 to directly query N1.
(2) Learn to recognize when to handle a query itself and
when to relay the query. For example, if an agent thinks
handling a query itself (and performing the subsequent
interactions) will add to its knowledge (translation table
and ontology), then it should do so.
(3) Learn to allocate query demand effectively. For exam-
ple, some neighbors may be too busy to entertain query
requests; some may be able to satisfy queries only oppor-
tunistically (by combining a request with another query
already being processed); some may not have the process-
ing threads.
(4) Learn to match-make. For example, if agent A always
relays queries about a topic T1 to agent B, and agent B
ends up getting the links from agent C, then agent B should
recognize that A and C should communicate directly.
(5) Learn to give up on a query. For example, if agent A
realizes that its neighbors are taking too much time to sat-
isfy a query, it should learn to terminate requests to
neighbors that are uncharacteristically slow.
 The common thread of our learning strategies is to facili-
tate a dynamic, adaptive multiagent system for efficient
and effective IR. In our future work, we plan to define
efficiency and effectiveness in terms of recall and precision
as well as response time and computation. That efficiency
and effectiveness will in turn drive our agents to learn to
improve their performance.

Acknowledgments
The author would like to thank JingFei Xu for her pro-
gramming and running the experiments for this project.

References

Callan, J. 2000. Distributed Information Retrieval, in W.
B. Croft (ed.) Advances in Information Retrieval, Chapter
5, 127-150, Kluwer Academic Publishers.

Callan, J. and Connell, M. 2001. Query-Based Sampling
of Text Databases, ACM Trans. Info. Systems, 97-130.

Callan, J. P., Lu, Z. and Croft, W. B. 1995b. Searching
Distributed Collections with Inference Networks, Proc.
18th Int. ACM SIGIR Con. on Research and Development
in Information Retrieval, Seattle, 21-28.

Chakravarthy, A. and Haase, K. 1995. NetSerf: Using
Semantic Knowledge to Find Internet Information Ar-
chives, Proc. 18th Int. ACM SIGIR Conf. on Research &
Development in Info. Retrieval, Seattle, 4-11.
French, J., Powell, A., Viles, C., Emmitt, T., and Prey, K.
1998. Evaluating Database Selection Techniques: A Test-
bed and Experiment, Proc. 21st Int. ACM SIGIR Conf. on
Research & Development in Info. Retrieval.

Gravano, L. and García-Molina, H. 1995. Generalizing
GIOSS to Vector-Space Databases and Broker Hierarchies,
Proc 21st VLDB, 78-89.

Shafer, G. 1976. A Mathematical Theory of Evidence,
Princeton, NJ: Princeton University Press.
Si, L. and Callan, J. 2003. Relevant Document Distribu-
tion Estimation Method for Resource Selection, Proc. 25th
Annual Int. ACM SIGIR Conf. on Research & Development
in Info. Retrieval.
Si, L., Jin, R., Callan, J., and Ogilvie, P. 2002. A Lan-
guage Model Framework for Resource Selection and Re-
sults Merging, Proc. 11th CIKM.

Soh, L.-K. 2002a. Multiagent, Distributed Ontology
Learning, Proc. AAMAS 2002 OAS Workshop, Bologna,
Italy.

Soh, L.-K. 2002b. A Mutliagent Framework for Collabo-
rative Conceptual Learning Using a Dempster-Shafer Be-
lief System, Working Notes of AAAI Spring Symp. on Col-
laborative Learning Agents, Stanford, CA, Mar 25-27, 9-
16.

Soh, L.-K. and Tsatsoulis, C. 2002a. Satisficing Coalition
Formation among Agents, Proc. AAMAAS’02, Bologna,
Italy.

Soh, L.-K. and Tsatsoulis, C. 2002b. Reflective Negotiat-
ing Agents for Real-Time Multisensor Target Tracking, in
Proc. IJCAI’01, Seattle, WA, Aug 6-11, 1121-1127.

Soh, L.-K. 2003. Collaborative Understanding of Distrib-
uted Ontologies in a Multiagent Framework: Design and
Experiments, in Proc. AAMAS 2003 OAS Workshop, Mel-
bourne, Australia, 47-54.

Voorhees, E., Gupta, N. and Johnson-Laird, B. 1995.
Learning Collection Fusion Strategies, Proc. 18th Int. ACM
SIGIR Conf. on Research & Development in Info. Re-
trieval, Seattle, 172-179.

Williams, A. B. and Tsatsoulis, C. 1999. Diverse Web
Ontologies: What Intelligent Agents Must Teach to Each
Other, Working Notes of the AAAI Spring Symposium Se-
ries on Intelligent Agents in Cyberspace, Stanford, CA,
Mar 22-24, 115-120.

Wu, S. and Crestani, F. 2002. Multi-Objective Resource
Selection in Distributed Information Retrieval, Proc.
IPMU’02, Annecy, France, July 2002.

Xu, J. and Croft, W. B. 1999. Cluster-Based Language
Models for Distributed Retrieval, Proc. 22nd Int. ACM
SIGIR Conf. on Research & Development in Info. Re-
trieval.

