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Abstract     

In this paper, we propose an agent-centric approach to re-
source description and selection in a multiagent information 
retrieval (IR).  In the multiagent system, each agent learns 
from its experience through its interactions with other 
agents their capabilities and qualifications.  Based on a dis-
tributed ontology learning framework, our methodology al-
lows an agent to profile other agents in a dynamic transla-
tion table and a neighborhood profile, which together help 
determine resource description and selection process.  Fur-
ther, we report on the experiments and results of the first 
phase of our research, which focuses on the operational is-
sues (e.g., real-time constraints, frequency of queries, num-
ber of threads, narrowness in ontology) on how the agents 
handle queries collaboratively.   

 

Introduction 
The multi-database model is the alternative to the single 
database model.  As pointed out in (Callan 2000), the sin-
gle database model can be successful if most of the impor-
tant or valuable information on a network can be copied 
easily.  However, due to information proprietary, costs 
(e.g., access, storage, management, duplication, and trans-
mission), and distributedness of data, the multi-database 
information retrieval (IR) model is often times more suit-
able.  Callan (2002) outlined three key stages of the multi-
database model: (1) resource description in which the con-
tents of each text database is described, (2) resource selec-
tion in which given an information need and a set of re-
source description, a decision is made about which data-
base(s) to search, and (3) result merging in which the 
ranked lists returned by each database are integrated into a 
single, coherent ranked list.  Resource description is the 
discovery and representation of what each database con-
tains, and is usually performed.  The resource selection 
problem is the ranking of databases by how likely they are 
to satisfy the information need.   

In this paper, we describe an innovative methodology 
based on a distributed ontology learning framework in a 
multiagent environment (Soh 2002a).  In the multiagent 
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system, each agent, safeguarding its database and process-
ing queries, learns from its experience through its interac-
tions with other agents.  As a result of this learning, each 
agent learns the resource description of the other agents 
that it has come into contact, and learns the selection crite-
ria for choosing which agents to approach to help respond 
to a query.  The unique characteristic of our methodology 
is the agent treatment of resource description and selection: 
• Each agent maintains a profile of other agents and thus 

keeps a unique set of resource descriptions.  For exam-
ple, agent A may think agent B is good at topic T1, but 
agent C may think agent B is poor at the same topic.  
This agent-centric viewpoint allows the system to be 
more adaptive to individual user’s information need and 
query behavior. 

• Each agent is autonomous and makes decision whether 
to handle a query relayed by another agent based on its 
current status and availability.  Thus, it is possible for 
the agent to turn down a request even though it has the 
data to satisfy the query.  Thus, the decision making 
process is decentralized and localized at the agents, al-
lowing the system to be more responsive, modular, and 
flexible. 

 In the following, we will first discuss some related work.  
Then, we briefly outline the overall framework of our re-
search project.  Then, we focus on the experience-based 
resource description and selection in a multiagent envi-
ronment.  Next, we describe the current phase of our pro-
ject which is to understand how multiagent information 
retrieval is impacted by operational issues such as queries, 
the number of communication (negotiation) threads, the 
variability within the translation tables and so on.  Finally, 
we conclude. 
 

Related Work 
Traditionally, resource descriptions can be created manu-
ally, or automatically through a unigram language model, 
or distributedly through a technique called query-based 
sampling.  Manual creations (Voorhees et al. 1995, Chak-
ravarthy and Haase 1995) might be difficult or expensive 
to apply in an environment with many databases (Callan 
2002).  The unigram language models are based on the 
frequencies of occurrences of keywords that occur in the 
databases (e.g., Callan, Lu and Croft 1995).  The query-
based sampling approach (Callan and Connell 2001) is a 



distributed, agent-like alternative where each resource pro-
vider cooperates by publishing resource descriptions for its 
document databases.  The sampling requires minimal co-
operation and makes no assumptions about how each pro-
vider operates internally.  Our approach is similar to query-
based sampling.  However, our agents perform the sam-
pling as a side effect of real-time query handling.  Also, 
our resource description is kept dynamically.  With our 
agent-centric viewpoint, our technique is adaptive to each 
agent’s experience and they may have different profiles of 
how well a particular agent deals with a particular topic of 
queries.  Finally, our sampling is done whenever there is an 
interaction between two agents—thus the resource descrip-
tion changes constantly. 
 The major part of the resource selection problem is rank-
ing resources by how likely they are to satisfy the informa-
tion need (Callan 2000).  Conventionally, the desired data-
base ranking is one in which databases are ordered by the 
number of relevant documents they contain for a query 
(Gravano and García-Molina 1995; French et al. 1998).  
Callan and Connell (2001) described CORI, a Bayesian 
inference network and an adaptation of the Okapi term 
frequency normalization formula, that ranks resources.  In 
(Si et al. 2002; Xu and Croft 1999), the Kullback-Leibler 
(KL) divergence between the word frequency distribution 
of the query and the database was used to measure how 
well the content of the database matches with the query.  Si 
and Callan (2003) proposed a ReDDE (Relevant Document 
Distribution Estimation) resource selection algorithm that 
explicitly tries to estimate the distribution of relevant 
documents across the set of available databases, consider-
ing both content similarity and database size when making 
its estimates.  In particular, Wu and Crestani (2002) pro-
posed a model that considers four aspects simultaneously 
when choosing a resource: document’s relevance to the 
given query, time, monetary cost, and similarity between 
resources.  Our resource selection algorithm has several 
unique features: (a) it ranks the agents that safeguard the 
databases (or resources) instead of the database, based on 
the agents’  ability to satisfy a query, (b) it performs a task 
allocation and approaches the agents based on the ranking, 
and (c) it is based on an agent’s dynamic viewpoint of oth-
ers that the agent maintains through experience. 
 

Framework 
In our original framework (Soh 2002a) for distributed on-
tology learning embedded in a multiagent environment, the 
objective is to improve communication and understanding 
among the agents while preserving agent autonomy.  Each 
agent maintains a dictionary for its own experience and a 
translation table.  The dictionary allows the agent to com-
pare and discover relationships between a pair of words or 
concepts, while the translation table enables the agent to 
learn and record (a selected portion of) the vocabulary of 
its neighbors that is useful for the collaboration among the 
agents.  The motivation for this distributed ontology learn-
ing is that each agent has its own experience and thus 

learns its own ontology depending on what it has been ex-
posed to.  As a result, different agents may use different 
words to represent the same experience.  When two agents 
communicate, agent A may not understand agent B and that 
hinders collaboration.  However, equipped with the dis-
tributed ontology learning capabilities, agents are able to 
evolve independently their own ontological knowledge 
while maintaining translation tables through learning to 
help sustain the collaborative effort.  Please refer to (Soh 
2002a, 2002b) for details on the design. 
 Our discussion here is related to (Williams and Tsat-
soulis 2001) where ontology learning was conducted only 
between two agents via exchange of concepts (ontologies) 
where the agents were neither able to adapt to changes in 
concept definitions nor able to handle multiple assertions 
from different neighbors.  Moreover, our framework ad-
dresses translation and interpretation of concepts, query 
processing and composition for collaboration among 
agents, and action planning based on traffic and agent ac-
tivities, which indirectly control the learning rates of the 
agents. 
 The focus of the current phase of our research is on 
developing and analyzing the operational components of 
our framework, applied to a document retrieval problem.  
Each agent interacts with a user who submits queries based 
on keywords.  These keywords are known as concepts in 
the agents.  The objective of our design is to satisfy as 
many queries as possible and as well as possible.  An agent 
may turn to its neighbors for help.  Thus, this collaboration 
motivates the agents to perform distributed ontology 
learning to improve their performances.   
 

Methodology and Design 
In our design, when an agent receives a query, it checks the 
query against its ontology knowledge base.  A query comes 
with a concept name and the number of documents or links 
desired.  If the agent cannot satisfy the query, it will con-
tact its neighbors.  If the agent recognizes the concept 
name but does not have enough documents or links to ful-
fill the requirement, then it will approach its neighbors to 
obtain more links.  If the agent does not recognize the con-
cept name, then it passes the query to its neighbors. Every 
agent is equipped with N number of negotiation threads.  
For each contact, an agent has to activate one of these 
threads.  So, if an agent does not have available inactive 
negotiation threads, it will not be able to collaborate with 
other agents.  Hence, even if the agents do understand each 
other’s ontologies, it is possible that due to the query fre-
quency and the resource constraints, the agents may not be 
able to utilize that understanding to help solve a query 
problem.  When an agent obtains help from its neighbors, 
we say that collaboration has taken place. 
 
Agent Design 
As shown in Figure 1, there are nine modules.  We will 
describe three here and further discuss the other six in he 



next subsections.  The Interface module interacts with the 
user to obtain queries and to provide queried results.  Cur-
rently, we have (simulated) software users that automati-
cally generate timed queries for our experiments.  Each 
software user submits its queries through a socket connec-
tion with the interface.   
 The Query Processor module receives a query from the 
Interface module and processes it.  It first checks the 
agent’s ontology base.  If the query matches one of the 
concepts in the ontology, the module retrieves the number 
of links available.  If the query does not find a match in the 
ontology, the module examines its translation table.  If 
there are available translations, that means collaboration is 
possible. 
 The Activity Monitor module keeps track of the activities 
in a job vector—whether the agent is processing a query on 
its own, or negotiating with other neighbors for more links, 
or entertaining a request by a neighbor.   
 The Thread Manager module manages the threads of the 
agent.  It is a low-level module that activates the threads, 
updates and monitors the thread activity. 
 

Figure 1  The current design of the operational components of an 
agent in our framework. 

 
 There are three dynamic knowledge or databases: ontol-
ogy, translation table, and profiles.  The profiles keep track 
of the relationships between the agent and its neighbors, 
updating the neighborhood parameters.  The ontology is a 
dictionary listing the concepts that the agent knows.  Each 
concept has a list of supporting documents or links.  The 
translation table consists of translations between each con-
cept that the agent knows and its neighbors.  Each transla-
tion is accompanied with a credibility value.  In our 
framework, we base the credibility value between two con-
cepts on the similarity between the two corresponding sets 
of documents defined by the two concepts.  Table 1 shows 
an example of a translation table for an agent A1.  In the 
example, A1 has four neighbors.  It knows of concepts such 
as “basketball”  and “car” .  For “basketball” , there is a cor-
responding entry “NBA” pointing to neighbor N1, with a 
credibility of 2.1, N2’s “Bball”  with a credibility of 1.0, 
and N4’ s “Basketball”  with a credibility of 3.4.  However, 

it does not have a translation for “basketball”  between it-
self and N3. 
 

Concepts N1 N2 N3 N4 
basketball NBA 

2.1 
Bball 
1.0 

NIL Basketball 
3.4 

car NIL Auto 
2.1 

Car 1.0 Move 1.0 

…     
Table 1  A translation table example. 

 
Resource Description 
As previously discussed, we describe our resources by the 
agents that safeguard the resources, and not just the re-
sources themselves.  In our methodology, an agent is in 
charge of a database (resource) and is thus responsible for 
interfacing with other agents and users when its database is 
to be queried.  Thus, the utility of an agent depends on two 
components: operational and ontological.  For the onto-
logical component, we look at the translation table as the 
credibility value captures the quality of the links returned 
by the neighboring agents.  For the operational component, 
we look at the relationship between the agent and each of 
its neighbors, through the Neighborhood Profiler. Each 
neighbor is profiled along four dimensions: _numHelp (the 
number of times the agent provides help to the neighbor), 
_numSuccess (the number of times the agent successfully 
solicits help from the neighbor), _numRequestFrom (the 
number of times the agent receives a request from the 
neighbor), and _numRequestTo (the number of times the 
agent initiates a request to the neighbor) (Soh and Tsat-
soulis 2002a).  Based on these numbers, we derive helpful-
ness, usefulness, importance, and reliance of each 
neighbor, from the viewpoint of the agent.  We compute a 
weighted sum of all the values from both components to 
derive a utility measure for each agent and allocate the 
query demand proportionally.  For example, if the user 
specifies that he or she desires K links for his or her query, 
then neighbor i with the highest utility will be requested for 
the highest number of links. 
 The Negotiation Manager module manages the negotia-
tion tasks.  In our current design, the interaction between 
two agents does not involve negotiations as the two simply 
exchange information.  However, our long-term plan views 
negotiation as an important part of ontology interpretation 
and query allocation in a distributed environment.  We aim 
to have each agent plan its own retrieval schedule to better 
utilize its computation.  For example, suppose an agent is 
searching its database for a query Q1. Now, the agent re-
ceives requests from two neighbors, one for Q2, and the 
other for Q3.  The agent may opt to perform Q2 as it shares 
many keywords with Q1, which the agent is currently 
working on, and may opt to reject the request for Q3.  The 
rejection is provided with the above reason and is commu-
nicated back to the agent that requested help in the first 
place.  As a result, the requesting agent will be able to 
maintain a resource description of the rejecting agent with 
a better understanding.  We are currently extending our 



previous work in reflective negotiations (Soh and Tsat-
soulis 2002b) to distributed ontology in this framework. 
Resource Selection 
For our resource selection, it is based on the utility of a 
neighbor and the current status of the agent.  Three mod-
ules are involved at this step: Action Planner, Collabora-
tion Manager, and Query Composer.   
 The Action Planner module serves as the main reasoning 
component of the agent: (a) If the number of internal links 
satisfies the query, then the action planner simply provides 
those links through the Interface module to the user; (b) 
otherwise, if the agent recognizes the concept (i.e., it does 
not have any supporting documents or links for the con-
cept) requested in the query and finds available transla-
tions, it initiates its collaborative activities; (c) if the agent 
does not recognize the concept, it will relay the query to 
another agent; and (d) finally, if there are no available 
translations, the link retrieval process stops and the agent 
reports back to the user.  Whether collaboration is feasible 
depends on the current status of the agent, as recorded by 
the Activity Monitor and Thread Manager modules.  If the 
agent does not have enough resources for collaboration, the 
link retrieval process terminates. 
 The Collaboration Manager module takes over when the 
action planner calls for collaboration.  The objective of this 
module is to form an appropriate group of neighboring 
agents to approach and distribute the query demands (link 
allocations) accordingly among them.  To design such a 
collaboration plan, this module relies on the Neighborhood 
Profiler module, and the translation table.  Each neighbor 
is given a utility measure based on the translation credibil-
ity value and the relationship between the agent and the 
neighbor.  A neighbor has a high utility if the translation 
credibility of the query in question is high, if the past rela-
tionship is strong, and if there is not any current interac-
tion.  The collaboration manager ranks these neighbors 
based on the utility measure and then assigns the query 
demands accordingly, with the help of the Query Com-
poser. 
 The Query Composer module composes a specific query 
for each neighbor to be approached based on the allocation 
of query demands.  As previously mentioned, each query is 
associated with a link requirement that specifies the num-
ber of links desired.  A query will also include the name of 
the originator and a time stamp when it is first generated.  
If the query is based on a translation, then the translated 
concept name is used.  If the agent does not recognize a 
concept and needs to relay a query it has received to a 
neighbor, it simply uses the queried concept directly. 

Implementation 
We have implemented all the nine modules (some albeit 
partially) of our agent as depicted in Figure 1 in C++.  
Each agent receives its user queries from a software user 
through a socket connection, and communicates with other 
agents through a central relay server module through 
socket connections as well.  Each agent generates and 

maintains its neighborhood profile during runtime dynami-
cally.   
 For our experiments, each agent is equipped with a 
translation table right from the start.  Note that in our 
original distributed ontology framework (Soh 2002a), the 
entries in a translation table are learned over time based on 
the experience of each agent.   In this paper, we focus on 
the operational design of collaborative understanding of 
distributed ontologies and assume that each agent has a 
translation table to begin with.   
 In addition, each agent is equipped with an ontology 
database.  This database lists all the concept terms that an 
agent knows.  For each concept, there is a list of links (or 
documents) that are examples that illustrate the concept.  
Indeed, when interpreting two concepts, we simply com-
pare the similarities of the two lists of links supporting the 
two concepts.  Currently, we are building this interpreta-
tion module.   

Discussion of Results 
We have performed a set of experiments, aimed at studying 
(a) the learning of useful neighbors for sharing queries, (b) 
the efficiency of query handling in different real-time sce-
narios and with different resource constraints, and (c) the 
effects of different ontological concepts and query de-
mands on collaborative understanding.  In this Section, we 
will describe our experimental setup and then discuss the 
results.  For further details of our experiments and results, 
please refer to (Soh 2003). 
 
Experimental Setup 
Here is the setup of our experiments, with five agents sup-
porting a software user each.    
 All agents are neighbors and can communicate among 
themselves.  All five agents and their threads are run on the 
same CPU.  Every agent has a unique set of nine concepts 
in its ontology.  Each concept has five supporting links.  
Each agent has a translation table where each cell of the 
table indicates the translation between a local concept and 
a foreign concept in a neighbor and the translation’s credi-
bility value.  If a translation is not available, we use the 
symbol NIL.   
 Each software user has a query configuration file. Thus, 
instead of manually submitting these queries, the software 
user simply reads them from the file and sends them to the 
corresponding agent.  For each query in a configuration file 
there are (a) a cycle number, (b) the queried concept name, 
and (c) the number of link desired.  The cycle number indi-
cates when the query will be submitted to the agent. (A 
cycle’s time varies as this measures a loop of activities of 
an agent.) Each configuration file has about 300 cycles, 
and two batches of exactly the same query scenarios.  We 
want to investigate whether the agents are able to improve 
in their response time in the second batch after learning 
how to form collaborations better through neighborhood 
profiling.  Query scenarios vary in the number of queries, 
“density”  of queries within a time period, the degree of 



demand (number of links) in the queries, and so on.  Some 
scenarios impose the need to collaborate on the agents; 
some require the agents to process many queries within a 
short time, at the same time; some require the agents to 
relay the queries. 
 Given the above query scenarios, we further vary two 
sets of parameters: the number of negotiation threads and 
the credibility values in the translation tables.  We vary the 
number of negotiation threads between 0 and 5.  When the 
number is 0, the agents do not have collaborative capabili-
ties since they cannot contact other agents.  When the 
number is 5, an agent can simultaneously conduct 5 nego-
tiations.  Thus, this number is relevant to operational con-
straints.  There are also six sets of translation tables.  In the 
first set, all credibility values of all translations are above 
zero.  In this situation, every concept that one agent knows 
has four translations.  In the second set, one of the agents 
has what term as a “narrow ontology” .  That is, its transla-
tion table contains many NIL translations, above 50%. In 
the third set, two agents have narrow ontologies.  In the 
fourth set, three agents do; in the fifth set, four agents do; 
finally, all agents do.  With these sets, we want to see how 
successful the agents are in satisfying high-demand que-
ries.  This is relevant to ontological constraints. 
 Given the six different numbers of negotiation threads 
and six sets of translation tables, we carried out a total of 
36 runs using the same set of query scenarios. 
 The experiments ran on a Linux platform on a 256 MB 
RAM, 1.3 GHz computer. 
 
Parameters Collected 
Our experiments concentrated on two sets of parameters:  
(1) Neighborhood Profile Parameters:  For each neighbor, 
an agent collects parameters documenting the outcomes of 
their past interactions.  These parameters are also used in 
the computation of a neighbor’s utility measure, as de-
scribed in our Resource Description section.  
(2) Query Result Parameters:  For each query, an agent 
collects parameters documenting the characteristics of the 
query and the query outcome.  Table 2 documents the defi-
nitions of these parameters.   
 

Parameters Definitions 
_numLinksDesired The # of links desired by the query 
_numLinksRetrieved The # of links retrieved at the end of the 

retrieval process and presented to the 
user, smaller than _numLinksDesired 

_successQuality numLinksRetrieved/numLinksDesired 
_duration The actual elapsed time between the re-

ceipt of a query and the presentation of 
the query results to the user 

Table 2  Query result parameters. 

Results 
For a detailed discussion on the results, please refer to (Soh 
2003).  Here we briefly report on some observations. 
(1) The average _successQuality of a user’s queries in-
creases as expected when the number of threads increases.  

This is because for high-demand queries that call for col-
laborations, the agent has more resources to use. 
(2) The average _successQuality of a user’s queries drops 
significantly whenever the corresponding agent has a nar-
row ontology.  However, the drops are more significant 
when the number of threads is smaller.  This indicates that 
link retrieval, in our application, benefits from the collabo-
rative distributed ontology design.  Also, with a higher 
number of negotiation threads, queries are satisfied more 
successfully (high average values), and also more consis-
tently (low standard deviation values).   
(4) The number of narrow ontologies does not impact the 
success quality.  From the operational point of view, this 
was not expected.  When the number of narrow ontologies 
within the multiagent system increases, we expected that 
more agents would relay queries to their neighbor, and that 
would cause the negotiation threads to be used more fre-
quently, which would in turn cause the system to not be 
able to handle subsequent queries and yield a lower suc-
cess quality.  We are currently investigating the reasons 
behind this observation.  
(5) When the number of threads increases, it takes longer 
for a query to be responded to.  This observation was not 
anticipated.  However, upon further analysis, we realize the 
following.  When an agent has more threads, not only it 
can approach more neighbors for help, but it also receives 
more requests for help from other agents.  As a result, the 
agent manages more tasks and slows down its processes 
for retrieving and supplying results to the software users. 
This indicates an oversight in our design with regards to 
the efficiency of our implementation.   
(6) The multiagent system where the agents do not have 
narrow ontologies have the highest average _duration 
value.  This is because these agents are more resourceful 
and able to satisfy queries better in terms of content; and 
that also costs the agents more communication and proc-
essing. 
(7) An agent is able to negotiate more successfully when 
the number of threads increases.  This is expected since 
with more threads available, an agent is able to entertain 
more requests.  This would help guide the design of dis-
tributed ontology learning in our work. 

 

Conclusions 
In this paper, we have described our work-in-progress with 
collaborative understanding of distributed ontologies in a 
multiagent framework, focusing on the operational compo-
nents.  In general, we see that the number of negotiation 
threads available to each agent in the system has a key role 
in determining the _successQuality of a query task, the 
average _successRate of a negotiation, and the degree of 
collaboration among agents.  We also see that the number 
of “narrow”  ontologies influences the agents’  behaviors 
negligibly.  Our current work includes (1) devising a result 
merging scheme based on the response time and utility of 
the agents, (2) completing the interpretation module to add 
complexity into the negotiation protocols, and (3) investi-



gating the usefulness of the utility measure and its impact 
on the accuracy of translation.   
 In our design, each agent is able to learn.  Currently, it 
learns the distributed ontologies and stores this information 
in its translation table.  It also learns about the helpfulness 
and usefulness of the neighbors and captures this informa-
tion in its neighborhood profile.  To have a more robust 
system for resource description and selection, and result 
merging, we are developing our agents to also: 
(1) Learn to recommend another agent.  For example, if an 
agent realizes that a neighbor N1 has constantly provided 
the best links for a query that it receives from user U2, then 
it should inform U2 to directly query N1. 
(2) Learn to recognize when to handle a query itself and 
when to relay the query.  For example, if an agent thinks 
handling a query itself (and performing the subsequent 
interactions) will add to its knowledge (translation table 
and ontology), then it should do so.   
(3) Learn to allocate query demand effectively.  For exam-
ple, some neighbors may be too busy to entertain query 
requests; some may be able to satisfy queries only oppor-
tunistically (by combining a request with another query 
already being processed); some may not have the process-
ing threads.   
(4) Learn to match-make.  For example, if agent A always 
relays queries about a topic T1 to agent B, and agent B 
ends up getting the links from agent C, then agent B should 
recognize that A and C should communicate directly. 
(5) Learn to give up on a query.  For example, if agent A 
realizes that its neighbors are taking too much time to sat-
isfy a query, it should learn to terminate requests to 
neighbors that are uncharacteristically slow. 
 The common thread of our learning strategies is to facili-
tate a dynamic, adaptive multiagent system for efficient 
and effective IR.  In our future work, we plan to define 
efficiency and effectiveness in terms of recall and precision 
as well as response time and computation.  That efficiency 
and effectiveness will in turn drive our agents to learn to 
improve their performance. 
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