Dynamic Agent-Ordering and Nogood-Repairing in Distributed Constraint
Satisfaction Problems

Lingzhong Zhou, John Thornton and Abdul Sattar
School of Information Technology,
Griffith University, Queensland, Australia
{l.zhou, j.thornton, a.satta@griffith.edu.au

Abstract

The distributed constraint satisfaction problem (CSP) is a
general formalization used to represent problems in dis-
tributed multi-agent systems. To deal with realistic prob-
lems, multiple local variables may be required within each
autonomous agent. A number of heuristics have been devel-
oped for solving such multiple local variable problems. How-
ever, these approaches do not always guarantee agent inde-
pendence and have low efficiency search mechanisms.

In this paper, we are interested in increasing search efficiency
for distributed CSPs. To this end we present a new algo-
rithm using unsatisfied constraint densities to dynamically
determine agent ordering during the search. Variables hav-
ing a total order relationship only exist in the local agent.
The independence of agents is guaranteed and agents with-
out neighboring relationships can run concurrently and asyn-
chronously. As a result of using nogoods to guarantee com-
pleteness, we developed a new technique called nogood re-
pairing, which greatly reduces the number of nogoods stored
and communication costs during the search, leading to fur-
ther efficiency gains. In an empirical study, we show our new
approach outperforms an equivalent static ordering algorithm
and a current state-of-the-art technique in terms of execution
time, memory usage and communication cost.

Introduction

The constraint satisfaction paradigm is a well recognized
and challenging field of research in artificial intelligence
with many practical and important applications. A con-
straint satisfaction problem (CSP) is a problem with a finite
number of variables, each of which has a finite and discrete
set of possible values, and a set of constraints over the vari
ables. A solution of a CSP is an instantiation of all variable
for which all the constraints are satisfied.

When the variables and constraints of a CSP are dis-
tributed among a set of autonomous and communicating
agents, this can be formulated as a distributed constraint
satisfaction problem (distributed CSP), where agents au-
tonomously and collaboratively work together to get a so-
lution. A number of heuristics have been developed for
solving distributed CSPs, such as synchronous backtrack-
ing, asynchronous backtracking (ABT) (Yokebal. 1998),

Copyright © 2004, American Association for Atrtificial Intelli-
gence (www.aaai.org). All rights reserved.

asynchronous weak-commitment search (AWC) (Yokbo

al. 1998) and the distributed breakout algorithm (DB)
(Yokoo & Hirayama 1996). However, these algorithms can
only handle one variable per agent. In (Armstrong & Durfee
1997), dynamic prioritization is used to allow agents with
multiple local variables in distributed CSPs. Here, each
agent tries to find a local solution, consistent with the lo-
cal solutions of higher priority agents. If no local solutio
exists, backtracking or modification of the prioritizatioo-

curs. The approach uses a centralized controller, where one
agent controls the starting and ending of the algorithm, and
a nogood processor which records all nogood information.
However, these centralized mechanisms are often not appro-
priate for realistic distributed CSPs. In (Yokoo & Hirayama
1998), AWC search was extended to deal with multiple local
variables in distributed CSPs. Although nogood learning is
used (Hirayama & Yokoo 2000), their approach still requires
a large space to store nogoods during the search.

In this paper, we integrate two new techniquBsnamic
Agent Orderingand Nogood Repairingo form a new al-
gorithm (DAONR). Dynamic agent ordering uses constraint
density measures to locally computeegree of unsatisfac-
tionfor each agent. These values are used to dynamically set
the order in which agents are allowed to change their par-
ticular variable instantiations. In effect, the agentdens
are decided naturally by their unsatisfied constraint diexssi
during the search. By using a nogood repairing approach, all
nogood repairs are tried inside a local agent without send-
ing nogood messages to neighboring agents. As each local
computation is independent from other agents, the benefits
of parallelism are retained, resulting in an approach that i
suitable for agent oriented design and efficient in terms of
memory and communication cost.

In the rest of the paper, we formalize the definition of a
distributed CSP. Then, we describe the new algorithm and
investigate its performance in an empirical study. Finally
discuss the possibility of using the new algorithm to solve
other variants of distributed CSPs.

Distributed Constraint Satisfaction Problems
Formalization

In a distributed constraint satisfaction problem:

1. There exists an agent sét
A= {Al,AQ,...,An}, n e Z+;

a priority to each agent, where the priority order represent
a hierarchy of agent authority. When the priority order is
static, the order of agents is determined before startiag th
search process, and the efficiency of the algorithm is highly
dependent on the selection of variable values. If the gyiori
order is dynamic, this can be used to control decision mak-
ing for each agent and the algorithm is more able to flexibly
exploit to the current search conditions.

We propose a new algorithm which uses constraint den-
sity (related to both intra-agent and inter-agent constsai
to order agents in a distributed CSP. When a search becomes
stuck (i.e. an inconsistency is found), a nogood is genéyate
and the agent starts nogood repairing until a local solution
found. The algorithm calculates the unsatisfied constraint
densities and the degree of unsatisfaction for each agent,
then broadcasts to the neighboring agents. Since the agent
uses the local information and globally available informa-
tion for local computation, it can still run asynchronously
and concurrently.

2. Each agent has a variable $gtand domain seb,,

Xi = {Xﬂ,XZ'Q, ...,Xipi};
D; ={D;1,D;a, ...,l)ipi}7

3. There are two kinds of constraints over the variables
among agents:

(a) Intra-agent constraints, which are between varialfles o
same agent.

(b) Inter-agent constraints, which are between variabies o
different agents.

Agent A; knows all constraints related to its variables. A
variable may involve both intra-agent and inter-agent con-
straints.

4. A solutionsS, is an instantiation for all variables that sat-
isfies all intra-agent and inter-agent constraints.

Since agents are distributed in different locations or fn di Agent Ordering

ferent processes, each agent only knows the partial problem To develop a dynamic agent ordering algorithm requires the
associated with those constraints in which it has variables specification of those features of the search space thaldshou
A global solution then consists of a complete set of the determine the ordering. In this study we develop a measure
overlapping partial solutions for each agent. Communica- Of thedegree of unsatisfactiofor each agent, such that the
tion among agents is necessary and important in distributed agent with the highest degree of unsatisfaction has the high
CSPs, since each agent only knows its variables, variable €st priority. In a standard CSP, the degree of unsatistactio
domains and related intra-agent and inter-agent contgrain ~ can simply be measured as the number of constraints unsat-
Hence, to evaluate a search algorithm, we not only need to isfied divided by the total number of constraints. However,
measure the search speed but also to consider the communiin a distributed CSP, we have the additional consideration

Vie [Ln}v pi € Z+;

cation cost.

The Dynamic Agent Ordering Algorithm
Motivation

In a CSP, the order in which values and variables are pro-
cessed significantly affects the running time of an algarith
Generally, we instantiate variables that maximally caaistr
the rest of the search space. For instance, selecting the var
able with the least number of values in its domain tends to
minimize the size of the search tree. When ordering values,
we try to instantiate a value that maximizes the number of
options available for future instantiations.

The efficiency of algorithms for distributed CSPs is simi-
larly affected by the order of value and variable selectlan.
the case where agents control multiple variables, the order
in which agents are allowed to instantiate shared variables
also becomes important. Agent communication and exter-
nal computation (instantiating variables to be consisiettit
inter-agent constraints) is more costly than local computa
tion (instantiating variables to be consistent with irdigent
constraints), and wrong or redundant computation can oc-
cur as aresult of inappropriate agent ordering. It is thoeeef
worth investigating agent orderings in order to developemor
efficient algorithms.

The task of ordering agents is more complex than ordering
variables, as more factors are involved, i.e. not only con-
straints and domains but also the structure of neighboring
agents. Deciding on agent ordering is analogous to granting

of the relative importance of intra- versus inter-agent-con
straints. As inter-agent constraints affect variables oren
than one agent, and these variables in turn can affect the
intra-agent problems, we decided to develop separate mea-
sures for the intra- and inter-agent problems, such that the
inter-agent constraints are given greater importance.oflo d
this we looked at two problem features: (i) the degree of
interconnectedness between constraints (or constramt de
sity) and (ii) the degree of interconnectedness between-int
agent constraints and the intra-agent local problem.

To measure constraint density, we firstly divided the prob-
lem for a particular agent into an intra-agent constraiabpr
lem and an inter-agent constraint problem:

Intra-Agent Constraint Density: For the intra-agent
problem, the maximum constraint density is simply defined
as the ratio of the number of constraints over the number of
variables, i.e. for agerit

. . lintraC;|

intraDensity; = lintraVi|

whereintraC; is the set of intra-agent constraints for

agenti andintraV; is the set of variables constrained by
intraC;. Assuming that each constraint has the stigta-
nes$, then we would expect a larger density to indicate a
more constrained and hence more difficult problem.

li.e. the ratio of the number unsatisfying assignments over the
total number of possible assignments.

Inter-Agent Constraint Density: The constraint density
measure for the inter-agent problem contains two additiona
features which increase the relative importance of the-inte
agent measure in comparison to the intra-agent measure.
Firstly, for agenti, instead of dividing by the total num-
ber of variables constrained bis inter-agent constraints
interC;, we divide only by the number of variables that are
constrained bynterC; andcontrolled byi, i.e. |interV;]|.

In addition, when counting ageiis jth inter-agent con-
straint, c¢; ;, we also count the number @itra-agent con-
straintsm; ; that share a variable with ;. This means the
more interconnected ; is with the intra-agent problem, the
larger the value ofn; ; and the greater the effect ef ; on
the overall inter-agent constraint density, given by:

jinterCy| + 32171

|interV;|

inter Density;

The sum staticDensity; intraDensity; +
inter Density; now provides a general measure of the
overall density of the problem for a particular agent. The

greater this measure, the more constrained or difficult we
would consider the problem to be.

Dynamic Constraint Density: The dynamic constraint
density for a particular agent is based on the static density
measure, except that only unsatisfied constraints areegunt
in the numerator. In this way the density of a current level

of constraint violation during a search can be measured. Us-3,

ing the functiongntraUnsat(i, j), which returns one if the
jth intra-agent constraint for agehits unsatisfied, zero oth-
erwise, andnterUnsat(i, j), which returns one if thgth
inter-agent constraint for agehis unsatisfied, zero other-
wise, we define the following measures:

intraUnsat; = Z‘ji;limci‘ intraUnsat(i, j)
’ lintraVj|
and
interUnsat; = Z‘jigeral (interUnsat(i, j) x (m;; + 1))
int i =

linterV;|

These measures then range from a value of zero, if all
constraints are satisfied, tatraUnsat; = intraDensity;
andinterUnsat; = interDensity; if all constraints are
unsatisfied. Combining these measures, we define:

dynamicDensity; = intraUnsat; 4+ interUnsat;

and

dynamicDensity;

degreeUnsat; = staticDensity;

degreeUnsat; now ranges from a value of zero, if all con-
straints for agent are satisfied, to one, if all constraints are
unsatisfied, while embodying the increased importance of
inter-agent constraints in the overall evaluation. It is th
measure we use to dynamically decide agent priority in our
proposed algorithm (for further details see (Zhou, Thamnto
& Sattar 2003)).

Nogood Repairing

Constraint solvers often fall in a situation where thereds n
consistent assignment of variables at hand. This situation
can arise because the values assigned to one or more vari-
ables conflict with each other, i.e., violates one or more con
straints. A set of conflicting values is referred to amgood
Obviously, a nogood cannot be a subset of a solution.

While nogoods are not part of the solution(s), they pro-
vide useful information to the constraint solvers. They can
be recorded, and referred to whenever necessary to avoid
the same assignment of variables. This can result in sig-
nificant computational advantages, especially in Distatdu
Constraint Satisfaction Problems. Whenever an agent de-
tects a nogood, it is sent to all relevant (neighboring) &gen
so they can avoid repeating the same inconsistent assign-
ment. However, this may affect storage for each agent and
the communication load among agents. We propose that it is
not necessary to send all nogoods to other agents as it may
be possible to fix the nogood within the local agent. This can
therefore reduce the communication load and save memory
usage for each agent.

In this study, we classify nogoods into three categories:

1. Intra-nogood This nogood is purely constructed by local
variable instantiations;

2. Mix-nogood The category of nogood is constructed by

both local and neighboring agents’ variable instantiatjon

Inter-nogood This nogood is purely constructed by the
variable instantiations between neighboring agents.

We use different methods to deal with these nogoods. If a
nogood is an intra-nogood, the local agent does not need to
send any outgoing messages. It will reassign the related lo-
cal variables to repair the nogood. If a nogood is a mixed
nogood, the agent tries to reinstantiate related local vari
ables. If the nogood cannot be repaired, a nogood message
is sent to the related neighboring agents. If a nogood is an
inter-nogood, it has to be sent to related neighboring agent
immediately.

By using nogood repairing, local variables have to be as-
signed priorities, one of which represents an authority ove
each variable inside an agent. The initial priority value of
each variable is 0. If the values of two variables are the same
the priority is decided by the numeric order of the variable
indexes. This total order relationship only exists among lo
cal variables. There is no total order between variables in
different agents. As a result, the independence of each agen
can be guaranteed.

We illustrate the nogood repairing approach in Figure 1:

. In Figure 1 (a), Agent 1's variable 4 cannot be instan-
tiated with any color, as each color in its domain is
inconsistent with the colors instantiated for variable® 1,
and 3 respectively. This can be expressed as the nogood
{Alv Vg, {Ah U1, ‘Yl}v {Alv V2, LR/}7 {Ah U3, ‘B/}}u
where Agent 1's 4,) variablev, cannot be instantiated
with any color becausel,’s variablev; is instantiated
with Y’, A;’s variable v, is instantiated with ‘R’ and
Ay’'s variablews is instantiated with ‘B’. As this nogood
only involves intra-agent constraints it is an intra-nogjoo

Figure 1: A Distributed 3-coloring Problem and Nogood Repgi

To effect a repair, the priority of, will be increased to
the highest priority in the nogood plus one. For example,
assuming all variables’ priorities are 0 iy, after this
nogood is found,vs’s priority would be increased to
1. A; then randomly instantiates, (e.g. with ‘R’). In
this casev;’s value will not be changed, since it is now
consistent withvs. However,vs's value is inconsistent
with v4 and has to be changed (e.g to ‘B’). Although
has the lowest priority (by index order), its original value
is still consistent with all other variables in the agent and
so it is not changed. As result, this nogood is repaired
internally and all constraints are satisfied.

. In Figure 1 (b), Agent 2 discovers the mix-nogood
{AQ, V2, {Al, V1, ‘BI}, {Al, V2, ‘R/}, {AQ, V1, ‘Y/}}. In
previous algorithms (Yokoo & Hirayama 1998}, will
send the nogood td,, which will record it locally and so
avoid repeating the instantiation. In our new algorithm,
this nogood can be repaired insidg without sending a
nogood message. For example, assumingiak vari-
ables have priority 045 will increasews,’s priority to 1,
and change-’s value (e.g. to ‘Y’), to be consistent with

The case can still arise that after all local computatign
cannot find a consistent instantiation with. When this
occursA; will send a nogood messagefg. As A; was
processed beford; it follows that A, has the higher pri-
ority. In order to repair the situatioA,’s priority must be
increased. This is achieved by settidg's degreeUnsat
to A,'s degreeUnsat — A 2 so thatAy’s degreeUnsat
is slightly less tham;s.

Figure 1 (c), shows a more detailed example of a mix-
nogood that cannot be repaired by local computation.
In this caseAs cannot reassign any consistent color for
v, and so it must increase its priority by decreasing its
degreeUnsat. As then sends a nogood messageitg
and reassigns its variablg to ‘B’. A, then reassigns its
variablev, to 'Y’, repairing the nogood and finding a so-
lution. This procedure can also be applied to the inter-
nogood, as an inter-nogood can only be repaired by re-
lated neighboring agents. Figure 1(d) clearly shows this
scenario.

Although the problem in Figure 1(b) only contains bi-

nary constraints, the nogoods generated during the search

A,. ThenA, canreassiga, (€.g. to ‘R), and the nogood are non-binary. Dealing with these nogoods locally can re-

is fixed. In this solution, only local computation occurs,
no extra message is sent and no extra memory is needed

2WhereA is the predefined precision dtgreeUnsat, which
to store the nogood.

in this case i907°.

duce not only communication costs and memory storage but 7. then AssignlLocal Variables;
also computation costs. For example, in the absence of no-
good repairing, when a local agent discovers a nogood re-
lating to neighboring agents, each neighboring agent has to
do the same nogood checking to avoid the inconsistent in-
stantiation. This repeating of work can be avoided if the

Algorithm AssignLocal Variables

1. if local instantiation is consistent witagentview
from neighboring agents, andegreeUnsat< lo-
cal_degreeUnsat

X . 2, then sendGenderid, variable values lo-
nogood can be repaired locally using our nogood repairing cal degreeUnsatto neighboring agents;
approach. In addition, dealing with a non-binary constrain else select an inconsistent variahlevith the highest
is more complicated than dealing with a binary constraint. fiority and assian a value from its domain:
One local computation (using nogood repairing) instead of b y g : '

. h :) 4, if no value for this variable
multiple local computations (without using nogood repair- 5 then if noaood is new
ing) can greatly affect the search speed. This situatiamoft 6. the% Nogood_Repairing(v);
happens in distributed CSPs. 7. else assign a value with minimal violations
. . to the variables with lower priorities;
Algorithm Implementation 8. Assign_Local 'V ariables,

The Dynamic Agent Ordering and Nogood Repairing

(DAONR) algorithm was implemented as follows: Algorithm NogoodRepairing (v)

1. if nogood is intra-nogood or mix-nogood

1. In the initial state, each agent concurrently instaegat 2. then v's priority = the highest priority of local vari-
their variables to construct a local solution, while check- ables in nogood + 1;
ing consistency to guarantee that all intra-agent con- 3. if no values fow
straints are satisfied. Each agent then sends its local so-4, then priority of the local agent = minimum
lution to its neighboring agents (i.e. those with which it of degreeUnsat of related neighboring
shares at least one inter-agent constraint); agents A;
5. else assign a value with minimal violations

2. Each agent then starts to construct a local solution
which attempts to satisfy both intra- and inter-agent con-
straints. In detail, each agent only considers inter-agent 6.
constraints with agents having higher priorities (lower
degreeUnsat). Assuming the overall problem is satis-
fiable, if an agent is unable to instantiate a variable with E . tal Evaluati
any values in its domain, a nogood is discovered. Based xperimental Evaiuation
on our nogood repairing approach (described in the pre- We evaluated our algorithm (DAONR) on a benchmark set
vious section), an agent autonomously chooses the bestof 3-coloring problems and against Asynchronous Weak-
option to repair the nogood, i.e. the agent will only send commitment search (AWC), recognized as the state-of-the-
a nogood message if it cannot repair the nogood locally; art for distributed CSPs where each agent has control over

multiple variables (Yokoo & Hirayama 1998; Hirayama &

Yokoo 2000). We implemented the latest version of AWC

using nogood learning and obtained comparable results to

those reported in (Hirayama & Yokoo 2000). All our results
are averaged over 100 trails.

4. The search will stop when each agent detects that its and To simulate an autonomous agent environment we used
all other agentsdegreeUnsat values are equal to zero. an agent oriented design, implementing threads in FreeBSD

that allow agents to run asynchronously and concurrently.

All experiments were run on a Dell OptiPlex GX240 with

a 1.6GHz P4 CPU and 256MB of PC133 DRAM. We used

the same 3-coloring problem generator described in (Minton

et al. 1992) and improved in (Yokoo & Hirayama 1998) to
evaluate the performance of our algorithms. We chose this

Algorithm Dynamic Agent Ordering and Nogood Repairing domain as the 3-coloring problem has been used in many

other studies, and this type of problem is often used in con-

to the variables with lower priorities;
else priority of the local agent = minimum of
degreeUnsat of related neighboring agents -
A;

3. After assigning its own variables, an agent sends a mes-
sage to neighboring agents. This message contains the
degreeUnsat value and the local instantiation of the
agent.

The DAONR algorithm is shown in more detail in Al-
gorithm Dynamic Agent Ordering and Nogood Repair-
ing. Note that all variables from a neighboring ageifit,
degreeUnsat < local_degreeUnsat, have a higher prior-
ity than any local variables.

1. while receivedGenderid, variable values degreeUn- nection with scheduling and resource allocation problems.
saf) do To build the problem set, we randomly generatedgents

2. calculatdocal_degreeUnsat with (n x 5) variables per problem. All instances were taken

3. if local.degreeUnsatand all other agentsde- from the hard region of 3-coloring with a constraint to vari-
greeUnsats 0 able ratio of 2.7, assigning 50% of constraints as intertige

4, then the search is terminated; and 50% as intra-agent constraints (within each problem).

5. else add Senderid, variablevalue, degree- Each agent was also constrained to have at least one inter-

Unsa) to agentview, agent constraint.

6. if local_degreeUnsat- degreeUnsat Figure 2 shows the averagkegreeUnsafor each of the

0.9 |

Average degreeUnsat

Execution Time (seconds)

Figure 2: The averaggegreeUnsaplotted against time

| Agents] Method | Checks] NG| LI | Time(s)]
3 DAONR 88 2 5] 0.025635
AWC 128 2 41 0.040312

4 DAONR 107 3 11 | 0.033438
AWC 151 14 9 1 0.073125

5 DAONR 1487 17 24 | 0.075625
AWC 2710 43 31| 0.132812

6 DAONR 4390 46 38 | 0.091562
AWC 5340 72 69 | 0.170625

7 DAONR 9980 84 77 | 0.378125
AWC 13410 203 | 119 0.714062

8 DAONR | 14281| 338 | 187 | 0.957425
AWC 18344 827 | 254 1.376250

9 DAONR | 18620 1063 | 403 | 1.113546
AWC 21706 | 1814 | 436 | 2.005250

10 DAONR | 25122 1750| 753 | 3.062500
AWC 29295| 2533 | 1023 | 4.150650

Table 1: Results for distributed 3-coloring problems with n
agents and r5 Variables

two algorithms over the 10 agents with 50 variable problem
set, and Table 1 shows the number of checks, the number of
nogoods (NG) produced, the number of local instantiations
(LI) broadcasted and the running time for all agents over the
complete problem set. From these results it is clear that the
new algorithm is considerably more efficient than AWC in
terms of the number of messages sent and execution time.

Conclusion and Future Work

We have demonstrated a new algorithm that uses constraint
density to dynamically order agents and a nogood repairing

CSPs and distributed over-constrained CSPs. Dynamic dis-
tributed CSPs are common in realistic problems, where con-
straints may be lost or added over time. By using our algo-
rithm, real-time calculations can build new relations agon
agents, and changes of constraints and/or variables in one
agent will not affect other agents’ local computations. When
a distributed CSP has no solutions, it is over-constraifed.
deal with this kind of problem, we can setup a gate value
(between 0 and 1) for théegreeUnsat values. After all
degreeUnsat values reach the gate value, the problem is
solved.

Finally, for problems where individual constraints have
varying degrees of tightness, we can amend our constraint
density measures to consider tightness directly. Cusrentl
we countthe number of intra- and inter-agent constraints for
each agent when calculating density. Alternatively, we can
sum the tightness of these constraints, where tightnegs is d
fined as the number of possible unsatisfying assignments for
a constraint divided by the total number of possible assign-
ments.

References

Armstrong, A., and Durfee, E. 1997. Dynamic prioritiza-
tion of complex agents in distributed constraint satisfact
problems. InThe Fifteenth International Joint Conference
on Artificial Intelligence 620-625.

Hirayama, K., and Yokoo, M. 2000. The effect of nogood
learning in distributed constraint satisfactiorhe 20th In-
ternational Conference on Distributed Computing Systems
(1ICDCS 2000)

Minton, S.; Johnston, M. D.; Philips, A. B.; and Laird, P.
1992. Minimizing conflicts: a heuristic repair method for
constraint satisfaction and scheduling problerstificial
Intelligencel61-205.

Yokoo, M., and Hirayama, K. 1996. Distributed break-
out algorithm for solving distributed constraint satisfac
problems. Proceedings of the Second International Con-
ference on Multiagent Systems (ICMAS-86)1-408.

Yokoo, M., and Hirayama, K. 1998. Distributed con-
straint satisfaction algorithm for complex local problems
In the Third International Conference on Multiagent Sys-
tems (ICMAS-98)372-379.

Yokoo, M.; Durfee, E. H.; Ishida, T.; and Kuwabara, K.
1998. The distributed constraint satisfaction problenr: Fo
malization and algorithmslEEE Transaction on Knowl-
edge and Data Engineerint(5):673—685.

Zhou, L.; Thornton, J.; and Sattar, A. 2003. Dynamic agent
ordering in distributed constraint satisfaction problerims
Proceedings of the 16th Australian Joint Conference on Ar-
tificial Intelligence, AI-2003, Perth

technique to increase the search speed, reduce communica-

tion cost and save memory usage in distributed CSPs. We
argue that our algorithm is more feasible and offers greater
agent independence than the existing algorithms for dis-
tributed CSPs, especially for situations with multipledbc
variables in each agent.

Our algorithm can be used to solve dynamic distributed

