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Abstract 
Nobody would deny that music may evoke deep and 
profound emotions. In this paper, we present a perceptual 
music composition system that aims at the controlled 
manipulation of a user’s emotional state. In contrast to 
traditional composing techniques, the single components of 
a composition, such as melody, harmony, rhythm and 
instrumentation, are selected and combined in a user-
specific manner without requiring the user to continuously 
provide comments on the music employing input devices, 
such as keyboard or mouse. 

Introduction 
It is commonly agreed upon that music may have a strong 
impact on people’s emotions. Think of the anger you 
experience when being exposed to obtrusive music or your 
joy when attending an excellent music performance. To 
exploit the enormous potential of auditory sensations on 
human perception and behaviour, a systematic treatment of 
people’s emotional response to music compositions is of 
high relevance. In our work, we examine in how far music 
that elicits certain emotions can be generated 
automatically.  
There is a high application potential for affective music 
players. Consider, for example, physical training. Various 
studies have shown that music has a significant impact on 
the performance of athletes. However, the selection of 
appropriate music constitutes a problem for many people 
since the music does not necessarily match their individual 
motion rhythm. A personalized coach could sense and 
collect physiological data in order to monitor the user’s 
physical exercise and to keep him or her in a good mood 
by playing appropriate music.  

In-car entertainment is another promising sector for 
adaptive music players. Nobody questions that a driver’s 
affective state has an important impact on his or her 
driving style. For instance, anger often results into an 
impulsive and reckless behavior. The private disk jockey 
in the car might realize the driver’s emotional state and 
play soothing music to make him or her feel more relaxed.  
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On the other hand, driving on a monotonous road may 

lead to reduced arousal and sleepiness. In such situation, 
soft music may even enhance this effect. Here, the 
personalized disc jockey might help the driver stay alert by 
playing energizing music.  

Last but not least, an adaptive music player could be 
employed for the presentation of background music in 
computer games. Unfortunately, music in games usually 
relies on pre-stored audio samples that are played again 
and again without considering the dramaturgy of the game 
and the player’s affective state. A personalized music 
player might increase a player’s engagement in the game 
by playing music which intensifies his or her emotions.  

To implement a music player that accommodates to the 
user’s affective state, the following prerequisites must be 
fulfilled. First of all, we need a method for measuring the 
emotional impact of music. In this paper, we describe an 
empirical study to find correlations between a user’s self-
reported impression and his or her physiological response. 
These correlations will then serve as a basis for such a 
measurement. Secondly, we need a collection of music 
pieces that can be employed to influence the user’s 
affective state in a certain direction. Here, we present a 
generate-and-sense approach to compose such music 
automatically. Finally, we need a component that 
continuously monitors the user’s affective state and 
decides which music to present to him or her.  

Measuring the Emotional Impact of Music 
The most direct way to measure the emotional impact of 
music is to present users with various music pieces and 
asking them for their impression. This method requires, 
however, intense user interaction which increases the 
user’s cognitive load and may seriously affect his or her 
perception of the music. In addition, asking users about 
their emotional state means an interruption of the 
experience. In the worst case, the user might no longer 
remember what he or she originally felt when listening to 
the music. Furthermore, inaccuracies might occur due to 
the user’s inability or missing willingness to report on his 
or her true sensations.  

Another approach is to exploit expressive cue profiles to 
identify the emotion a certain piece of music is supposed to 



convey (Bresin and Friberg 2000). For instance, to express 
fear, many musicians employ an irregular tempo and a low 
sound level. While this approach offers an objective 
measurement, it does not account for the fact that different 
users might respond completely differently to music. Also, 
expressive cue profiles rather characterize the expressive 
properties of music and are less suitable to describe what a 
user actually feels. 

Previous research has shown that physiological signals 
may be good indicators for the affective impact of music, 
see (Scherer and Zentner 2001) for an overview. The 
recognition of emotions from physiological signals bears a 
number of advantages. First of all, they help us to 
circumvent the artifact of social masking. While external 
channels of communication, such as facial expressions and 
voice intonation, can be controlled to a certain extent, 
physiological signals are usually constantly and 
unconsciously transmitted. A great advantage over self-
reports is the fact that they may be recorded and analyzed 
while the experience is being made and the user’s actual 
task does not have to be interrupted to input an evaluation. 
Nevertheless, there are also a number of limitations. First 
of all, it is hard to find a unique correlation between 
emotion state and bio signals. By their very nature, sensor 
data are heavily affected by noise and very sensitive to 
motion artefacts. In addition, physiological patterns may 
widely vary from person to person and from situation to 
situation. 

In our work, we rely both on self-reports and 
physiological measurements. Self-reports are employed for 
new users with the aim to derive typical physiological 
patterns for certain emotional states by simultaneously 
recording their physiological data. If the system gets to 
know users, they are no longer required to explicitly 
indicate what they feel. Instead the system tries to infer the 
emotional state based on their physiological feedback. 

A Music Composition Approach Based on 
Emotion Dimensions 

The question arises of how the user should specify his or 
her emotional state. Essentially, this depends on the 
underlying emotion model. 

Two approaches to the representation of emotions may 
be distinguished: a categorical approach (Ekman 1999) 
which models emotions as distinct categories, such as joy, 
anger, surprise, fear or sadness, and a dimensional 
approach (Lang 1995) which characterizes emotions in 
terms of several continuous dimensions, such as arousal or 
valence.  

Arousal refers to the intensity of an emotional response. 
Valence determines whether an emotion is positive or 
negative and to what degree. Emotion dimensions can be 
seen as a simplified representation of the essential 
properties of emotions. For instance, stimulating music 
could be described by high valence and high arousal while 
boring music is rather characterized by low valence and 
low arousal (see Fig. 1). 

In our work, we follow a dimensional approach and 
examine how music attributes that correspond to 
characteristic positions in the emotion space are reflected 
by physiological data which seems to be easier than 
mapping physiological patterns onto distinct emotion 
categories, such as surprise.  

Fig. 1: Emotion Dimensions for Music 
 

To measure the affective impact of music, we confront 
users with a set of automatically generated music samples 
and ask them to evaluate them with respect to pairs of 
attributes that correspond to opposite positions in the 
emotion space, for example “stimulating” versus “boring” 
or “energetic” versus “calming”. To facilitate a clear 
distinction, we restrict ourselves to positions for which 
arousal and valence are either low, neutral or high. While 
the users are listening to the music and inputting their 
evaluation, their physiological response is recorded. Based 
on these data, the system tries to derive typical 
physiological patterns for the emotion attributes. For 
instance, the system might learn that energetic music tends 
to increase skin conductance.  

The next step is to produce music that influences the 
user’s arousal and valence in a way that corresponds to the 
positions of the attributes in Fig. 1. To accomplish this 
task, the candidates that represent a position best are 
combined by a genetic optimization process starting from 
randomly created solution candidates. The objective of this 
process is to obtain better solutions for each attribute after 
a number of reproduction cycles. 

In a test phase, the affective state of the user is 
influenced by means of music samples that are selected 
with respect to their presumed effect on the valence and 
arousal dimensions. For instance, if the users’ arousal is 
high and should be lowered, a relaxing, boring or calming 
music sample might be presented to them depending on 
whether we intend to activate them in a pleasant, 
unpleasant or neutral manner. 

Experimental Setting 
For training purposes, we conducted 10 experimental 
sessions of 1-2 hours duration with subjects recruited from 
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Augsburg University.  In the sessions, the subjects had to 
evaluate 1422 automatically generated rhythms according 
to pairs of opposite attributes in the emotion space. We 
decided to start with “disquieting” versus “relaxing” and 
“pleasant” versus “unpleasant” since these attributes were 
rather easy to distinguish for the users. The subjects had to 
indicate whether an attribute or its counterpart was 
satisfied. In case, none of the attributes applied, the music 
should be evaluated as neutral. In each session, the 
subjects had to concentrate just on one attribute pair. If 
subjects have to fill in longer questionnaires, there is the 
danger that they don’t remember the experience any more 
after some time. While the subjects listened to the rhythms 
and inputted their evaluation, four types of physiological 
signals were taken using the Procomp+ sensor equipment:  
• Electrocardiogram (ECG) to measure the subject’s 

heart rate. 
• Electromyogram (EMG) to capture the activity of the 

subjects’ shoulder musculature.  
• Galvanic Skin Response  (GSR) to measure sweat 

secretion at the index and ring finger of the non-
dominant hand. 

• Respiration (RESP) to determine expansion and 
contraction of the subjects’ abdominal breathing. 

The ECG signal was taken with a sampling rate of 250 
samples per second, the EMG, the GSR and the RESP 
signal with a sampling rate of 32 samples per seconds. 
Following (Schandry 1998), 17 features were extracted 
from the ECG, 2 features from the EMG, 4 features from 
the RESP and 10 features from the GSR signal. 

The subjects had to listen to a rhythm for at least 20 
seconds before they were allowed to evaluate it. This time 
period corresponds to the duration determined by (Vossel 
and Zimmer 1998) in which the skin conduction values 
may develop their full reaction. After the user has 
evaluated the music, the tonic measures of the signal 
values are observed without any music stimuli for a period 
of 10 seconds. After that, a new generated music sample is 
played for at least 20 seconds. The recorded data are then 
used to identify characteristic physiological patterns with a 
strong correlation to user impressions. 

Music Generation with Genetic Algorithms 
There have been a number of attempts to compose music 
automatically based on techniques, such as context-free 
grammars, finite state automata or constraints, see (Roads 
1995) for an overview. In our case, we don’t start from a 
declarative representation of musical knowledge. Rather, 
our objective is to explore how music emerges and evolves 
from (active or passive) interaction with the human user. 
For this kind of problem, genetic algorithms have been 
proven useful.  

The basic idea of genetic algorithms is to start with an 
initial population of solution candidates and to produce 
increasingly better solutions following evolutionary 
principles. A genetic algorithm consists of the following 
components:  

1. a representation of the solution candidates called 
chromosomes  

2. mutation and crossing operators to produce new 
individuals  

3. a fitness function that assesses solution candidates 
4. a selection method that ensures that fitter solutions get 

a better chance for reproduction and survival 
Genetic Algorithms are applied iteratively on populations 
of candidate problem solutions. The basic steps are:  
1. Randomly generate an initial population of solution 

candidates 
2. Evaluate all chromosomes using the fitness function 
3. Select parent solutions according to their fitness and 

apply mutation and crossing operators to produce new 
chromosomes 

4. Determine which chromosomes should substitute old 
members of the population using the fitness functions  

5. Go to step 2 until a stopping criterion is reached. 
As a first step, we concentrate on the automated 

generation of rhythms. In particular, we try to determine an 
appropriate combination of percussion instruments (i.e., 
we combine 4 instruments out of a set of 47) and beat 
patterns. In our case, each population consists of 20 
individuals that correspond to a rhythm to be played by 
four percussion instruments. Rhythms are represented by 
four 16-bit strings (one for each of the four selected 
instruments). A beat event is represented by 1 while 0 
refers to a rest event. 

To create new rhythms, we implemented a number of 
mutation and crossing operators. For example, we make 
use of a One Point Crossover Operator that randomly 
chooses a position out of 16 bits of two rhythms and swaps 
the components to right of these bit positions to create new 
rhythms. 

We implemented two methods for assessing the fitness 
of rhythms. The first method relies on explicit user 
judgments and is used for new users to train the system. 
For users the system knows already, the fitness is 
computed on the basis of their physiological response. For 
example, if our goal is to employ music for relaxation and 
the system predicts a relaxing effect on the basis of the 
determined physiological data, the chromosome is assigned 
a high fitness value.  

Tables 1 and 2 illustrate the genetic evolution process. 
The experimental sessions 1-5 in Table 1 served to create 
populations with individuals that are supposed to disquiet 
or relax the user. In Session 1, the user was presented with 
116 randomly generated rhythms. Five of the rhythms were 
classified by the user as relaxing, forty as disquieting and 
seventy-one as neutral, i.e. neither relaxing nor disquieting. 
The four most relaxing and four most disquieting 
individuals were chosen for reproduction and survival. As 
a result, we obtained two new populations each of them 
consisting of 20 individuals with either relaxing or 
disquieting ancestors. The same procedure was iteratively 
applied to each population separately until 20 generations 
were produced.  

Table 1 shows that relaxing rhythms may be found 
rather quickly. For instance, already after 20 reproduction 



cycles most of the individuals were perceived as relaxing. 
For disquieting rhythms, the evolution process was even 
faster.  Already 10 reproduction cycles led to generations 
with rhythms that were, for the most part, classified as 
disquieting. As a reason for this difference we indicate that 
it was easier to generate rhythms with a negative valence 
than rhythms with a positive valence. 

A similar experiment was conducted to create 
populations with individuals that correspond to pleasant 
and unpleasant rhythms (see Table 2). So far, we only 
produced 10 generations (instead of 20). Nevertheless, 
Table 2 shows that the algorithm is also able to find 
pleasant and unpleasant rhythms after a few generations. 

Correlating Subjective Measurements with 
Objective Measurements 

As shown in the previous section, the genetic evolution 
process results into rhythms that match a certain attribute 
quite well after some re-production cycles. The question 
arises of whether the subjective impression of users is also 
reflected by their physiological data.  

After a first statistical evaluation of the experiment, the 
GSR-signal was identified as a useful indicator for the 
attributes “disquieting” and “relaxing”.  

Table 3 provides a comparison of the GSR for 
“disquieting” and “relaxing” rhythms. In particular, a very 
low GSR indicates a relaxing effect while a higher GSR 
may be regarded as a sign that the music disquiets the user. 
Our results are consistent with earlier studies which 
revealed that arousing music is usually accompanied by a 
fast increase of GSR, for a review of such studies, we refer 
to (Bartlett 1996). 

To discriminate between positive and negative 
emotional reactions to music, EMG measurements have 
been proven promising. A study by (Lundquist et al. 2000) 
detected increased zygomatic EMG (activated during 
smiling) for subjects that were listening to happy music as 
opposed to sad music. Earlier studies by (Bradley and 
Lang 2000) revealed that facial corrugator EMG activity 
(eyebrow contraction) were significantly higher for 
unpleasant sounds as compared to pleasant sounds. Our 
own experiments with EMG measurements at the subjects’ 
shoulder led to similar results. As shown in Table 4, higher 
activity of this muscle is linked to unpleasant rhythms 
while lower activity is linked to pleasant rhythms.  

Since we are interested in a controlled manipulation of 
the user’s emotional state, we also investigated how the 
user’s physiological reactions changed over time in 
dependency of the presented rhythms. Fig. 2 shows how 
the amplitude of the GSR increases during the presentation 
of music rated as disquieting (D) and decreases again for 
music evaluated as “Neutral” (N) or “Relaxing” (R). Note 
that this effect is stronger for relaxing than for neutral 
rhythms. The different duration of the activation phases 
results from the fact that the music continues while the 
users input their rating.  

Finally, we evaluated whether the improvement of later 
generations were reflected by the user’s physiological data. 
Our statistical evaluation revealed that this is indeed the 
case. But, the effect was more obvious for disquieting than 
for relaxing, pleasant or unpleasant rhythms. 

Fig. 3 and Fig. 4 show the GSR curves for randomly 
generated rhythms before and after the evolution process. 
It can easily be seen that the curve in Fig. 4 is more 
characteristic of disquieting rhythms than that in Fig. 3. 

 
Fig. 2: GSR during the Presentation of Rhythms (R1 … 
R12) and Periods of Silence (S) 

Fig. 3: Randomly Generated Rhythms before Evolution 
Covering a Time Period of 1:05’ 

Related Work 
Early experiments to derive auditory responses from 
brainwaves and biofeedback of the performer were 
conducted by (Rosenboom 1977-1984), a pioneer in the 
area of experimental music. The main motivation behind 
his work is, however, to explore new interfaces to musical 
instruments to create new aesthetic experiences and not to 
compose music that elicits a certain emotional response.    

A first prototype of a mobile music player was 
developed at MIT Media Lab by (Healey et al. 1998) who 
illustrated how physiological data could be employed to 



direct the retrieval of music from a data base. More recent 
work at Fraunhofer IGD focuses on the development a 
music player that adjusts the tempo of music to a runner’s 
speed and body stress (Bieber and Diener 2003). In 
contrast to the work above, we don’t select music from a 
data base, but generate it automatically using a genetic 
optimization process.  
 

Fig. 4: Disquieting Rhythms after Evolution Covering a 
Time Period of 1:10’ 
 

For this reason, we are not only able to adapt the music 
tempo to a user’s affective state as in the case of the 
Fraunhofer IGD player, but also to other musical variables, 
such as instrumentation. In addition, we consider a great 
number of short samples (around 1500) as opposed to a 
few complex music pieces, e.g. ten in the case of (Healey 
et al. 1998). Therefore, we don’t have to cope with the 
problem that the response to an arousal stimulus decreases 
because the chance of repetition is very high. 

A number of automated music composition systems are 
based on genetic algorithms as ours. However, they usually 
rely on explicit user statements (Biles 2002) or music-
theoretical knowledge (Wiggins et al. 1999) to assess the 
chromosomes while our system also considers the user’s 
physiological feedback. Furthermore, the authors of these 
systems are less interested in generating music that 
conveys a certain emotion, but rather in finding a 
collection of music samples that matches the user’s idea of 
what a certain music style should sound like. 

In contrast, (Casella and Paiva 2001) as well as 
(Rutherford and Wiggins 2002) present systems that 
automatically generate music for virtual environments or 
films that is supposed to convey certain emotions. Their 
music composition approach is similar to ours. However, 
they don’t aim at objectively measuring the affective 
impact of the generated music using physiological data. 

Conclusions 
In this paper, we presented a perceptual interface to an 
automated music composition system which adapts itself 
by means of genetic optimization methods to the 
preferences of a user. In contrast to earlier work to 
automated music composition, our system is based on 

empirically validated physiological training data. First 
experiments have shown that there are indeed 
representative physiological patterns for a user’s attitude 
towards music which can be exploited in an automated 
music composition system.  

Despite of first promising results, there are still many 
problems associated with physiological measurements. 
Well-known pitfalls are uncontrollable events that might 
lead to artefacts. For example, we can never be sure 
whether the user’s physiological reactions actually result 
from the presented music or are caused by thoughts to 
something that excites him or her. Another limitation is the 
great amount of data needed to train such a system. We 
recruited 10 subjects from Augsburg University for testing 
specific aspects of the generated rhythms, e.g. their GSR to 
disquieting rhythms. However, so far, only one subject 
underwent the full training programme which took about 
12 hours and is necessary to achieve a good adjustment of 
the system to a specific user. Our future work will 
concentrate on experiments with a greater number of 
subjects and the statistical evaluation of further 
physiological features.   
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Experiment 1: 
Production of Different Populations for 
Relaxing and Disquieting Rhythms 

Random 
Phase 

Evolution of Relaxing 
Rhythms 

Evolution of Disquieting 
Rhythms 

 Session 1: Session 2: 
Relaxing 
Rhythms 

Session 3: 
Relaxing 
Rhythms 

Session 4: 
Disquieting 

Rhythms 

Session 5: 
Disquieting 

Rhythms 
Duration 1:05’:49’’ 1:50’:59’’ 1:51’:06’’ 1:59’:18’’ 1:49’:18’’ 
# Evaluated as Relaxing 5 120 172 0 1 
# Evaluated as Disquieting 40 40 20 159 199 
# Evaluated as Neutral  71 40 8 41 0 
Overall 
Number 

Produced 
Rhythms/Generations 

116 200/1-10 200/11-20 200/1-10 200/11-20 

Table 1: Illustration of the Evolution Process for Relaxing and Disquieting Rhythms 
 
Experiment 2: 
Production of Different Populations for 
Pleasant and Unpleasant Rhythms 

Random 
Phase 

Evolution of Pleasant 
Rhythms 

Evolution of Unpleasant 
Rhythms 

 Session 1: Session 2: 
Pleasant 
Rhythms 

Session 3: 
Pleasant 
Rhythms 

Session 4: 
Unpleasant 
Rhythms 

Session 5: 
Unpleasant 
Rhythms 

Duration 59’:04’ 55’:52’’ 56’:20’’ 56’:17’’ 55’:01’’ 
# Evaluated as Pleasant 18 45 31 0 0 
# Evaluated as Unpleasant 18 21 3 63 80 
#Evaluated as Neutral 70 34 66 37 20 
Overall 
Number 

Produced 
Rhythms/Generations 

106 100/1-5 100/6-10 100/1-5 100/6-10 

Table 2: Illustration of the Evolution Process for Pleasant and Unpleasant Rhythms
 
GSR-Signal High Peak Amplitude 

Two Group t-Test Statistical Analysis Pattern of 
HPAmp 

Mean 
(HPAmp) Groups Correlated significantly?/result

Emotion Disquieting High/Very High 3.0480131 Group 1: D, Group 2: N and R Yes/t(914)=25.399; p<0.001 
 Relaxing Very Low 0.0402349 Group 1: R, Group 2: D and N Yes/t(914)=-21.505; p<0.001 

Table 3: GSR Table with Emotions Disquieting (D) vs. Relaxing (R) and Neutral (N) 
HPAmp = maximal amplitude within the time window corresponding to a stimulus 

 
EMG-Signal Number of Peaks 

Two Group t-Test Statistical Analysis Pattern of 
NumPeaks 

Mean 
(NumPeaks) Groups Correlated significantly?/result

Emotion Pleasant Medium 1.5078111 Group 1: P, Group 2: N and U Yes/t(504)=-23.422; p<0.001 
 Unpleasant High 2.0283725 Group 1: U, Group 2: N and P Yes/t(504)=8.151; p<0.001 

Table 4: EMG Table with Emotions Pleasant (P) Versus Unpleasant (U) and Neural (N) 
NumPeaks = number of peaks within the time window corresponding to a stimulus 


