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Abstract
The wealth of information contained in the world-wide
web has created much interest in systems for integrating
information from multiple sites. We describe a univer-
sal wrapper machine that can learn to extract information
from the web given only a set of general rules describing
the data domain. It cleanly separates out site-independent
and site-specific knowledge from execution implementation.
Site-independent knowledge is expressed in user-supplied
domain rules, while site-specific knowledge is expressed
in automatically-generated context-free grammars that de-
scribe site structures. The two are combined by using the do-
main rules to semantically interpret the parse trees generated
by the grammars. The resulting declarative wrapper speci-
fications are easily understandable by humans and can be
executed to perform information extraction. Once extracted,
tuples can be queried by external agents using a high-level
agent communication language.

Introduction
The immense success of the world-wide web has made
available a wealth of online information resources of all
kinds. Unfortunately, its disorganised and complex nature
has made it difficult to exploit the full potential of the data
available. This is particularly true for domains in which
similar types of data are fragmented across many different
sites that are inconsistent and hard to find; for example, real
estate listings, flight schedules, weather forecasts, job post-
ings, store catalogs, and many more. In order to run searches
or comparisons across the full data space, users are forced
to spend a great deal of effort to track down sources, slog
through limited-functionality search interfaces, and switch
back and forth among multiple sites. It would be much bet-
ter to have a single metasource that could automatically ex-
tract data from multiple sources, mark it up and integrate
it semantically, and provide a high-level query interface for
user applications.

In the most general case, the extraction task would require
full natural language understanding. Fortunately, most web
pages provide hints in the form of visual layout structures
that show up as syntactic regularities in the corresponding
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HTML code. Still, since layouts vary widely between sites
and mix structural markup with purely presentational ele-
ments, extracting data from web pages remains challenging.

The most straightforward approach is to hand-write ex-
traction programs, orwrappers, for data sources, using a
general-purpose language such as C or Perl, or a dedicated
wrapper language such as WebL (Kistler & Marais 1998).
Unfortunately, manually coding wrappers is costly and time-
consuming because of the large number of sites to be cov-
ered and the constant need to keep up-to-date with fre-
quent formatting changes. Another problem is that knowl-
edge about site structures is implicitly embedded inside the
wrapper code and mixed with details of the implementation,
rather than being specified explicitly.

More recent systems have turned to machine learning to
automatically or semi-automatically create wrappers. How-
ever, these systems generally rely on either manual labelling
of training examples, which still requires substantial user ef-
fort, or unprincipledad hocheuristics. Many also use low-
level wrapper representations such as finite-state automata
which are difficult to understand or modify, and mix site-
independent domain information about attributes with site-
specific information about layouts.

As part of theGrazer information extraction system
(Hong 2003), we have developed auniversal wrapper ma-
chine (UWM) that is able to learn wrappers for sites in
a principled way that only requires a set of general do-
main rules instead of labelled examples. It cleanly separates
out site-independent domain knowledge and site-specific
structural descriptions from implementation code. Domain
knowledge is encoded in declarative rules that are supplied
by users to describe domain attributes. Structural descrip-
tions are expressed as context-free grammars that can be au-
tomatically generated by an unsupervised learner examining
pages on a site. Together, the domain rules and structure
grammars form wrapper specifications that can be executed
to perform information extraction from arbitrary sources.

The advantage of this approach is that it minimizes hu-
man intervention while at the same time avoiding reliance
on ad hocheuristics. Wrapper knowledge is made explicit
and modular. Domain rules need only be written once and
can be reused across all sites providing a particular type of
information. Site structures can be easily understood by hu-
mans and modified if necessary.



The rest of this paper is organized as follows. We first de-
scribe our language for domain rules, then go on to discuss
site structures and how they might be generated. Next we
present the universal wrapper and describe how it combines
domain rules and site structures to perform information ex-
traction. Following that we present the high-level interface
that other agents can use to query the extracted data. Finally,
we survey related research and offer some conclusions and
directions for future work.

Domain Rules
A Grazer domain rule consists of an attribute name and
datatype, together with a description of the appearance of
its corresponding field.1 It has the general format:

datatype attrname= regexp

wheredatatypeis one ofstring , number , or boolean ;
attrnameis an alphanumeric identifier specifying the name
of the attribute to be extract; andregexpis a regular expres-
sion specifying a text pattern for the corresponding field.

To execute a rule,regexp is compared against a target
string. If the expression matches any substring of the target,
then the rule succeeds.regexpmay optionally be annotated
by placing curly braces around one of its subexpressions.
Forstring or number rules, the portion of the match cor-
responding to that subexpression is captured and returned as
the value of the attribute; or if there are no braces, the entire
match is returned. Forboolean rules,true or false is
returned depending on whether or not the rule succeeded.

Multiple rule sets can be loaded; later definitions will
override earlier ones if conflicts arise. Typically, the first
set loaded will be a generic default for the domain. Special
handling for unusual sites can be added by loading supple-
mentary rule sets.

For example, in the real estate domain we might specify a
default set of rules such as the following:

number price = £{[0-9,]+}
string postcode = {(N|E|SE|SW|W|NW)[0-9]+}
string tel = [0-9]+[ -]?[0-9]+[ -]?

[0-9]+
boolean garden = "garden"|"yard"
boolean parking

The first rule says that a price looks like a pound sign fol-
lowed by a string of digits and commas (i.e., a number). That
number is returned as the value of the attribute. The second
contains a disjunction: a London postal code is a geographic
prefix2 followed by a number. The third rule declares a tele-
phone number as three sets of digits, optionally separated
by dashes or spaces, while the fourth defines a boolean at-
tribute which is true if either of the wordsgarden or yard
is present, ignoring case. Finally, the fifth rule defaults to a
simple match on the attribute name (in this case,parking )
in the absence of a specified regexp.

Note that the rules need only be written once for any given
domain. They should be fairly easy to write, as they describe

1Here, attribute refers to an abstract domain element, while
field refers to a text string encoding one of its possible values.

2Some prefixes have been omitted for reasons of space.

general features of the fields themselves, not the peculiarities
of site-specific delimiters. They could also be generated by
a learning algorithm that induces regular expressions from
examples. This would be easier than page labelling because
it would only require some examples of field values; they
would not need to be marked up in context.

Since the rules are quite general, we cannot simply apply
them directly to perform extraction because there would be
problems with avoiding spurious matches and distinguishing
multiple matches belonging to different records. We need a
structure description to provide the necessary context within
which to apply the rules and organise the extracted attributes
into tuples.

Site Structures
Grazer describes sites using context-free grammars, be-
cause they provide a powerful and convenient formalism for
representing hierarchical structure. Grammars permit ex-
tremely general arrangements of fields and tags to be defined
while remaining easy to understand and modify. Previously
(Hong & Clark 2001), we described a grammatical inference
algorithm based on hill-climbing search and showed how it
could learn a structure grammar for a simplified mock page.
In this paper we focus in more detail on how to use such
structures for information extraction and apply our method
to more complex real-world data.

For example, consider the University of London real es-
tate listing page shown in Figure 1. The following structure
grammar might be used to describe this page:

A → html K body bgcolor(linen) E
table valign(top) border D C
/table E hr noshade E /body
/html

K → head title E /title /head
D → tr J /tr
J → th E /th J | ε
C → tr valign(top) Q /tr C | ε
Q → td E /td Q | td align(center)

E /td Q | ε
E → text E | br E | p

E | img border(0) E
| font size(1) E | a E /a
E | b E /b E | i E /i E
font color(red) E | /font
hr noshade E | script comment
/script h2 text /h2 E | ε

Here, the terminal symbols of the grammar represent gener-
alized HTML tags. For example,img border(0) stands
for <img border="0"> with any additional attributes
left unspecified (in particular,src ). The special symbol
text represents free text between tags.

We can interpret this grammar as follows. The start sym-
bol A represents a complete page, while the symbolE rep-
resents text marked up in various ways. A page consists
of an <html> tag, a titleK, a <body> tag, some text, a
<table> containing oneD-type row and severalC-type
rows, some more text, a horizontal line, yet more text, and
closing</body> and</html> tags. AD-type row is a
header row containing a set of column headingsJ . A C-
type row is a data row containing a set of data cellsQ. Note



Figure 1: A sample real estate listing page, divided into grammatical units.

that theC andQ productions correspond to the records and
fields that we would like to extract.

This approach is not just restricted to representing pages
with tables, however. Almost any type of page structure can
be represented by an appropriate grammar, although learn-
ing the right grammar is not always easy.

Page Parsing
Given a structure grammar, the UWM can process an input
page from a new site into a parse tree of text fragments. The
result for the real estate page is shown in Figure 2. Leaves
shown in boldface correspond totext productions. Notice
that the column headings, such as “Area,” have ended up in
a different branch from the column data, such as “E8” (a
specific area postcode). This separation would not have oc-
curred if the page were parsed according to the usual HTML
grammar, but reflects additional knowledge contained in the
structure grammar.

The subtrees rooted at the various nonterminalsA, D, J ,
C, and so on can be regarded as dividing the input page into
various overlapping units, as shown by the boxes in Figure 1.
In order to determine which of these subtrees might corre-
spond to record units, the wrapper machine builds a table of
their text expansions.

For each subtree, an entry is created that pairs its root non-
terminal with a list of all thetext productions appearing in
it. If a subtree contains recursive subtrees, as with theJ-,
Q-, andC-subtrees, the recursive productions involving the
same nonterminal as its root are not placed in its entry.

Some typical entries are shown in Table 1. In this exam-
ple, the nonterminal symbolA has one entry containing all
of the text on the page.D has one entry containing a list of

A

html. . . table D C /table. . . /html

tr J /tr tr Q /tr C

th E /th J td E /td Q tr Q /tr C
.
.
.

.

.

.

Area th E /th J E8 td E /td Q

.

.

.
.
.
.

for 1-2 X C

1

Figure 2: Part of the parse tree for Figure 1.

all of the column headers, whileJ has six entries, one for
each header (not all are shown). Similarly,C has six entries
each containing the text of an entire data row, whileQ has
52 entries each containing one non-empty data cell.E has a
large number of small entries, one for each individual piece
of text on the page.

Attribute Extraction

We now need to extract attributes from these text strings and
group them appropriately. This is done by using the domain
rules to score the entries, as follows. Each rule in turn is ap-
plied to every string in the expansion list for a given entry.
One point is given for every rule that matches once and only
once in an expansion list, meaning that the corresponding
attribute can be extracted successfully and unambiguously.



Symbol Text
A “FLATS/HOUSES”, “Last updated 13 June”, . . .
D “Area”, “for”, “type”, “Location/Contact”, . . .
J “Area”
J “for”
J “type”
C “SE1”, “Grange Walk”, “LU Tower Hill”, . . .
C “SE5”, “Selbourn Village”, “LU Elephant”, . . .
Q “SE1”
Q “Grange Walk”, “LU Tower Hill”, . . .
Q “£295”, . . .
E “FLATS/HOUSES”
E “Area”
E “SE1”
E “Grange Walk”
E “LU Tower Hill”
E “£295”
E “End of list”
E “6 records found”

Table 1: Some typical entries in the text expansion table.

For example, the firstC entry contains exactly one string
(“SE1”) that matches the postcode rule, and thus gains a
point for that rule. TheA entry, on the other hand, contains
the entire text of the document. It does not score a point for
the postcode rule, since its entry matches the rule six times
(there are six postcodes present on the page in total).

After scoring the entries, the UWM assigns an overall
score to each nonterminal by averaging over all of its en-
tries in the table. In this case, we obtain the following set of
overall scores (out of a maximum of five, which would mean
every attribute extracted perfectly every time):

Symbol Average score
A 1.0
K 0.0
D 0.0
J 0.0
C 2.7
Q 0.33
E 0.18

A did not score well because most rules matched multi-
ple times (apart from the parking rule, which coincidentally
matched only once because only one property had parking),
indicating that it probably contains more than one record.
By contrast,Q andE had several unique matches, but those
matches were sparsely scattered across many entries, low-
ering the average scores. This pattern indicates that they
are probably smaller than a record.K, D, and J con-
tained no matching attributes at all and scored nothing. The
highest-scoring nonterminal wasC, as its entries success-
fully matched the most rules without duplicates. Therefore,
the UWM considers it the most likely candidate to be a
record. A look at Figure 1 intuitively confirms these results.

Wrapper Execution
Having marked theC nonterminal as corresponding to a
record, we are ready to perform information extraction. For

subsequent pages from this site, the UWM can skip di-
rectly to this point without redoing the scoring. Each sub-
tree rooted at an occurrence of the marked nonterminal is
scanned using the domain rules and the attributes found in
that subtree are extracted as a tuple. (If a rule matches more
than once, the first value is used.)

In the running example, this procedure yields the follow-
ing tuples:

Postcode Price Telephone Garden Parking

E8 120 020 7739 5862 false false
E10 300 020 8533 6461 true false
SE1 295 020 8281 0610 false false
SE5 280 07958 294658 true true
N4 240 01494 464868 false false

WC1 260 01483 579693 false false

which are collected by the UWM.

Query Interface
The UWM provides a standard agent communication inter-
face that permits external agents to query collected tuples
using the agent communication language FIPA ACL (FIPA
2001). Incomingquery messages specifying high-level
queries are responded to with sets ofinform messages car-
rying tuples as facts. Agents can alsosubscribe with the
UWM to be informed of new tuples on an ongoing basis as
they are extracted.

A typical FIPA ACL query might be:

query-ref:
sender:

agent-identifier:
name: User1
addresses:

sequence:
url: 10.0.0.2

receiver:
set:

agent-identifier:
name: UWM
addresses:

sequence:
url: 10.0.0.1

content: (kappa (?price ?beds ?pcode)
(and (rentals

?price ?beds ?pcode
?garden ?parking)

(< ?price 400)
(or (= ?pcode ’sw6)

(= ?pcode ’sw7))))
language: FIPA-KIF
ontology: real-estate-ontology

This message specifies thequery-ref performative,
meaning that the sender (User1) wishes to ask the receiver
(the UWM) for some referenced object. In this case, it is a
kappa object that evaluates to the set of(price,beds,
pcode) tuples satisfying the conditions that they are drawn
from the 5-aryrentals relation, the price is less than 400,



and the postcode is either SW6 or SW7. The content lan-
guage used to express this query is FIPA KIF (Knowledge
Interchange Format), under the real estate ontology.

The UWM might respond to this query with the following
message (abbreviated for space):

inform:
sender:

agent-identifier:
name: UWM

receiver:
set:

agent-identifier:
name: User1

content: (= (kappa (?price ?beds ?pcode)
(and (rentals etc ...)))

((250 1 SW7) (390 3 SW6)
(340 2 SW6)))

This message specifies theinform performative, meaning
that the sender (the UWM) wishes to inform the receiver
(User1) of some fact. The content of the fact is that the pre-
vious query for rentals under£400 in SW6 or SW7 evalu-
ates to the following set of tuples: a 1-bedroom property in
SW7 at£250, a 3-bedroom property in SW6 at£390, and a
2-bedroom in SW6 at£340.

The querying agent can also subscribe to be informed of
new results as the UWM’s knowledge changes:

subscribe:
sender:

agent-identifier:
name: User1

receiver:
set:

agent-identifier:
name: UWM

content: (kappa (?price ?beds ?pcode)
(and (rentals

?price ?beds ?pcode
?garden ?parking)

(> ?beds 5)))

This subscribe message sets up a persistent
query-ref for properties having more than five bed-
rooms, which causes the receiver toinform the sender of
the query results and to continue to send furtherinform s if
the results change (for example, after extracting additional
listings).

Related Work
BargainFinder (Krulwich 1996), one of the first web wrap-
per systems, used hand-coded wrappers to compare mu-
sic prices at different online vendors. Subsequently, oth-
ers developed semi-automatic toolkits to help write wrap-
pers, for example in Ariadne (Ashish & Knoblock 1997) and
XWRAP (Liu, Pu, & Han 2001).

A number of supervised learners have been built to gener-
ate wrappers automatically. ShopBot (Doorenbos, Etzioni,
& Weld 1997) uses heuristics to learn to submit queries and
parse their results, but is quite specific to online stores. Some
domain knowledge is separated out into rules, but these de-
scribe field labels (e.g., “price”), whereas ours describe field

contents (e.g., a dollar sign followed by a number). (Kushm-
erick 2000) defined various wrapper classes learnable from
labelled examples. For example, an HLRT wrapper con-
sists of a set of delimiters that mark the head of the page,
the left and right boundaries of its fields, and the tail of the
page. Given a set of training examples, wrappers are in-
duced by searching all possible delimiters until a consistent
set is found. Stalker (Muslea, Minton, & Knoblock 2001)
expresses wrappers as trees where internal nodes represent
record lists and leaves represent fields. The system extracts
data by descending the tree to progressively refine the doc-
ument segment to be extracted. At each node, extraction
boundaries are defined by sequences of tokens, classes, and
wildcards, learned by an incremental covering algorithm.
In SoftMealy (Hsu & Dung 1998), wrappers are specified
by so-called contextual rules associated with transitions in
some finite-state transducer. A contextual rule is a disjunc-
tion of token sequences that marks the inside or outside of a
field boundary. States in the transducer correspond to fields.
(Chidlovskii 2001) describes another transducer-based ap-
proach where fields are attached to transitions instead of
states. Fields are recognized by computing the minimal dis-
junction of prefixes and suffixes required to disambiguate
them in the training examples.

(Cohen & Fan 1999) describes a site-independent method
that learns general heuristics for extracting certain extremely
simple types of sites. Rather than being trained on a single
site, the learner is trained on many different sites to create a
general-purpose wrapper. Web pages are regarded as HTML
parse trees, and fields are found by classifying interior nodes
as either positive or negative and extracting the text of sub-
trees rooted at positive nodes.

Another group of wrapper learners comes from the
natural-language tradition. These systems are designed
mainly for genres like email announcements and news arti-
cles that contain longer passages of free text and few markup
tags. These include WHISK (Soderland 1999), SRV (Craven
et al. 2000), and RAPIER (Califf & Mooney 1999).

Finally, some other unsupervised systems have been de-
veloped that build wrappers by examining unlabelled pages.
(Embleyet al. 1998) performs extraction using ontologies
annotated with regular expressions that are similar to our
domain rules. Rather than using document structure to con-
strain matches, they use heuristics such as keyword proxim-
ity and ontological knowledge about whether relationships
are one-to-one or one-to-many to disambiguate each match
individually. RoadRunner (Crescenzi, Mecca, & Merialdo
2001) takes a different approach by comparing two different
documents from the same site that are assumed to have the
same structure, and computing the minimal union-free regu-
lar expression that covers both. This expression corresponds
directly to a wrapper structure.

Other unsupervised systems exist that are very restricted
in the types of sites they can wrap. AutoWrapper (Gao &
Sterling 1999) uses a similarity algorithm to induce wrap-
pers for simple table structures. In this approach, pages are
assumed to contain logical lines delimited by boundary tags.
Adjacent lines are aligned and compared for similarity in
terms of edit distance, then generalised to form an extrac-



tion pattern. MORPHEUS (Yang, Seo, & Choi 2001) is an
extraction agent specialized for online shopping which as-
sumes that input pages can be broken down into a header,
a list of logical lines containing product descriptions, and a
trailer. Each line is heuristically assigned a category such as
product name or price. MORPHEUS simply looks for the
most common sequence that begins with a name and ends
with a price, and uses that as the extraction pattern.

Conclusion
In conclusion, we have described a universal wrapper ma-
chine that is able to take a set of general domain rules and
learn to wrap sites without relying on manually-labelled
training examples orad hocheuristics. It cleanly separates
out site-independent and site-specific knowledge from exe-
cution implementation in a high-level way. Site-independent
knowledge about domains is expressed using simple sets
of rules that can be reused across a domain. Site-specific
knowledge about the structure of pages on a particular site is
expressed using context-free grammars. The universal wrap-
per machine brings these two components together by us-
ing the domain rules to semantically interpret the parse trees
generated by the grammars. The resulting declarative wrap-
per specifications are easily understandable by humans and
can be executed to perform information extraction. Once
extracted, tuples can be queried by external agents using a
high-level agent communication language, either as a one-
time query or a persistent subscription.

Various directions for future work exist. It would be help-
ful to develop a monitoring capability that would enable the
UWM to detect when a data source changes formats, so that
it can reinvoke the grammar learner to repair the wrapper.
Another enhancement would be to incorporate ontological
knowledge in the form of XML schemas. Instead of extract-
ing web documents to database form, the UWM could out-
put tuples as XML documents conforming to some ontolog-
ical schema, creating a migration bridge from plain HTML
to the semantic web.
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