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Abstract

One important feature of the gene expression data is that
the number of genes M far exceeds the number of sam-
ples N. Standard statistical methods do not work well
whenN < M . Development of new methodologies or
modification of existing methodologies is needed for the
analysis of the microarray data. In this paper, we pro-
pose a novel analysis procedure for classifying the gene
expression data. This procedure involves dimension re-
duction using kernel partial least squares (KPLS) and
classification with logistic regression (discrimination)
and other standard machine learning methods. KPLS
is a generalization and nonlinear version of partial least
squares (PLS). The proposed algorithm was applied to
five different gene expression datasets involving hu-
man tumor samples. Comparison with other popular
classification methods such as support vector machines
and neural networks shows that our algorithm is very
promising in classifying gene expression data.

Introduction
One important application of gene expression data is clas-
sification of samples into different categories, such as the
types of tumor. Gene expression data are characterized by
many variables on only a few observations. It has been ob-
served that although there are thousands of genes for each
observation, a few underlying gene components may ac-
count for much of the data variation. PLS provides an ef-
ficient way to find these underlying gene components and
reduce the input dimensions (Nguyen and Rocke 2002). PLS
is a method for modeling a linear relationship between a set
of output variables and a set of input variables and has been
extensively used in chemometrics. In general, the structure
of chemometric data is similar to that of microarray data:
small samples and high dimensionality. With this type of
inputs, linear least squares regression often fails, but linear
PLS excels. Rosipal and Trejo (2001) and Bennett and Em-
brechts (2003) extended PLS to nonlinear regression using
kernel functions, mainly for the purpose of real value predic-
tions. Nguyen and Rocke (2002) applied PLS/PCA, together
with logistic discrimination, to classify the tumor data and
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claimed success of their approach. However, their procedure
is linear and limited with the implementation of SAS.

In this paper we propose a novel analysis procedure for
classification of tumor samples using gene expression pro-
files. Our algorithm combines KPLS with logistic regres-
sion. Involved in our procedure are three steps: feature space
transformation, dimension reduction, and classification.The
proposed algorithm has been applied to five different popu-
lar gene expression datasets. One is a two-class recogni-
tion problem (AMLversus ALL), and the other four concern
multiple classes.

Algorithm
A gene expression dataset with M genes (features) and N
mRNA samples (observations) can be conveniently repre-
sented by the following gene expression matrix

X =









x11 x12 · · · x1N

x21 x22 · · · x2N

...
...

. . .
...

xM1 xM2 · · · xMN









,

wherexli is the measurement of the expression level of gene
l in mRNA samplei. Let xi = (x1i, x2i, . . . , xMi)

′ denote
the ith column (sample) ofX, where′ represents the trans-
pose operation, andyi the corresponding class label (e.g.,
tumor type or clinical outcome).

PLS constructs a mapping of the data to a lower dimen-
sional space and solves a least squares regression problem
in a subspace. KPLS is a nonlinear version and generaliza-
tion of PLS. To perform KPLS, one first transfers the in-
put data from the original input spaceF0 into a new feature
spaceF1 with a nonlinear functionφ. Then a kernel matrix
K = [K(xi,xj)]N×N is formed using the inner products
of new feature vectors. Denote byΦ the matrix whosei-th
row is the vectorφ(xi)

′, so that we haveK = ΦΦ′. Finally,
a PLS is performed on the feature spaceF1. Such a linear
PLS on the feature spaceF1 may be viewed as a nonlinear
PLS on the original data. This transition is sometimes called
“kernel trick” in the literature.

The following are among the popular kernel functions:

• First norm exponential kernel

K(xi,xj) = exp(−β||xi − xj ||)



• Radial basis function kernel (RBF)

K(xi,xj) = exp
(

−
|xi − xj |

2

σ2

)

• Power exponential kernel (a generalization of RBF ker-
nel)

K(xi,xj) = exp
[

−
( |xi − xj |

2

r2

)β]

• Sigmoid kernel

K(xi,xj) = tanh(βx′

ixj)

• Polynomial kernel

K(xi,xj) = (x′

ixj + p2)
p1

• Linear kernel
K(xi,xj) = x′

ixj

KPLS Classification Algorithm
Suppose there is a two-class problem, and we are given a
training data set{xi}

n
i=1 with class labelsy = {yi}

n
i=1 and

a test data set{xt}
nt

t=1 with labelsyt = {yt}
nt

t=1

1. Compute the kernel matrix, for the training data,K =
[Kij ]n×n, whereKij = K(xi,xj). Compute the kernel
matrix, for the test data,Kte = [Kti]nt×n, whereKti =
K(xt,xi).

2. CentralizeK andKte using

K =
(

In −
1

n
1n1′

n

)

K
(

In −
1

n
1n1′

n

)

,

and

Kte =
(

Kte −
1

n
1nt

1′

nK
)(
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n
1n1′

n

)

.

3. Call KPLS algorithm to findk component directions
(Rosipal and Trejo 2001):

(a) for i = 1, . . . , k,
(b) initializeui, K1 = K, andy1 = y.
(c) ti = ΦΦ′ui = Kui, ti ← ti/||ti||.
(d) ci = yi′ti

(e) ui = yci, ui ← ui/||ui||

(f) repeat steps (b) -(e) until converge.
(g) deflateKi, yi by Ki+1 ← (I−titi′)Ki(I−titi′) and

yi+1 ← yi − titi′yi.

(h) obtain component matrixU = [u1, . . . ,uk].

4. Find the projectionsV = KU andVte = KteU for the
training and test data, respectively.

5. Build a logistic regression model usingV and {yi}
n
i=1

and test the model performance usingVte and{yt}
nt

t=1.

We can show that the above KPLS classification algorithm
is a nonlinear version of the logistic regression. In fact, it fol-
lows from our KPLS classification algorithm that the proba-
bility of the label y given the projectionv is expressed as

P (y|w,v) = g
(

b +

k
∑

i=1

wivi

)

, (1)

where the coefficientsw are adjustable parameters andg is
the logistic function

g(u) = (1 + exp(−u))−1.

Given a data pointφ(x) in the transformed feature space,
its projectionvi can be written as

vi = φ(x)Φ′ui =
n

∑

j=1

ui
jK(xj ,x).

Therefore, from equation (1), we have

P (y|w,v) = g
(

b +

n
∑

j=1

cjK(xj ,x)
)

, (2)

where

cj =

k
∑

i=1

wiu
i
j , j = 1, · · · , N.

WhenK(xi,xj) = x′

ixj , equation (2) becomes a logistic
regression. Therefore, KPLS classification algorithm is a
generalization of logistic regression.

Described in terms of binary classification, KPLS algo-
rithm can be readily employed for multi-class classification
tasks. Typically, two-class problems tend to be much eas-
ier to learn than multi-class problems. While for two-class
problems only one decision boundary must be inferred, the
general c-class setting requires us to apply a strategy for cou-
pling decision rules. For a c-class problem, we employ the
standard approach where c two-class classifiers are trained
in order to separate each of the classes against all others.
The decision rules are then coupled by voting, i.e., sending
the sample to the class with the largest probability.

Feature Selection

Since many genes show little variation across samples, gene
selection is required. We chose the most informative genes
with the highest scores, described below. Given a two-class
problem with an expression matrixX = [xli]M×N , we
have, for each genel,

T (xl) = log
σ2

σ′2
,

where

σ2 =

N
∑

i=1

(xli − µ)2,

and

σ′2 =
∑

i∈class 0

(xij − µ0)
2 +

∑

i∈class 1

(xij − µ1)
2.

Hereµ, µ0 andµ1 are the corresponding mean values. We
selected the most informative genes with the largest T val-
ues. This selection procedure is based on the likelihood ratio
and was used in our classification.



Results
To illustrate the applications of the algorithm proposed in
the previous section, we considered five gene expression
datasets: LEUKEMIA (Golub et al. 1999), OVARIAN
(Welsh et al. 2001), LUNG CANCER (Garber et al. 2001),
LYMPHOMA (Alizadeh et al. 2000), and NCI (Ross et al.
2000).

LEUKEMIA
The LEUKEMIA dataset consists of expression profiles of
7129 genes from38 training samples (27 ALL and 11 AML)
and 34 testing samples (20 ALL and 14 AML). For classifi-
cation of LEUKEMIA using KPLS algorithm, we chose the
simple linear kernelK(xi,xj) = x′

ixj and10 component
directions. With3800 or more genes selected, we obtained
0 training error and 0 test error. This performance of KPLS
is superior to that of SVM, neural networks, and any other
popular methods reported in the literature. A typical plot of
the performance of KPLS in this case is given in Figure 1.
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Figure 1: Performance on the training and test data of
LEUKEMIA with all genes.

OVARIAN
The OVARIAN dataset contains expression profiles of7129
genes from5 normal tissues,28 benign epithelial ovarian
tumor samples, and6 malignant epithelial ovarian cell lines.
This dataset involves three classes. This problem was han-
dled as follows. First, we built three binary classification
problems using the well know “one versus all the others”
procedure. For each two-class problem, KPLS was then ap-
plied to conduct prediction via the leave-one-out cross vali-
dation (LOOCV). LOOCV accuracy provides more realistic
assessment of classifiers which generalize well to the test
data. Finally, each sample was assigned to the class with
maximal predicted probability value. With a linear kernel
K = x′

ixj , we trained the models with 150, 200, 250, 300
informative genes. For such a linear kernel, we also trained
the model with all genes involved. In all cases, the test error
is 1. A plot of the performance is shown in Figure 2.
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Figure 2: Performance on OVARIAN of KPLS with linear
kernelK = x′

ixj and all genes.

The performance of KPLS may be improved by using
nonlinear kernels. For example, with nonlinear polynomial
kernelK(xi,xj) = (x′

ixj + 1)2, the test error is0 for mod-
els with 150, 200, 250, and 300 informative genes. A plot
of the performance in this scenario is shown in Figure 3.
Figure 3 shows the predicted probability from each binary
classifier with nonlinear polynomial kernelK(xi,xj) =
(x′

ixj + 1)2. In Figure 3, the probability for benign tumor
14 being a tumor is 0.9999 and the probability for it being
normal is 0.73. Based on the voting method, benign tumor
14 is classified correctly as a tumor. KPLS with a nonlinear
kernel performs better than that with a linear kernel in this
real application.
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Figure 3: Performance on OVARIAN of KPLS with nonlin-
ear kernelK(xi,xj) = (x′

ixj + 1)2 and 100 genes.

LUNG CANCER
LUNG CANCER dataset has 918 genes, 73 samples, and
7 classes. 100 most informative genes were selected for



the classification. The computational results of KPLS and
other methods are shown in Table 1. The results from SVM
for LUNG CANCER, LYMPHOMA, and NCI shown in this
paper are those in Ding and Peng (2003). The six misclassi-
fications of KPLS are provided in Table 2.

Table 1:Comparison for LUNG CANCER

Methods Number of Errors
KPLS 6
PLS 7
SVM 7

Logistic Regression 12

Table 2:Misclassifications of LUNG CANCER
Sample Number True Class Predicted Class

6 6 4
12 6 4
41 6 3
51 3 6
68 1 5
71 4 3

LYMPHOMA
LYMPHOMA dataset has 4026 genes, 96 samples, and 9
classes. 300 most informative genes were selected for the
classification. A comprison among KPLS and other methods
is shown in Table 3. Misclassifications of LUNG CANCER
with KPLS are given in Table (4). We can see there are
only 2 misclassifications of class 1 (NSCLC) with our KPLS
algorithm.

Table 3:Comparison for LYMPHOMA

Methods Number of Errors
KPLS 2
PLS 5
SVM 2

Logistic Regression 5

NCI
NCI dataset has 9703 genes, 60 samples, and 9 classes. A
comparison of computational results is summarized in Ta-
ble 5 and the details of misclassification are listed in Table6.
KPLS performs extremely well for this particular dataset.

Conclusion
We have introduced a nonlinear method for classifying gene
expression data by KPLS. The algorithm involves nonlinear
transformation, dimension reduction, and logistic classifica-
tion. We have illustrated the effectiveness of the algorithm
in real life tumor classifications. Computational results show

Table 4:Misclassifications of LYMPHOMA
Sample Number True Class Predicted Class

64 1 6
96 1 3

Table 5:Comparison for NCI

Methods Number of Errors
KPLS 3
PLS 6
SVM 12

Logistic Regression 6

that the procedure is able to distinguish different classeswith
a high accuracy. Our future work will focus on providing a
rigorous foundation for the algorithm proposed in this paper.
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