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Abstract

The intensive care unit is a challenging environment to both
patient and caregiver. Continued shortages in staffing, princi-
pally in nursing, increase risk to patient and healthcare work-
ers. To evaluate the use of intelligent systems in the improve-
ment of patient care, an agent was developed to regulate ICU
patient sedation. A temporal differencing form of reinforce-
ment learning was used to train the agent in the administra-
tion of intravenous propofol in simulated ICU patients. The
agent utilized the well-studied Marsh-Schnider pharmacoki-
netic model to estimate the distribution of drug within the
patient. A pharmacodynamic model then estimated drug ef-
fect. A processed form of electroencephalogram, the bispec-
tral index, served as the system control variable. The agent
demonstrated satisfactory control of the simulated patient’s
consciousness level in static and dynamic setpoint conditions.
The agent demonstrated superior stability and responsiveness
when compared to a well-tuned PID controller, the control
method of choice in closed-loop sedation control literature.

Introduction
The Intensive Care Unit (ICU)1 represents a challenging
environment to patient and staff alike. ICU patients may
experience high anxiety levels from the general environ-
ment, and effective sedation2 is necessary to soothe the pa-
tient and to obliterate asynchronous breathing or movement
that might interfere with adequate oxygenation (Kowalski
& Rayfield 1999). In recent years, a shortage of ICU
nurses has resulted in patient mortality (Aiken et al. 2002;
Lasalandra 2001) among other negative outcomes. Nor-
rie (1997) observed that the ICU nurse’s greatest time ex-
pense was “direct nursing care,” including the administra-
tion of intravenous sedating drugs. It is thus reasonable
to conclude that automating some aspects of the intensive
care environment (like patient sedation) can positively im-
pact overall ICU patient care.

Reinforcement learning (RL) represents a relatively new
framework for constructing and applying intelligent agents.
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1“Intensive Care Unit” is a general label for several critical care
environments including the Medical, Surgical, Cardiac, and Burn
ICUs.

2Sedation is a drug-induced depression of consciousness (Task
Force on Sedation and Analgesia by Non-Anesthesiologists 1996).

RL merges ideas from stochastic approximation and opti-
mal control theory with the traditional concept of the intel-
ligent agent. Much of the current research in reinforcement
learning has been dedicated to autonomous robotic applica-
tions (Russell & Norvig 1995; Sutton & Barto 1998). RL
has demonstrated favorable results in the associated prob-
lem domains; however, the extent of RL’s aptitude for other
specialized planning tasks remains incompletely explored.
Several encouraging works exist: Guallapalli demonstrated
that RL could successfully perform closed-loop control of
the benchmark peg-in-hole task (Gullapalli 1993), and Hu
applied some of the founding principles of reinforcement
learning to anesthesia control with favorable results (Hu,
Lovejoy, & Shafer 1994).

Background
Target Controlled Infusion (TCI) systems were originally
deployed in the operating room to aid in the intraopera-
tive management of general anesthesia. TCI devices al-
low the clinician to select a target blood level of the drug;
the system then dispenses the drug at a combination of bo-
lus and maintenance infusion rates to achieve and main-
tain the desired level. The TCI system selects an infusion
rate based on a precomputed drug-patient interaction model,
and the clinician may be expected to provide a variety of
model-specific patient parameters, which can include gen-
der, height, weight, and age. TCI systems were initially eval-
uated in the clinical setting and found satisfactory (Swin-
hoe et al. 1998), safety and efficacy did not differ statis-
tically from manually-controlled intravenous infusion sys-
tems (Hunt-Smith et al. 1999). Since target-controlled drug
delivery systems have been introduced into the operating
theater, clinicians have observed favorable patient outcomes,
such as decreased intraoperative drug administrations and
shortened postoperative arousal times (Theil et al. 1993;
Servin 1998). TCI has since migrated from the surgical the-
ater to the critical care arenas.

Despite the favorable outcomes associated with the use of
target-controlled drug infusion systems, inherent limitations
exist. The drug-patient interaction models, known as phar-
macokinetic/pharmacodynamic (PK/PD) models, character-
ize the distribution of the drug within the body (pharmacoki-
netics), as well as the effect of the drug (pharmacodynam-
ics). The PK/PD models are highly specialized and are usu-



ally derived from a small number of relatively healthy pa-
tients (Vuyk et al. 1995). These models are thus challenged
by disease pathologies, interactions with other pharmaceuti-
cals, and other variabilities (even simple demographics) en-
countered in an actual patient.

Target-controlled infusion systems generally perform
open-loop control. The standard TCI system is not equipped
with a feedback mechanism and simply assumes the patient
responds in “average” fashion. Modeling errors resulting
from the above influences remain uncorrected. Albrecht
concluded that closed-loop sedation in the ICU is a ratio-
nal component of sound patient care (Albrecht et al. 1999).
This conclusion is motivated in part by the rigors of the ICU
environment; sedation in the intensive care unit is not al-
ways a static process. Recent research indicates that waking
patients once a day may improve outcomes and shorten the
duration of mechanical ventilation (Kress et al. 2000). Fur-
thermore, long-term ICU patients may develop a tolerance
to the drug and require greater doses to maintain sedative
effect (Fulton & Sorkin 1995). As Barr reports, the optimal
dosing of sedatives in the ICU is a dynamic, multivariate
process (Barr et al. 2001).

Most of the current research in closed-loop sedation uses
some form of electroencephalogram (EEG) as the control
variable (Leslie, Absalom, & Kenny 2002; Absalom, Sut-
cliffe, & Kenny 2002; Sakai, Matsuki, & Giesecke 2000;
Struys et al. 2001; Mortier et al. 1998). EEG is a well-
studied indicator of the state of the central nervous system,
and its analysis has been used in the diagnosis of neuro-
logical disorders, as well as the intraoperative monitoring
of anesthetic efficacy. The bispectral index (a processed
form of EEG) has been identified as a reliable indicator of
sedation for some drugs. Bispectral index, or BIS™ 3, is
a statistically-derived measure of consciousness in which a
value of 100 indicates complete wakefulness, and 0 indicates
an isoelectric brain state.

Modeling the ICU Patient
The first choice in modeling the patient is drug selection.
From a purely engineering perspective, the choice of seda-
tive agent is not particularly relevant. However, clinical
concerns drive drug selection, and the choice of drug deter-
mines the patient interaction model. Ideal sedative charac-
teristics for the ICU include titrability, stable hemodynamic
responses, fast onset, and fast offset. Of the sedative agents
meeting these criteria, midazolam and propofol are the fron-
trunners; propofol is more generally favored for ICU seda-
tion (Fulton & Sorkin 1995; Ronan et al. 1995). Mortier
observed that the bispectral index is a suitable control vari-
able for control of propofol sedation (Mortier et al. 1998).

Several PK/PD models exist for propofol interaction. The
Marsh model is widely studied (Marsh et al. 1991) and rep-
resents the patient as a collection of three compartments:
central, rapid, and slow. The central compartment corre-
sponds to the patient’s apparent volume of blood (and the

3BIS™ is a trademark of Aspect Medical Systems, Newton,
MA.
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Figure 1: A four-compartment drug distribution model

site of drug infusion); the rapid and slow compartments rep-
resent different collections of tissue, fat, and bone. The
Marsh model is defined by the following diffusion constants:

• k10 metabolic clearance, 0.1190/min,

• k12 central to rapid clearance, 0.1120/min,

• k21 rapid to the central clearance, 0.0550/min,

• k13 central to rapid clearance,0.0419/min,

• k31 rapid to central clearance, 0.0033/min.

An improved model was obtained by adding a fourth com-
partment to model the drug’s effect site in the brain: ke0 =
1.2195/min (Struys et al. 2000; Marsh et al. 1991;
Schnider et al. 1999). Drug transport between compart-
ments is governed by a set of first-order differential equa-
tions. Using Ψ to represent the four-element vector of com-
partmental quantities, distribution of propofol can be mod-
eled with the following equations:

∂ψ1

∂t
= ψ2(t)k21 +ψ3(t)k31−ψ1(t)(k10 + k12 + k13)+ I ,

∂ψ2

∂t
= ψ1(t)k12−ψ2(t)k21,

∂ψ3

∂t
= ψ1(t)k13−ψ3(t)k31, and

∂ψe

∂t
= ψ1(t)ke0−ψe(t)ke0.

Figure 1 presents a block diagram of the model4. Figure 2
illustrates the model’s response to a bolus of propofol at t =
0. The dynamic nature of the model, particularly the effect
site’s delay in following the central compartment, present
interesting challenges for the controller.

Figures 1 and 2 illustrate pharmacokinetics, or drug distri-
bution. The pharmacodynamics of propofol (the relation of
effect-site concentration to bispectral index) were estimated
using the following equation (Doi et al. 1997):

BISmeasured =−12.8 ·υe +93.6,

where υe was the effect site concentration of propofol.

4Figure 1 also illustrates a physiological reality which limits
controllers using intravenous infusions. Propofol cannot be me-
chanically removed from the patient’s blood, and upward setpoint
changes can only be accommodated by the controller choosing a
“do-nothing” action.
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Figure 2: The model’s response to a bolus of propofol

Methods
This section outlines the agent’s architecture in terms of
learning method and state space representation. These dis-
cussions also cover implementation specifics including the
agent’s inputs, actions, and other learning parameters. This
section also describes the method of assessing agent perfor-
mance.

Learning Technique
The objective was to assess the suitability of reinforce-
ment learning to ICU sedation. Watkins’ Q-learning tech-
nique (Watkins 1989) is appealing due to its mathematical
soundness (Sutton 1987; Dayan 1992; Tsitsiklas & Van Roy
1996) and has become the de facto standard in the study
of reinforcement learning. Q-learning is a temporal dif-
ference learning method characterized by model-free, off-
policy learning. This technique learns an action-value func-
tion by iteratively advancing intermediate policies to opti-
mality. The equation below, a Bellman expression of the
Q-learning update rule, emphasizes an important aspect of
the technique: the value of a state-action pair is expressed
in terms of the value of successor states encountered under
policy π.

Qπ(sss,a) = ∑
a

π(sss,a)∑
s′

P a
ss′

[

R a
ss′ + γQπ(sss′,a)

]

The basic Q-learning algorithm has since been improved
to provide one of the strengths of dynamic programming,
multi-step backups. The resulting algorithm, Q(λ), is shown
in Figure 3. Q(λ) uses the eligibility trace and the pa-
rameter λ ∈ (0,1) to vary temporal credit assignment for
faster learning (Sutton & Barto 1998). After experimen-
tation, one favorable reward propagation scheme was ob-
served when λ = 0.998, while γ (the reward discounting pa-
rameter) equaled 0.80.

Inputs
The agent utilized two external inputs and four internal in-
puts to control the patient’s level of consciousness. The
desired bispectral index and the measured bispectral index
were combined to form the control error, BISerror. The
agent also employed an internal instance of the Marsh-
Schnider PK/PD model for estimates of the four compart-
mental propofol concentrations, ϒ = [υc,υr,υs,υe].

Initialize Q(sss,a), e(sss,a)∀ sss,a arbitrarily
Repeat (for each episode)

Initialize sss,a
Repeat (for each step in the episode)

Take action a, observe r, and transition to sss′

Choose a′ from sss′ using ε-greedy policy
a∗← argmaxb Q(sss′,b)
δ← r + γQ(sss′,a∗)−Q(sss,a)
e(sss,a)← 1
∀ sss,a

Q(sss,a)← Q(sss,a)+αδe(sss,a)
If a′ = a∗, e(sss,a)← γλe(sss,a)
else e(sss,a) = 0

sss← sss′

a← a′

Until sss is terminal

Figure 3: A Q(λ) algorithm for learning optimal poli-
cies (Sutton & Barto 1998)

Actions
The agent could choose from the following set of propofol
infusion rates A = {0.0,0.1,0.5,1.0,2.0,4.0} (ml/min). To
maintain consistency with existing precision syringe pumps,
each action was considered atomic for a ten-second inter-
val. Chosen actions were uninterruptible for this duration;
once an action expired, the agent was free to choose another
action from A .

Reward Function
Reward is an immediate mapping from state to value and is
the basis for agent’s goal: “a reinforcement learning agent’s
sole objective is to maximize the total reward it receives
in the long run (Sutton & Barto 1998).” Rewards may be
viewed as positive reinforcements for favorable behavior or
as negative reinforcements for unfavorable behavior. A suc-
cessful agent was developed using the reward function be-
low:

r =−|BISmeasured−BISdesired |=−|BISerror| .

This reward function was bounded to the interval (−100,0).

State Space Representation
Reinforcement learning tasks frequently use a function ap-
proximator to store the value function (the basis for mak-
ing optimal decisions). Uniformly discretized tables are
straightforward to implement and mathematically robust.
Baird observes, “Algorithms such as Q-learning. . . are guar-
anteed to converge to the optimal answer when used with a
lookup table (Baird 1995).” However, this approach is prone
to tractability problems as the table size grows exponentially
with increased dimension. The problem of concisely repre-
senting highly-dimensional state spaces is not new and has
been the object of study for some time (Sutton & Barto 1998;
Bellman, Kalaba, & Kotkin 1963). Regrettably, many al-
ternatives fail to reliably converge to optimal policy when



Table 1: Input ranges and partitions
Input Min Max Units Knots

BISerror -20 20 BIS™ 21
υc 0 1×105 µg 10
υr 0 1×105 µg 10
υs 0 1×105 µg 10
υe 0 8×104 µg 10

used with reinforcement learning (Thrun & Schwartz 1993;
Boyan & Moore 1995; Sutton & Barto 1998).

One alternative is to enhance the discretized table with
linear interpolation. The interpolated representation parti-
tions the space in a manner similar to the discretized ta-
ble. However, the partition boundaries now serve as con-
trol points for a first-order spline approximation. This tech-
nique assumes that regions between the partition boundaries
may be satisfactorily fit in piecewise-linear fashion; hence,
linear interpolation represents the value function in continu-
ous space. Davies (1997) observed good performance with
linearly interpolated value functions, though the state space
was coarsely partitioned. Gordon (1995) developed a proof
of convergence for a class of fitted temporal difference algo-
rithms that includes linear interpolation.

To generalize linear interpolation, first consider the three-
dimensional case. Given a regular bounding region in 3-
space, the interpolated value f̂ may be determined by:

f̂ =
23−1

∑
i=0

wi · fi,

where wi is the interpolation weight at the ith vertex, and fi
is the function’s value at vertex pi. The interpolation weight
vector W is constrained such that f̂ = fi when the interpo-
lating point is coincident with a cell vertex.

To apply the interpolation method to an arbitrary dimen-
sion d, the bounding region must be translated and scaled to
the unit hypercube. Given that X represents the coordinates
of the interpolation point [x0,x1, . . . ,xd−1], F is the set of
vertex values

[

f0, f1, . . . , f2d−1

]

, and Pi represents the set of

coordinates for vertex i,
[

pi
0, pi

1, . . . , pi
2d−1

]

, the following

equation may then be applied:

f̂ =
2d−1

∑
i=0

fi

d−1

∏
j=0

(

1−
∣

∣x j− pi
j

∣

∣

)

.

This interpolation process is O(2d), but interpolating over
simplicial meshes (rather than hypercubes) can reduce the
complexity to O(d) (Munos & Moore 1999).

Table 1 summarizes the RL agent inputs, as well as the
number of partitions for each dimension. The value func-
tion approximation consisted of 1.26×106 entries (one five-
dimensional table of 210,000 entries for each of the six pos-
sible actions).

Performance Evaluation
The root-mean-squared error (RMS error) metric was used
to evaluate the performance of the agent over three differ-

Table 2: Tested sedation profiles
Profile Interval Target

(min) BIS™

1 0 - 120 50
2 0 - 20 50

20 - 80 80
80 - 130 40

3 0 - 80 40
80 - 160 94

160 - 240 40
240 - 320 94
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Figure 5: Observed responses to setpoint transition

ent sedation profiles. These profiles, summarized in Table 2,
assessed the agent’s control capacity under a variety of tran-
sient and steady state conditions. While the exact timings
and target BIS™ levels were somewhat arbitrarily chosen,
they represent fair and reasonable dosing events. For com-
parison, a proportional-integral-derivative (PID) controller
was also constructed. The equation below summarizes a ba-
sic parallel PID control law in which a controlling signal, u,
is computed from the weighted proportional, integral, and
derivative terms:

u = Kpe+
1
Ki

∫

edt +Kd
∂e
∂t

.

The PID controller performed well for constants Kp = 0.1,
Ki = 600, and Kd = 0.8 where u was the prescribed infusion
rate and e = BISerror.

Results and Discussion
Both the RL agent and the benchmark PID controller
demonstrated good control characteristics. Figure 4 illus-
trates the behavior during one of the more challenging seda-
tion profiles. As shown, the agent effected a quick transition
to the initial setpoint, then maintained the setpoint with min-
imal deviation. At t = 80, a waking event was simulated and
the agent correctly chose the “do-nothing” action allowing
the patient to clear the drug and approach consciousness. At
t = 160, deep sedation was targeted again. Although the
patient’s propofol load differed significantly from the initial
transition, the agent achieved this setpoint equally well. Ta-
ble 3 summarizes the RMS error for all tested profiles.
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Figure 4: RL agent using linearly interpolated value function approximation (RMSE=13.72)

Table 3: RMS error observed in tested profiles
Profile PID RL

# 1 4.93 4.12
# 2 7.25 6.73
# 3 17.63 13.72

Benefits
The intelligent agent demonstrated an ability to reliably con-
trol the simulated patient’s consciousness level through tran-
sition and steady-state periods (Figure 4). Table 3 illus-
trates satisfactory control over all tested scenarios. Figure 5
is particularly encouraging; short, controlled transitions are
highly favored in sedation, but are a challenge for automa-
tion 5.

From an applied standpoint, provably optimal solutions
(such as the RL agent) are appealing in life-critical appli-
cations. The bounded, tabular nature of the agent’s world
model assures that well-defined behaviors are associated
with each state in the model. In addition, the temporal dif-
ference learning method deterministically yields the opti-
mal control policy under reasonable assumptions. It is also
important to note that constant-coefficient PID controllers
(such as the benchmark controller and those used in cur-
rent sedation research (Leslie, Absalom, & Kenny 2002;
Absalom, Sutcliffe, & Kenny 2002)) are optimal only in the
average sense. Undesirable control characteristics, like the
oscillations reported by Leslie and Absalom, are not uncom-
mon when PID control is applied to noisy, uncertain pro-
cesses.

Limitations and Future Work
The RL agent studied in this work encountered three closely-
related limitations. First, the agent assumed the patient
would respond in the “average” fashion stipulated by the
Marsh-Schnider model. Of course, the individual patient
can be expected to vary from this ideal to some unknown
degree. Second, the Marsh-Schnider PK model considers
the patient weight to be an influential cofactor; however, this
research was limited to simulated patients weighing 70 kg.

5A recent study in sedation relied on the clinician to manually
effect the initial loading of propofol (Leslie, Absalom, & Kenny
2002).

Lastly, the agent’s internal Marsh-Schnider model assumed
no propofol was present in the patient’s system prior to its
administration of the drug. (Propofol is commonly used in
the operating room, and the intensive care unit is a frequent
destination for post-operative patients.) All of these limi-
tations could be removed if the agent were equipped with
online adaptivity: the capability to modify the learned value
function in the presence of a systematic control bias.

The next step is to ready the agent for the rigors of con-
trol in the actual environment. Physiological systems are
notorious for their uncertainty and noise, and the agent must
be prepared to handle noisy observations, as well as bi-
ased patient responses. Once these measures are established,
the agent can be evaluated outside of simulation. It is ex-
pected that the RL agent will regulate consciousness more
effectively than existing techniques, and this hypothesis can
be confirmed under controlled laboratory trials using hu-
man subjects (with appropriate review board approval and
a physician’s supervision). These trials would also present
an opportunity to improve the agent and support enhance-
ments, such as online learning.

Conclusions
ICU patient sedation proved to be an interesting experiment
in intelligent system control. The domain was challenging,
but well-defined: prior clinical research demonstrated the
efficacy of the bispectral index as a control variable, and ex-
isting pharmacokinetic/pharmacodynamic models provided
a workable simulated patient. The RL agent demonstrated
an ability to regulate the simulated patient’s consciousness
within acceptable limits, and the agent learned to dose the
patient with the characteristics of good process control:
rapid, well-managed transitions with stable steady-state re-
sponses. The RL agent compared favorably with the PID
controller, a conventional control technique currently being
applied in closed-loop sedation research.
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