
A Functional and Behavioral Knowledge-based Implementation for Intelligent
Sensors/Actuators

R.Dapoigny and P.Barlatier and L.Foulloy and E.Benoit
LISTIC-ESIA

B.P.806 ANNECY cedex (France)
Phone: +33 450 096529 Fax: +33 450 096559

{richard.dapoigny,patrick.barlatier,laurent.foulloy,eric.benoit}@univ-savoie.fr

Abstract

As the complexity of industrial processes increases,
it requires the use of intelligent sensors or actuators
(known as Intelligent Instruments) to allow for more
comprehensive and efficient behavior of the system to
be monitored. These components achieve some global
goal called a service through the use of a set of ele-
mentary actions (internal services). A challenging task
in networked intelligent sensors/actuators, is to allow
for automated interactions between arbitrary services on
networked components. To resolve this task, two suc-
cessive problems emerge, first the design of consistent
control systems with appropriate knowledge and second
the monitoring which concerns the dynamic behavior of
such distributed control systems. In this paper, we fo-
cus on the first aspect and provide an implementation of
a knowledge representation model where services can
be structured and related via a mereo-topological ap-
proach. The domain ontologies include a system ontol-
ogy which is application-dependent, a functional ontol-
ogy which relies on teleology and a behavioral mereo-
topology extending the functional mereology. To sup-
port the behavior representation, we propose a GUI
based on a modified existing formalism (DAML-S).
We discuss the knowledge representations in depth and
present the design supporting system centered on the
mereo-topological approach for intelligent sensors and
actuators

Introduction
Technological advances in the areas of industrial networks
and micro-controller capabilities promote the design of sys-
tems composed of smart components called Intelligent In-
struments (II). Their fundamental property is the inclusion
of an active processing element (a micro-controller) which
encapsulates a number of functionalities, known as external
services, and that are accessible through a network interface
via perceptual channels Bouras & Staroswiecki (1997). In
the modelling of artificial systems or natural systems, the
knowledge about the system can be divided from an epis-
temologic point of view, into three parts, knowledge about
causality, knowledge about relationships and knowledge

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

about functionality Bruegge & Dutoit (1999). The knowl-
edge about relationships also called structural model de-
scribes the entities and their relationships, while the knowl-
edge about functionality focusses on formal specifications
such as goals, pre and post-conditions. In II, each instrument
manages information describing the knowledge concerning
the physical system which is interacting with the instru-
ments and the knowledge about the instruments themselves
including their functional capabilities defined in the design
process and the effective behavior emerging from the run-
time process Dapoigny, Benoit, & Foulloy (2003). There-
fore, in this paper we tackle the following design oriented
problem: given a physical system related to an II, we check
the user-defined functions that can achieve a desired behav-
ior using the knowledge of its structure and initial dedicated
functions. An integrated knowledge-based system centered
on mereo-topology is implemented through a graphical tool
(GCAPTOOL) which requires users specifications of an in-
strument at a functional level and translates them into a set of
services, internal services, events and functioning modes. A
coherent and complete knowledge database has been inves-
tigated. It is centered both on a small number of concepts
that will serve as a basis for a behavioral analysis and on
a structured knowledge with a mereo-topological approach
intended to support intelligent behavior. Section 2, intro-
duces the basic features of intelligent instruments. Section
3 discusses the role of major concepts in the area of intel-
ligent sensor/actuators. Section 4 proposes rough outlines
of a knowledge-based mereo-topology including functional
and behavioral requirements. Implementation is reported in
section 5.

Intelligent Instruments
Formally, an II is seen as an artifact related to a chunk of
engineering process allowing two processes to coexist con-
currently, i.e., a physical process and a control process. We
presuppose that the physical process evolves more slowly
that the control process (real-time condition). The control
process takes into account both meta actions which are re-
lated to the physical process states (corresponding to mea-
surements) and actions on the process itself. These two con-
ceptual levels have been pointed out by several authors such
as Spalazzi & Traverso (1999)Toppano (2002) and must be
included into the knowledge modelling. In each service, a



sequence of internal services which are linked through an
ordered graph acts like a plan. For the design of intelligent
instruments, dedicated instrument functionalities (describ-
ing the interface control unit-physical sensor/actuator) are
implemented in basic internal services. The instruments de-
signer only focusses on external service composed with a
set of internal services. A basic external model of an intel-
ligent instrument was proposed, based on services and op-
erating modes Benoit, Foulloy, & Tailland (2001). Services
are organized into subsets called ”USer Operating Modes”
(USOM). In this model, a sensor service can be required,
only if the current active USOM includes this service. This
prevents requiring services when they can not be available.
Unfortunately, this model is unable to provide automated in-
teractions between arbitrary allocated services on distributed
instruments, and the static graph appears to be inappro-
priate to reason about dynamic knowledge. Therefore, a
knowledge-based model has been proposed to extend the
previous one.

Basis of the Knowledge-based Model
This section gives outlines of the knowledge-based model
dedicated to intelligent sensors/actuators. The analysis is
limited to the class of artefacts whose behavior can be in-
terpreted in terms of flow structures such as energy or infor-
mation. In related areas such as Process Knowledge Bases
Dooley, Skilton, & Anderson (1998), the authors suggest
that complete information about an engineering or computer
information system is expressed with three types of knowl-
edge (i.e., structural, functional and behavioral knowledge).
We adopt this representation in distributed instrumentation
where the knowledge about the system will be divided into
three concepts and their related knowledge:

• structural knowledge – knowledge about physical objects
and their physical relations

• functional knowledge – knowledge about the purpose and
the way the physical role of objects are used.

• behavioral knowledge – knowledge about the changes in
the environment and relations between states and events.

From the three basic concepts, a set of five sub-concepts can
be identified, i.e. properties, physical components, physi-
cal role (or physical quantity), goal and action. The design
step is primarily concerned with the structural and func-
tional knowledge, whereas the dynamic aspect is more re-
lated to the behavioral knowledge. The structural knowl-
edge is represented with a system mereo-topology which
describes the physical environment of sensors and (or) ac-
tuators. This mereo-topology highlights both the concepts
of physical entity through a mereology and the concept of
physical role (or quantity) which connects two physical en-
tities iff there exists an energy path between them Borst et
al. (1995). This rule allows for dependence relations be-
tween variables through their semantic representation. For
the functional and behavioral knowledge, we investigate a
functional ontology which is extended with topological fea-
tures (pre-conditions including event occurrences) to build
a behavioral mereo-topology. This ontology provides the

Figure 1: Concepts for Intelligent Instruments

ability to reason automatically with functional models based
on their goals and on their way to achieve them. The rela-
tion between structural and functional ontologies relies on
the variable semantics. While the mereology is the quali-
tative formalization of the part-of relationship between en-
tities, the topology deals with the connection relationship
Simons (1987). As suggested in Salustri (1998), mereology
and topology can be applied to functional knowledge and,
as a consequence, they seem to have obvious application to
the modelling of instruments. First, mereology and topology
promote structured analysis and provide a framework that is
as significant as problem complexity increases. Second, they
help prune the search space of possible functions by elimi-
nating functions that are logically inconsistent with attain-
able goals. Third, as a network of logical relations results
from mereology and topology, more sophisticated decision
process can be explored at run-time based on dependence
relations. Fourth, these theories can be embedded into im-
proved computer-based tools. The major advantage is that
end-users will have increasing time to focus on aspects of
new functionalities development and design for which the
human mind is more suited.

The Mereo-topological Representation
Representation of states
We consider variable representation as physical entity and
physical role which is related to the physical quantity de-
fined in standard ontologies Gruber & Olsen (1994) or to
the modelling law describing the physical mechanism. Let
us consider the sort of individuals denoting the physical en-
tities of the physical system related to the instrument, the
sort of physical roles which can be either physical quantities



or control/monitoring roles, the sort of values (either real or
linguistic constants), the sort of predicates and their respec-
tive associated sets, ⊕, R, V and P .

Definition 1 In a functioning mode referred by i, a local
state si represents a set of properties at a given time t, where
each property is expressed as a predicate such as :

si =
∧

j

Πij where Πij ∈ Pn (1)

each predicate Πij denotes an atomic state and n refers to
the maximum number of predicates in the mode i.

With such a knowledge representation, the state is unique,
that is to say, when switching between two different states,
at least one property must change. Examples of atomic and
local states :

sm1 = P1 = Holds(x spectral sensitivity, sample, 0.35)
sm2 = P3 ∧ P4 ∧ ¬P2 = Open(position, Valve) ∧ Greater

Than(speed, speed0, water1) ∧ ¬Achieved(to compute

speed, I1)

Functional knowledge
Functions must contain device-independent knowledge that
will be used to determine potential behavior (normal, de-
graded or out of order). This assumption facilitates the
construction of knowledge databases and allows to clas-
sify functions relatively to the designers intents. In the
context of intelligent instruments, assuming the teleologi-
cal interpretation, functions must represent the functional
role that supports a given physical process. extracted from
functional patterns dedicated to specific instruments or de-
fined by the end user. Any functional concept will be de-
scribed by a (sub-)goal definition which is related to the in-
tensional aspect of function Lind (1994) and some possible
actions (at least one) in order to fulfill the intended (sub-
)goal Hertzberg & Thiebaux (1994)Lifschitz (1993). The
functional modelling requires first to define how functional
concepts (i.e., goals and actions) are related, and secondly
to describe their representation (i.e., data structures).

- Unlike general framework where goals cannot be formal-
ized and relationships among them cannot be semantically
captured, the present framework restricted to engineering
physical entities makes it possible to describe a mereol-
ogy of goals. As a consequence, an individual f is a
functional part of a whole F iff its subgoal is required to
achieve the upper goal (property φ). Complex goals can
be expressed as a mereological fusion of atomic goals. In
the context of mereology, a satisfied predicate φ over en-
tities f defines the mereological fusion (or mereological
sum) of those entities, if it exists, as the thing which over-
laps all and only those things which overlap some f such
that φ Varzi (1996)Smith (1996). Some important con-
sequences are that empty sums do not exist (a given in-
strument has at least one definite goal). One of the major
benefits of mereological framework is that it allows for
different abstraction level to appear in the same model.
The effective actions which implement the goal intents
are performed by C or Java computing functions.

- Representation of functions as ”to do X” has been used by
several researchers Umeda & al. (1996)Miles (1981) and
we extend that textual definition of the function goal in
the following way:

Definition 2 An atomic goal represents the mapping
VA ×Rn × Φn → G as the tuple g =< vA, {ri, φi} >,
vA ∈ VA, ri ∈ R, φi ∈ Φ and g ∈ G where VA, R, Φ and
G are the sets associated with the respective sorts of verbs
describing elementary actions, the sort of physical roles
(physical quantities or control/monitoring roles), the sort
of physical entities of the physical system related to the
instrument, and the sort of elementary sub-goals.

The integer value n denotes the amount of pairs {ri, φi}
involved in a given goal.

In such a way, a functional model of the physical sys-
tem is built by associating the teleological part of func-
tions with the structural part, i.e. the physical compo-
nents of the system. Examples of atomic sub-goals are:

g1 =< To acquire, x spectral sensitivity, sample >
g2 =< To act upon, position, Valve >
g3 =< To act upon, angle, axis >

With a limited set of appropriate elementary actions, any
subgoal is defined by merging it with the physical role and
the concerned component. A small number of pre-defined
generic verbs Dapoigny, Benoit, & Foulloy (2003), creates
elementary sub-goals which can be joined to form more
complex goals at the service level or the mode level. An
example of functional mereology is detailed in subsection
Application.

Behavioral knowledge
In related areas such as dynamic logic, actions are described
through preconditions and effects Harel (1984). Precondi-
tions capture the fact that actions cannot be executable in
all states. Similarly, we define the behavior as based on
pre-(post)conditions and actions which must represent the
available processes in the instruments. The behavioral the-
ory reflects the causality of the system with a representation
by causal predicates. In order to relate functional concepts
to the behavioral model, we argue that a given behavior can
be derived from two root concepts, the event concept (that
can be seen as a predicate true if this event has occurred)
and the action concept. As the action concept is also re-
lated to the functional mereology, the functional mereology
will be extended by supplementary concepts to form the be-
havioral mereo-topology. A similar result is pointed out in
Kitamura & Mizoguchi (1998) which argue that the function
is inseparable from the behavior. Events establish a causal
link between atomics behaviors.

Definition 3 An event which represents an asynchronous
signal between processes is formalized by the predicate
Achieved(a, p) which becomes true as soon as the action
a is complete in process p.

Definition 4 An action represents the execution of a given
(meta)function conditioned with input conditions (pre-
conditions).



While a goal and its associated action have similar represen-
tations, the goal is an intensional concept whereas the action
denotes the realization of this goal. The instrument model
must include a set of predicates and relations are meaning-
ful for further elaboration of the behavioral specification. As
mentioned in Kmenta, Fitch, & Ishii (1999), a behavior can
be decomposed into smaller atomic behaviors. We define an
elementary or atomic behavior and a complex behavior as
follows:

Definition 5 An atomic behavior bij is represented by the
set :

bij = {ΠI
ij ∪ Exec(aj) ∪ ΠO

ij},
ΠI

ij ∈ Pn,ΠO
ij ∈ Pm, and aj ∈ A (2)

where A and P are the sets associated with the respective
sorts of elementary actions and the sort of time-dependent
predicates also known as fluents, n and m the respective
numbers of input and output predicates, I and O denoting
the respective input and output predicates.

Definition 6 A complex behavior is seen as a causally or-
dered sequence of atomic behaviors that satisfies a goal.

The topology relies on the connect primitive, where the con-
nection is related to the input conditions also called input
predicates vector. Input conditions have a mandatory ele-
ment, the input event (i.e., P0 = Occurred(ei)), and op-
tional input predicates. Any service describes a behavior
expressed by a graph where the functional nodes are rep-
resented with a single goal and available actions selected
accordingly with pre-conditions. Goals and sub-goals are
related through the function mereology while actions are
selected with input conditions and topologically connected
with event occurrences.

Application
Consider for example, a color sensor which is based on
the spectrum measurement of light. Four modes are imple-
mented, one for the configuration, and three for measure-
ments. The xyz, Y C1C2 and Lab modes specifies the users

g11

g12
G1

g21G2

g31G3

g41

g42
G4

g51

g52

g53

g54

g55

g56

G5

< to configure,

I2 >

< to measure,

spectral
sensitivity >

Instrument2

Figure 2: The color sensor functional mereology.

choice for chromaticity coordinates. As their internal struc-
ture is quite similar, we restrict the discussion to the xyz
mode. Internal events are either user-defined or available in
libraries (in this case there are hardware-dependent).

G1 = < to configure, whiteBalance, sample >
G2 = < to configure, spectrumPrecision, sample >
G3 = < to configure, acquisitionDuration, sample >
G4 = < to configure, defaultSpectrumPrecision, sample,
defaultAcquisitionDuration, sample >
G5 = < to measure, spectrum, Sample >
g11 = < to acquire, rawSpectrum, sample >,
g12 = < to compute, XwhiteSpectralSensitivity, sample,
Y whiteSpectralSensitivity, sample, ZwhiteSpectralSensi
tivity, sample >,
g21 = < to receive, measurementPrecision, sample >,
g31 = < to receive, exposureDuration, sample >,
g41 = < to initalize, XwhiteSpectralSensitivity, sample,
Y whiteSpectralSensitivity, sample, ZwhiteSpectralSensi
tivity, sample >,
g42 = < to initialize, exposureDuration, sample >
g51 = < to receive, G5, dest >
g52 = < to acquire, rawspectrum, area >
g53 = < to compute, XSpectralSensitivity, area, Y Spec
tralSensitivity, area, ZSpectralSensitivity, area >
g54 = < to compute, FuzzyColor, Sample >
g55 = < to compute, spectrum, area >
g56 = < to send, spectrum, Sample >
g57 = < to send, < ext goal >, dest >

Figure 3: The color sensor behavioral mereo-topology.

The Configuration mode holds first a service dedicated to the
adjustment of the white color related to a goal G1, a goal G2

defining the desired precision for spectrum measurement, a
goal G3 which specifies user requirements for the spectrum
acquisition duration and finally, a goal G4 allowing default



initializations. In the xyz measurement mode, a single ser-
vice is related to the global goal G5. Each service goal
is related with one or more sub-goals as described below.
The corresponding mereology is reported in figure 2. Al-
ternatively, figure 3 presents a behavior mereo-topology (in
the measurement mode) related to goal G5 and the possible
pathes (i.e., possible behaviors) in the topology. Initially, all
Achieved()-type predicates are false and the process starts
as soon as P1 is true. Two different behaviors are related
to the desired resolution selected in the configuration mode
where G2 is available, whereas an alternative behavior can
occur if the area color appears to be that of the background
(predicate P3 true). In that last case, the instrument sends
an external goal request to a dependent actuator in order to
rotate the sample holder.

Implementation
The Java-based software Graphical Captool is dedicated to
II design. It relies on a top-down approach with XML as
programming language. The software architecture provides
five layers interacting with four libraries which are respec-
tively:

• GCSysEditio intended for graphical modelling.

• GCServiceEditio dedicated to service modelling.

• GCXML XML, RDF and DAML for flow management.

• GCObComp for source codes generation.

As already mentioned, the semantic structure design of II
is based both on a physical ontology (PO) and a behav-
ioral ontology (BO). A functional description is provided,
either in the C or Java languages. A layout of the graph-
ical architecture of the design tool is depicted in figure 4.
In a first step, the user must create a system including in-

Figure 4: Overview of the GUI architecture

struments attached to a single PO. In a second step, he de-
scribes the physical environment (which generates the PO)

and finally, the available behaviors (BO). In such a way, a
simulation platform for II can be investigated. As a conse-
quence, any instrument can be exported to another system,
its proper required ontology being merged with the destina-
tion one. The Instrument modelling is composed with proper

parts (PP (xy)
def≡ P (xy) ∧ ¬x = y, e.g. PP (mode, ii))

which are reusable. They are stored in libraries and can be
duplicated or aggregated for template use. Templates are
saved as XML files according to an RDF description. The
programming language for II is supplied by the RDF meta-
model. The system meta-model is composed of mereologi-
cal axioms where the XML XPointers provide links between
separate proper part ofs. The model describing objects
which are part of the software architecture follows the de-
sign pattern MVC (Model View Component) implemented
by Swing components. In such a way, the system compo-
nents can be seen either as a metaphorical representation,
or as a RDF description of templates. Therefore, there ex-
ists a semiotic morphism Malcom & Goguen (1998)Goguen
(1999) between the graphical model and RDF description

∃R : (Graph → RDF )(∗ ∈ Graph ∧ (o ∈ RDF ))
such as R(a ∗ b) = R(a)oR(b)) a, b ∈ Graph

i.e. Graph ∼= RDF (3)

these two models follow the same composition rules (e.g.
the mereological rules extracted from the functional model).
The analysis of the graphical models is achieved with a
parser. The resulting meta-model is compiled to provide a
Java agent. The XML file is converted into an object whose
methods can be reified (with Prolog rules.) The Java pro-
gramming language has been selected because it offers a
number of significant advantages. It is the appropriate lan-
guage for Web applications with a wide range of libraries
for graph handling and XML files. Graph management re-
lies on two libraries, JGraph which allows specific graph de-
sign (e.g., for II mode description), and ZVTM from Xe-
rox (grounding for RDF browser of W3C), appropriate for
complex graphs. In order to preserve inter-operability, we
adopt meta data standard for output files (i.e., XML format).
XML file management requires both the Xerces (XML) and
Jena libraries (for RDF and DAML descriptions). The mere-
ological and topological descriptions extend the RDF se-
mantics with Prolog rules as suggested in Conen & Klaps-
ing (2002). Service descriptions take benefits from the
DAML − S description language with the restriction to a
subset (DAML−Sαι). Services which can be either com-
pound services, or atomic services are merged inside a ded-
icated library.

Graphical behavior design. Each model is parsed through
a Java-based inference engine involving the XProlog library
Kalfoglou & Robertson (1999). For instance, during the de-
sign step, one can find (via ontologies) a given service know-
ing its goal, sub-goal or effects. Internal services operating
sequence (atomic services) which is C- or Java-implemented
is captured inside the Model part of DAML − Sαι service
description.



Conclusion
The approach described in this paper proposes an auto-
matic construction of a knowledge base which is appropri-
ate for sensor/actuators control. Significant contribution ap-
pears first on the mereo-topological approach which pro-
vides more accurate structuring of knowledge allowing for
easy formal modelling and multi-agent implementation. An-
other contribution comes from the GUI architecture which
captures appropriate information from behavioral require-
ments input by user. He only describes physical, functional
and behavioral constraints for the system while the GUI con-
structs (both from users and libraries information) knowl-
edge structures which are consistent and which will serve as
a basis for reasoning and distributed planning in the opera-
tional phase. Further works concern a high-level program-
ming language suitable for dynamic planning centered on
reified techniques Douence & Sudholt (2001) with an XML
description. Alternative works will investigate agent imple-
mentation on II to enable automatic remote service integra-
tion based on data dependencies through the network of II.

References
Benoit, E.; Foulloy, L.; and Tailland, J. 2001. Inoms model:

a service-based approach to intelligent instrument design.
In Proceedings of the fifth Conference on Systemics, Cy-
bernetics and Informatics, 160–164.

Borst, P.; Akkermans, H.; Pos, A.; and Top, J. 1995. The
PhysSys ontology for physical systems. In 9th interna-
tional Workshop on Qualitative Reasoning, 11–21.

Bouras, A., and Staroswiecki, M. 1997. How can intelligent
instruments interoperate in an application framework? a
mechanism for taking into account operating constraints.
In IFAC Symposium on Intelligent Components and In-
struments for Control Applications (SICICA), 465–472.

Bruegge, B., and Dutoit, A. 1999. Object-Oriented Soft-
ware Engineering; Conquering Complex and Changing
Systems. Prentice Hall PTR.

Conen, W., and Klapsing, R. 2002. Utilizing host for-
malisms to extend RDF semantics. In Proceedings of Ger-
man Wirtschaftsinformatik Conference.

Dapoigny, R.; Benoit, E.; and Foulloy, L. 2003. Functional
Ontology for Intelligent Instruments. In Zhong, N.; Ras,
Z.; Tsumoto, S.; and Suzuki, E., eds., Foundations of In-
telligent Systems, number 2871 in LNAI, 88–92. Springer.

Dooley, K.; Skilton, P.; and Anderson, J. 1998. Pro-
cess knowledge bases: Facilitating reasoning through
cause and effect thinking. Human Systems Management
17(4):281–298.

Douence, R., and Sudholt, M. 2001. A generic reifi-
cation technique for object-oriented reflective languages.
Higher-order and Symbolic Computation 14(1):7–34.

Goguen, J. 1999. An introduction to algebraic semiotics,
with applications to user interface design. In Nehaniv,
C., ed., Computation for metaphors, analogy and agents,
volume 1562 of LNAI, 242–291. Springer.

Gruber, G., and Olsen, G. 1994. An ontology for engineer-
ing mathematics. In Doyle, J.; Torasso, P.; and Sandewall,
E., eds., Fourth International Conference on Principles
of Knowledge Representation and Reasoning, 258–269.
Morgan Kaufmann.

Harel, D. 1984. Dynamic logic. Handbook of Philosophical
Logic 2:497–604.

Hertzberg, J., and Thiebaux, S. 1994. Turning an action
formalism into a planner: a case study. Journal of Logic
and Computation 4:617–654.

Kalfoglou, Y., and Robertson, D. 1999. Managing onto-
logical constraints. In Proceedings of IJCAI’99. AAAI
Press.

Kitamura, Y., and Mizoguchi, R. 1998. Functional ontology
for functional understanding. In Procs. of the 12th In-
ternational Workshop on Qualitative Reasoning, 77–87.
AAAI Press.

Kmenta, S.; Fitch, P.; and Ishii, K. 1999. Advanced fail-
ure modes and effects analysis of complex processes. In
Procs. of the ASME Design Engineering Technical Con-
ferences, number DETC99/DFM-8939.

Lifschitz, V. 1993. A theory of actions. In Kaufmann, M.,
ed., Proceedings of the tenth International Joint Confer-
ence on Artificial Intelligence, 432–437.

Lind, M. 1994. Modeling goals and functions of complex
industrial plant. Journal of Applied Artificial Intelligence
8:259–283.

Malcom, G., and Goguen, J. 1998. Signs and represen-
tations: Semiotics for user interface design. In Paton, R.,
and Neilson, I., eds., Visual Representations and Interpre-
tations, Springer Workshops in Computing. Springer.

Miles, L. 1981. Techniques of Value Analysis and Engineer-
ing. Mac Graw Hill.

Salustri, F. 1998. Function modeling for an integrated
framework : A progress report. In Cook, D., ed., Procs.
of FLAIRS98, 339–343. AAAI Press.

Simons, P. 1987. Parts: a Study in Ontology. Oxford Uni-
versity Press.

Smith, B. 1996. Mereotopology: A theory of parts and
boundaries. Data and Knowledge Engineering 20:287–
303.

Spalazzi, L., and Traverso, P. 1999. A dynamic logic for
acting, sensing and planning. J. of Logic Computation
9(97-73):1–36. Oxford University Press.

Toppano, E. 2002. Mmforted: a cognitive fostering the ac-
quisition of conceptual knowledge about design products.
Artificial Intelligence in design’02 191–214.

Umeda, Y., and al. 1996. Supporting conceptual design
based on the function-behavior-state modeler. Artificial
Intelligence for Engineering Design, Analysis and Manu-
facturing 10(4):275–288.

Varzi, A. 1996. Parts, whole and part-whole relations: the
prospect of mereotopology. Data and Knowledge Engi-
neering 20:259–286.


