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Abstract 

In recent years, Latent Semantic Indexing (LSI) has been 
recognized as an effective tool for Information Retrieval in 
text documents.  The level of “granularity” in LSI (i.e. 
whether LSI is performed on documents, paragraphs, 
sentences, phrases, etc.) is somewhat of a limiting factor, in 
that LSI comparisons can only be made at the level of 
granularity chosen.   Here we argue that, as long as a record 
of the document structure is maintained, the level of 
granularity may be arbitrarily fine while still allowing for 
comparison at any coarser granularity.  It is shown that the 
reduced-dimension vector for any particular section of a 
document is a function of the vectors of its constituent sub-
sections.  Using this information, we illustrate how LSI can 
be used to compare documents at multiple structural levels.  
One possible application (automated plagiarism detection) 
is discussed as an example of how this method of multi-
level comparison may be used to improve query time in 
fine-granularity LSI applications. 

 
Introduction 

Latent Semantic Indexing (LSI) is a statistical corpus-
based indexing technique that extends the vector-space 
model employed by many standard Information Retrieval 
(IR) techniques by incorporating a dimensional reduction 
step (Landauer, Foltz, and Laham 1998).    As applied to 
textual corpuses, LSI is performed at specific granularity.  
“Granularity” refers to the size of the sections of text 
included in the corpus (i.e. documents, paragraphs, 
sentences, and so on).  Consequently, document 
comparisons are limited to the granularity chosen.  We are 
proposing a method that allows document comparisons in 
LSI to be performed at multiple structural levels, while 
only having to actually perform LSI at a single granularity.  
For LSI applications where fine-grain comparisons 
(queries) are required, this method can be used to improve 
the query time.  One such application – an LSI-based 
plagiarism detection system – will be outlined to illustrate 
how this method can be effectively applied. 

Granularity effectively determines the depth of 
comparison that can be performed with LSI, and thus may 
be viewed as a limiting factor in the utility of the 
application.  If document granularity is used, then only 
coarse grain comparisons of documents can be made.  If a 
finer granularity is used, such as sentence or 
phrase granularity, then only fine grain comparisons can be 
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made.  In some cases, however, it might be useful to be 
able to make both coarse and fine grained comparisons.    

While performing LSI with coarse granularity may limit 
the utility of LSI, we have found that under certain 
conditions the granularity may be arbitrarily fine while still 
allowing coarse grain features of the documents to be 
utilized.  This conclusion is reached via a slightly modified 
view of centroid vector clustering, which we refer to as the 
sum-of-mass method:  If document trees are maintained 
for the contents of some corpus, then the vector for any 
non-leaf node in the tree can be determined exactly from 
the sum of its children’s vectors.  For instance, if LSI is 
performed with sentence granularity (i.e. the low-
dimensional vectors for sentences are computed), the exact 
vectors for paragraphs can be quickly computed as a sum 
of their constituent sentence vectors.   Essentially, this is 
just an exercise in controlled clustering:  the document tree 
structure contains a specific map of known clusters within 
the document (paragraphs are clusters of sentences, 
sections are clusters of paragraphs, and so on).  The 
implication is that documents could be compared at 
multiple structural levels even though LSI is only 
performed at one level of granularity. 

The remainder of this paper is organized as follows:  In 
the next section, a short description of the LSI method is 
offered.  In section 3, we present a short proof of the sum-
of-mass method.  In section 4, an example application that 
utilizes the sum-of-mass method is presented and 
analyzed.  In section 5 preliminary results are discussed, 
and section 6 presents some conclusions and ideas for 
future research. 
 

Latent Semantic Indexing 
In LSI, the projection of the corpus contents into a lower 
dimensional space reveals semantic concepts within the 
corpus (Landauer, Foltz, and Laham 1998).  In other 
words, terms are abstracted to their conceptual meaning, 
while documents are abstracted to a weighted sum of their 
constituent terms’ conceptual meaning.  Revealing the 
semantic concepts within the corpus enables LSI to 
address the issues of synonymy, and to a lesser degree, 
polysemy (Papadimitriou et al. 1998).  In accordance with 
standard IR techniques, term and document vectors in this 
low-dimensional space may be compared via one of a 
number of vector comparison techniques.  Common 
comparison metrics include Euclidian distance and cosine 
similarity (Park and Elden 2003). 



As applied to text documents, LSI begins with an mXn 
term-by-object matrix, where m is the number of terms and 
n is the number of objects (documents, paragraphs, 
sentences, etc.) in the corpus.  Within this matrix, rows 
represent terms and columns represent objects.  The values 
in any given column represent the term frequencies within 
a single object.  Conversely, the values in any given row 
represent the term co-occurrence over all objects.  The 
term frequencies may be weighted locally and globally to 
adjust the relative importance of the terms (Berry, Dumais, 
and O’Brien 1995).  Preparing the term-by-object matrix 
from text documents generally requires a substantial 
amount of pre-processing (Landauer, Foltz, and Laham 
1998). 

Latent Semantic Indexing is most commonly performed 
using the Singular Value Decomposition (SVD).  
Performing the SVD on a matrix A decomposes it into the 
product of three matrices:  
 TVUA Σ=     (1) 
 

The columns of U, referred to as the left singular 
vectors, define the orthonormal eigenvectors of AAT.  
Similarly, the columns of V, referred to as the right 
singular vectors, define the orthonormal eigenvectors of 
ATA.  U contains the singular vectors for the terms, while V 
contains the singular vectors for the objects.  The singular 
values of A, which are the non-negative square roots of the 
eigenvalues of AAT, are contained in decreasing order 
along the diagonal of Σ.   

Once the SVD has been performed on A, dimensional 
reduction is achieved simply by setting all but the k largest 
singular values to zero (Landauer, Foltz, and Laham 1998).  
The reduced dimension representations of U, V, and Σ are 
Uk, Vk, and Σ k, respectively.    

From the matrices Uk, Vk, and Σ k, the following matrix 
is defined:  
 T

kVkkUkA Σ=     (2) 
 
where Ak is the best rank-k estimation of A (Landauer, 
Foltz, and Laham 1998). 

Uk, Vk, and Σ k define a k dimensional space, which will 
be referred to as the LSI space or Semantic space.  Each 
term and document can be represented as a vector within 
this space.  The vectors for the terms are obtained by 
scaling columns of Uk by the singular values.  Similarly, 
the vectors for the documents are obtained by scaling the 
columns of Vk by the singular values (Berry, Dumais, and 
O’Brien 1995). 

Comparisons between entities in the LSI space (both 
terms and objects) are most often made by calculating the 
cosine similarity between vectors in the space (Landauer, 
Foltz, and Laham 1998).  A more prevalent application is 
to “cast” a query document into the LSI space, and use the 
cosine similarity measure to identify objects or terms in the 
space that are semantically similar to the query (Park and 
Elden 2003).  A query object is pre-processed in the same 
fashion that the corpus objects were, resulting in a vector, 

q, containing the weighted term frequencies within the 
query.  To cast the  query into LSI space, the following 
formula is used:  
 1' −Σ= kkUTqq     (3) 
 
For a complete discussion of the Singular Value 
Decomposition, readers are referred to (Golub and Van 
Loan 1996).  For a more detailed discussion of Latent 
Semantic Indexing, readers are referred to (Landauer, 
Foltz, and Laham 1998) and (Berry, Dumais, and O’Brien 
1995). 
 

Proof of Sum-of-Mass Method 
This proof begins with a term-by-object matrix A 
populated with n objects and m terms.  For ease of reading, 
colon notation is used, rather than matrix subscript 
notation.  For instance, the ith row of matrix A is written 
A(i,:), and the ith column of A is written A(:,i). 

Assume that the nth object in A consists of the sum of 
the other n-1 objects.  In other words,  
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After the SVD has been performed, A is expressed as the 

product of three matrices, as shown in (1).  Equivalently, 
(1) can be expressed using the SVD expansion (Golub and 
Van Loan 1996):  
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where r is the rank of the A.  For any given object in A, the 
contents of the column can be expressed in terms of U, V, 
and Σ with:  
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Using the assumption from (4), the following relations are 
derived:  
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From (4), (7) and (8) it is found that, in this situation,  
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where r is the rank of the matrix A, and 1 ≤  i  ≤  r. 

Equations (7), (8) and (9) generally illustrate that 
additive relationships that hold between objects in A will 
also hold between the corresponding right singular vectors 
within V.  This implies that if object i in A is the union of a 
number of other objects in A, then the right singular vector 



for object i will be the sum of the right singular vectors for 
the constituent objects.  For the remainder of this 
discussion, these constituent objects will be referred to as 
sub-objects, and their union will be referred to as the 
super-object. 

Up to this point, it has been assumed that the super-
object was included in A, and therefore played a direct role 
in the SVD.  However, it can be seen from equation (9) 
that the right singular vector for the super-object can be 
derived from the right singular vectors of the sub-objects.   

In order to see how the preceding relationship may be 
helpful, first consider how the vector for an object in the 
semantic space is calculated.  The vector for a single 
object, di, in the r dimensional LSI space is calculated as: 
 
 Σ= :),(iVid     (10) 
 

Going back to the super-object/sub-object situation 
stated in (4), the vector for the super-object, dn, can now be 
represented as follows: 
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Equation (11) illustrates that the exact vector of the 

super-object in the multi-dimensional space can be 
calculated from the sum of the vectors of its constituent 
sub-objects. 

For application to LSI, it must be shown that the stated 
sub-object/super-object relationships hold after 
dimensional reduction has been performed.  Equations (7) 
and (8) show that an original object vector in A can be 
reconstituted by summing the values of FiU(i,:)VT(i,:) over 
all values of i (i.e. over all dimensions).  Dimensional 
reduction yields the expression in equation (2).  The 
corresponding adjustment for equation (6) is: 
 

 ∑
=

=
k

i
jiT

kVikUijkA
1

),(:),()(:, σ   (12) 
 

Equations (6) and (12) illustrate that the values for each 
object vector in A and Ak are comprised of the sum of 
number of “dimensional components”.  Let us refer to the 
dth dimensional component in A(:,i) as A(:,id).  Similarly, 
Ak(:,id) is the dth dimensional component in Ak(:,i).  From 
equations (6) and (12), the following  can be deduced: 
 
 ),(:),()(:, idTVdUdidA σ=   (13) 

 ),(:),()(:, idTVdUdidkA σ=   (14) 
 

Since equations (13) and (14) are the same, it can be 
concluded that dimensional reduction does not perturb the 
super-object/sub-object relationships.  The only difference 
is that, after dimensional reduction, there are fewer 
dimensional components to sum up. 

The major conclusion that can be drawn from the 
preceding proof is that the super-object does not need to be 
included in the original matrix A as long as all of its 

constituent sub-objects are.   
An important issue should be addressed at this point.  

The components of the SVD (left singular vectors, right 
singular vectors, and singular values) will differ between 
the situation where the super-object is included in A and 
the situation where it is not.  However, the relationships 
expressed in equations (13) and (14) will still hold, and 
therefore so will the sub-object/super-object relationship. 

 
An Application 

There are two categories of LSI-based applications where 
the sum-of-mass method may be useful.  The first category 
includes applications where documents need to be 
compared at multiple levels (compare sentences to 
paragraphs, paragraphs to documents, and so on).  The 
second category includes any application that requires 
fine-granularity LSI comparisons.  This includes 
applications where LSI is applied at the phrase, sentence, 
or possibly paragraph level.  This second category will be 
emphasized here. 
 
Plagiarism Detection via LSI – An Overview 
Past applications of LSI have most often been performed 
using document granularity.  This has been effective for 
performing such tasks as document retrieval (Berry, 
Dumais, and O’Brien 1995) where a query phrase is 
presented, and semantically similar documents in the LSI 
space are returned.   Another possible application of LSI is 
to compare inter-corpus documents in an attempt to 
determine the similarity between them.  An example of 
such an application has been developed by (Maletic and 
Marcus 2000).   

We now present a potential application where LSI is 
used to perform “fine granularity” comparison between 
documents.  This application – a plagiarism detection 
system – utilizes the sum-of-mass method to speed up 
query time. 

Plagiarism detection requires comparison of documents 
at a high level of detail.  A number of plagiarism detection 
systems have been developed, many of which are 
discussed in (Clough 2000).  One of the major obstacles in 
plagiarism detection is to overcome the issue of 
paraphrasing, and consequently the issues of synonymy 
and polysemy (Clough 2000).  For this reason, LSI is an 
attractive method for detecting plagiarism. 

Plagiarism may occur at many levels within a document, 
ranging from plagiarism of a phrase to an entire document.  
The most logical granularity to employ for an LSI-based 
plagiarism detection system would be sentence granularity.  
Comparing larger document structures (paragraphs, 
sections, or entire documents) in LSI space may not be 
adequate to detect  plagiarism – the fact that two 
documents are closely related in the semantic space does 
not entail that one is plagiarized from the other.  On the 
other hand, if a number of sentences (especially sentences 
that are temporally close) within two documents are 
closely related semantically, it may be more indicative of 



plagiarism.  Furthermore, utilizing the sum-of-mass 
method, comparison at any coarser granularity is still 
possible. 

A plagiarism detection system first requires a corpus of 
“original” documents.  LSI would be performed on this 
corpus, thus defining the semantic space.  “Suspect” 
documents are then presented as queries and compared to 
the existing corpus.  If a suspect document, or some 
portion of it, is found to have a very close semantic 
relationship to portions of one or more of the original 
documents, then plagiarism may have occurred.  Since 
plagiarism is a legal issue, this system will not present a 
definitive judgment regarding whether plagiarism actually 
occurred.  The purpose of the system is to identify “highly 
suspect” document sections, and present them for further 
investigation. 

 
Plagiarism Detection System Setup 
During pre-processing, a tree map of each document’s 
structure is built.  For simplicity, we only consider three 
structural levels here – document, paragraph, and sentence.  
LSI is performed at sentence granularity, and the sum-of-
mass method is used to derive the LSI vectors for coarser 
granularity document structures from the right singular 
vectors for the sentences.  An outline of this scheme is 
illustrated in Figure 1. 

Queries are processed in the same manner.  This is 
illustrated in Figure 2. 

 
Querying the System 
Using the document trees and sum-of-mass method, we are 
able to perform a simple greedy search on the corpus in 
order to identify possible plagiarisms.  The search begins 
by querying at document-level granularity.  The derived 
vector for the query document is compared to each 
document vector in the corpus, using the cosine-similarity 
metric.  If the similarity between the query and any 
document in the corpus falls within a specified threshold, 
then the corpus document is selected for further 
examination. 

Next, the selected corpus documents and the query 
document are compared at paragraph-level granularity.  
Each query paragraph is compared to each paragraph 
within the selected corpus documents.  Once again, if the 
similarity between a query paragraph and any paragraph 
within the corpus falls within a given threshold, then the 
corpus paragraph is selected for further investigation. 

The final step is to compare at sentence-level 
granularity.   For each query paragraph, qpi, its constituent 
sentences are only compared to the sentences within 
corpus paragraphs that qpi was highly similar to.  A link 
between highly similar sentences is created to facilitate 
further investigation. 

An outline of the entire query procedure is illustrated in 
Figure 3.  The simple greedy search approach that is 
employed can be viewed as a series of filters that allow 
unnecessary vector comparisons to be avoided.  For 
instance, the document level comparison filters out 
semantically dissimilar documents, so further comparison 
are only performed on “documents of interest”.  
Considering that the cosine similarity is an O( k ) 
operation, avoiding unnecessary comparison will greatly 
improve the query time.  

 
Examining an Alternative 
An alternative to using the sum-of-mass method is to rely 
on folding-in documents into the Latent Semantic space 
(Berry, Dumais, and O’Brien 1995).  This method will be 
referred to as the folding method.  Folding-in a document 
is the same as casting a query vector into a pre-defined LSI 
space.  The idea is to perform LSI at document granularity 
on the corpus, and then fold-in each document’s 
constituent paragraphs and sentences to derive their 
respective vectors in the LSI space.   

Query documents would be treated similarly.  The query 
document, each constituent query paragraph, and each 
constituent query sentence would be cast into the LSI 
space before the query could proceed.  Once the query pre-
processing is complete, the query algorithm would be 
exactly the same as the algorithm in Figure 3.
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Figure 1. Corpus Setup for Plagiarism Detection 
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Figure 2. Query Setup for Plagiarism Detection 
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The main advantage of the folding method lies in the 
fact that the SVD would be calculated for a much smaller 
corpus matrix (obviously a term-by-document matrix will 
be smaller than a term-by-sentence matrix).  The SVD is a 
very computationally intensive calculation, so in this 
respect, the folding method should enjoy a great advantage 

Although the setup time for the corpus should be 
improved, this is the only clear advantage that the folding 
method holds over the sum-of-mass method.  It should be 
noted that the corpus setup only needs to be performed 
once, but the LSI space may be queried innumerable times.  
Therefore, a computational advantage in query time should 
be more valuable than an advantage in corpus setup time. 

Both the sum-of-mass method and the folding method 
use the algorithm in Figure 3 to perform queries, so they 
are computationally equivalent in this respect  Therefore, 
the only area where an advantage may be found is in the 
query setup time.  Here we find that the sum-of-mass 
method holds a distinct computational advantage over the 
folding method. 

First note that folding-in is an O( mk2 ) operation, while 
performing the sum-of-mass is O( k ).  In both methods the 
query setup requires that the query sentences be cast into 
the LSI space.  However, for the folding method, the query 
paragraphs and query document must also be folded in.  
Conversely, for the sum-of-mass method, the LSI vectors 
for the query paragraphs and query document are 
computed via the sum-of-mass.  Consequently, the sum-of-
mass method enjoys a computational advantage of an order 
of magnitude in m and k.  Over many queries this will be a 
great computational advantage.   

In addition to the computational advantage of the sum-
of-mass method, there is also a theoretical advantage.  It 
has been noted in (Landauer, Foltz, and Laham 1998) and 
(Berry, Dumais, and O’Brien 1995) that folding-in 
documents perturbs the orthogonality of the right singular 
vectors, slightly distorting the semantic space.  Thus, the 
position of the LSI vector for the folded document, relative 
to the positions of the vectors for the original corpus 
documents, will deviate slightly from where it should be.  

In other words, folding-in a document yields an estimate 
of the document’s position in the semantic space.  On the 
other hand, the proof of the sum-of-mass method indicated 
that this method could be used to determine the exact 
position of a super-document in the semantic space.  
Therefore, the sum-of-mass method could be viewed as 
more accurate than the folding method. 
 
Preliminary Experimental Results 
We have performed one preliminary experiment designed 
to test the sum-of-mass method and compare it to the 
folding method.  The corpus used in these preliminary tests 
consists of 15 essays related to World War Two.  These 
essays were taken from a “paper mill” website that offers 
essays for download (http://www.planetpapers.com).  
During pre-processing, global weighting, local weighting, 
and normalization were not performed. 

 LSI was performed on the corpus using both methods, 
and the resulting semantic spaces were queried using the 
same query documents.  Queries proceeded via the 
algorithm outlined in figure 3, with one modification.  
Rather than using a single threshold, d, at each level of 
comparison, three different thresholds were used.  These 
thresholds ranged from relatively low (0.75) for document 
level comparisons to high (0.95) for sentence-level 
comparisons. 

 
 Sum-of-mass  Folding  

Query Level Recall Precis Recall Precis 
0 Doc 1.0 1.0 1.0 1.0 
 Para 1.0 0.65 1.0 0.14 
 Sent 0.98 0.84 1.0 0.26 

1 Doc 1.0 1.0 1.0 1.0 
 Para 1.0 0.71 1.0 0.44 
 Sent 1.0 1.0 1.0 0.74 

2 Doc 1.0 1.0 0.5 1.0 
 Para 1.0 0.68 0.5 0.07 
 Sent 0.99 0.91 0.57 0.15 

Table 1.  Experimental results for the two methods 

Figure 3. Simple Greedy Search Algorithm For Multi-Level Comparison 

Greedy_Multi_Level_Compare( dq ) 
 for each document, di, in the corpus 
  if cosine-similarity( dq , di ) > δ 
   for each paragraph, pqj 0 dq 
    for each paragraph pi 0 di 
     if cosine-similarity( pqi , pi ) > δ 
      for each sentence sqi 0 pqi 
       for each sentence si 0 pi 
        if cosine-similarity( sqi , si ) > δ 
         create-link( sqi, si ) 
di = ith document in corpus    dq = query document 
pi = ith paragraph in a corpus document  pqi = ith paragraph in dq 
si = ith sentence is a corpus paragraph   sqi = ith sentences in a query paragraph 
δ = threshold 



The first two queries presented were exact copies of two 
of the papers in the original corpus.  The third query was a 
union of the first two queries.  The recall and precision for 
each query at each structural level is presented in Table 1. 
 

Evaluation and Discussion 
The results of the preliminary experiment reveal two 
things.  First, the difference in recall between the methods 
is almost negligible (the low recall for the folding method 
in query 2 is due to the fact that one of the two relevant 
documents was not identified during the greedy search).  
Second, there are obvious differences in the precision of 
the two methods.  This phenomenon may be attributable to 
a number of factors.   

One possible factor is the “correctness” of the sum-of-
mass method versus the folding method, mentioned on the 
previous page.    

A second possible factor is the granularity at which LSI 
was performed.  It seems that performing LSI at sentence 
granularity may expose specific term relationships, while 
performing LSI at document granularity may expose more 
general term relationships.  If this is the case, it would 
explain the differences in precision between the methods.   

A final factor is the size of the corpus.  With such a 
small corpus size, it is difficult to determine how reliable 
these results are.  More experimentation with a larger 
corpus is needed. 

Aside from experimentation with a larger corpus, a 
number of other experiments need to be performed in order 
to further evaluate our proposed methods.  First of all, the 
subjects of all of the documents in our preliminary 
experiment were very similar.  Testing with a more diverse 
corpus should also be performed.  Secondly, our 
preliminary tests evaluated whether the system would 
accurately identify blatant plagiarisms (exact copies).  
Further tests should be engineered to see if the system can 
detect paraphrasing and other subtle forms of plagiarism. 

 
Conclusions 

We have shown that using the sum-of-mass method to 
augment the standard LSI method with structural 
information may allow the capabilities of Latent Semantic 
Indexing to be extended.  However, a number of issues 
still need to be addressed and/or resolved. 

One issue that we have not thoroughly investigated is 
how local weighting, global weighting, and normalization 
on the term-by-document matrix will affect the sum-of-
mass method.  Methods for local and global weighting are 
discussed in (Landauer, Foltz, and Laham 1998) and 
(Berry, Dumais, and O’Brien 1995).  The main issue here 
is whether weighting and normalization will perturb the 
super-object/sub-object relationship.  Intuitively speaking, 
global weighting should not affect this relationship, as 
weights are applied uniformly across the objects and terms.  
Normalization, on the other hand, would almost certainly 
alter the super-object/sub-object relationship:  after 
normalization, the union of the sub-objects would no 

longer be equal to the super-object.  This is an area where 
further investigation is needed.  Local weighting at the 
sentence level would also perturb the super-object/sub-
object relationship.  However, local weighting could be 
performed at the document level, and the weights could be 
propagated down to the sentence level. 

Another issue to investigate is how large a term-by-
sentence matrix may be before performing the SVD 
becomes computationally infeasible.  The number of terms 
used in LSI may be as great as 100,000, and the number of 
documents may be just as large.  If a corpus contains 
100,000 documents, each containing an average of 50 
sentences, then we would be looking at performing the 
SVD on a 100,000x5,000,000 matrix, which may be 
computationally infeasible. 

Perhaps one of the most promising applications of the 
sum-of-mass method relates to the fact that it allows 
structural information to be easily combined with semantic 
information.  It has been noted by many authors that a 
drawback to LSI is that it is inherently non-order-
preserving (Landauer, Foltz, and Laham 1998).  The sum-
of-mass method preserves structural information that could 
be used in conjunction with LSI to simultaneously perform 
semantic and structural comparisons between objects.  
Possible applications might include DNA or Software 
analysis using LSI. 
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