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Abstract

A reversible outcome is one that can be changed. For
example, the failure of an ongoing project may be avoided if
certain actions are taken, while an outcome such as the path
of a hurricane cannot be changed under current knowledge.
The major benefit of predicting reversible outcomes resides
in the possibility to avoid unwanted results. For this
purpose, it is necessary to identify contributing factors
responsible for the outcome, which once modified, can steer
the result to a desired outcome. Consequently, the
incorporation of a method into a case-based reasoning
system to identify contributing factors affecting an outcome
can improve its usefulness. This paper compares different
approaches, particularly the use of domain knowledge, with
respect to their ability to identify sets of factors that reverse
software development projects predicted to fail into a
prediction of success.

Introduction

When predicting an outcome to a problem situation, the
user might also want to know the reasons for the prediction
in order to reverse an unwanted outcome. To take into
account this user’s perspective and consider the entire
application context, case-based reasoning (CBR) systems
can be equipped with the ability to identify factors
responsible for a predicted outcome, which will increase
their usefulness (Aamodt and Nygaard 1995).

Case-based prediction is typically performed with the
use of cases consisting of real experiences. These cases
tend to be sparse and biased (Kadoda, Cartwright and
Shepperd 2001), but the incorporation of domain
knowledge has been shown to provide valuable
compensation (Cain, Pazzani and Silverstein 1991; Watson
et al. 2002; Weber et al. 2003). Real cases represent
anecdotal evidence of a probable prediction while domain
knowledge offers scientific support.

There is enough evidence in the literature supporting the
use of domain knowledge in case-based prediction, hence
we want to explore its potential benefits to identify critical
factors responsible for such predictions. For this purpose,
we compare a number of different approaches and evaluate
their abilities to reverse predictions in software
development projects.

CBR systems have been used to explain events (Leake
1991) and identify reversible measures for failures
(Kolodner 1993). For example, CHEF (Hammond 1986)
included failures as part of the case and acquired reversible
measures when failures occurred. This strategy has more
chance to succeed in mature and stable domains, whereas
in reasonably new fields of study, e.g. software
engineering, or in highly subjective and social contexts, i.e.
management, it would be difficult to guarantee the
accuracy of the acquired reversible measures.

On the other hand, Leake’s work (1991) on explanations
although seeking to explain past events, and therefore is not
concerned with reversible measures, seeks to link an
explanation to a useful strategy based upon the explainer’s
goals. Analogously, preferable critical factors are the ones
that are more likely to reverse unwanted outcomes, which
is the user’s goal.

Domain Knowledge in Case-Based Prediction

Case-based prediction has been applied to different
problems. Some examples of reversible outcomes are legal
cases (Briininghaus and Ashley 2003), potential victims of
crime (Redmond and Line 2003), expenses (Weber et al.
1996), cost (Stottler 1994), sales (Mcintyre, Achabal and
Miller 1993), and projects (Cain, Pazzani and Silverstein
1991). In software engineering, CBR has been used to
predict effort (Kadoda, Cartwright and Shepperd 2001;
Watson et al. 2002), and success or failure (Weber et al.
2003).

The applications of case-based prediction tend to use real
cases, which are usually scarce and thus expensive, leading
to sparse case bases that do not generate good predictions.
The use of domain knowledge has been suggested to
compensate for sparse data particularly where features can
outnumber the available cases. For example, Cain, Pazzani
and Silverstein (1991) have demonstrated that a combined
method of explanation-based learning (EBL) and CBR can
produce more accurate predictions than CBR alone. One
benefit of using this approach is that it can provide accurate
predictions even when features outnumber cases because
domain knowledge compensates for the lack of data. This
same EBL+CBR approach was applied in Weber et al.



(2003), confirming its superiority with respect to traditional
CBR. This method can also be useful for general prediction
in relatively immature fields, where domain expertise
cannot yet explain many occurrences. Another problem
with case-based prediction (Kadoda, Cartwright and
Shepperd 2001) refers to the existence of biases in specific
design decisions (e.g., choice of similarity measure). The
use of empirical methods represents a way to substantiate
design choices (Watson et al. 2002); however, besides
greater accuracy, the incorporation of domain knowledge
has the potential to diminish the biases because it steers the
retrieval and overall CBR performance to conform to
domain knowledge. When using CBR for prediction,
design decisions can impose bias, but adding domain
knowledge tends to alleviate those biases.

The focus of this paper is to identify critical factors
responsible for an outcome and to determine the role of
domain knowledge in this task. This represents an
additional aspect to take into account when selecting the
technique to implement for case-based prediction. In the
following, we briefly present the EBL+CBR approach that
combines domain knowledge and experience for prediction.

Knowledge and CBR: The EBL+CBR Approach

The EBL+CBR approach introduced in (Cain, Pazzani and
Silverstein 1991) combines both elements of unweighted
CBR (similarity of features between cases) and elements of
EBL (relevance of features according to domain
knowledge). For example, in a successful software
development project, whether or not requirements were
gathered using a specific methodology is considered to
indicate relevance to the project’s result. Relevance is
assigned in accordance with domain knowledge.

Implementing EBL+CBR. The implementation of this
method includes a knowledge acquisition step. Each feature
has to be laid out with its meaning and all of its allowable
values. Domain experts have to answer, for each feature,
whether each of its allowable values supports one or
another outcome. Although this approach has been
implemented by Cain, Pazzani and Silverstein (1991) and
Weber et al. (2003) for binary classification, there is no
reason, in principle, why this approach could not be
implemented for a ternary classification scheme. The
knowledge acquired from domain experts is represented in
the system through rules. These rules assign relevance
factors to each feature of each case. The original method
uses crisp values 0 or 1 for relevance factors. The rules
assess associations between feature values and outcome
according to domain knowledge. For example, in a case
describing the history of a patient with an outcome of
emphysema, the attribute smoking having a value ‘yes’
results in the assignment of a relevance factor of 1. This

means that domain expertise recognizes the value of this
attribute as a contributor to the outcome.

This approach produces an interesting result when
computing similarity: many cases end up having the same
similarity value. This requires a special method to perform
the retrieval’s Select step (Aamodt and Plaza 1994) to
determine the final prediction. Because this is an
interpretive reasoner, the result is that more than one case
can be used as references to a new case. For instance, the
similarity assessment may find 3 cases above the threshold
with the same similarity and they may not necessarily lead
to the same classification. In this case, the system uses the
mode to make the prediction.

Methods to Identify Critical Factors

When using a case-based prediction system, if the predicted
outcome is different than the user desires, then critical
failure factors can indicate problem areas which may be
mitigated to reverse the predicted outcome. On the other
hand, if the outcome is favorable, then the values of critical
success factors can identify the strengths of the input case.

In this section we describe six methods to identify
critical factors in prediction. These methods are based on
knowledge, statistics or are instance-based. They also vary
with respect to the scope of the factors they identify, some
methods identify factors for the entire dataset whereas
others are able to individualize factors for each project. The
utility of methods that identify critical factors for an entire
dataset is that they provide trends based upon a community
of cases. When this community consists of real world
experiences, they represent evidence of the importance of
these factors.

The first approach to identify factors for the entire
dataset is based on the gradient descent (GD) method. 1t is
an instance-based method that is recommended to
determine the relative importance of features in a dataset —
and particularly to CBR - because it uses feedback from
similarity to assign weights to each feature (Aha 1998).
Our approach selects as critical factors all of those
variables whose resulting importance values are above the
overall average.

The second method is statistical and illustrates the strong
association between critical factors with the prediction task.
Logistic regression (LR) (Cleary and Angel 1984) is
commonly used to predict the outcome of dichotomous
variables. In LR, the dataset is examined to select features
with the strongest correlations to the outcome and then
these features are used for prediction purposes. Therefore,
in LR, finding predictor variables is a requirement for
prediction. LR also identifies factors in the entire dataset
rather than in one specific project. LR selects predictor
variables using a maximum likelihood approach.



Some of the approaches we discuss are derived from the
EBL+CBR (Cain, Pazzani and Silverstein 1991) prediction
method described above. This method has been
implemented to predict the outcome of software
development projects (Weber et al. 2003) and it is in this
context that we present the remaining methods.

The third method was already introduced in Weber et al.
(2003) as an alternative to identify critical factors in
software development projects. It can be interpreted as a
prediction-oriented or feature-oriented method. It identifies
factors by measuring the prediction accuracy of a case-
based prediction system and then submits each feature
alone to the same system. The general idea is that critical
factors will be the ones whose accuracy is closest to the
overall accuracy of the dataset. More specifically, we adopt
the EBL+CBR approach for the predictions and evaluate
the metrics for true positives and true negatives with leave-
one-out cross validation. We identify as success factors the
features that produce accuracy closest to the overall
accuracy of true positives and as failure factors the ones

with overall accuracy closest to true negatives.

The fourth method also uses the EBL+CBR prediction
system. It utilizes cases used in the prediction of each new
project -- a genuine case-based method that can
individualize the identification of critical factors. Before
detailing how it works, we have to point out that because of
the way that EBL+CBR computes similarity; more than
one case may be used to generate a prediction. Thus, the
number of cases actually used is one of its variables. The
general idea is that if a previous case had, for example, a
successful outcome and it is sufficiently similar to a new
case to predict the outcome of this new case, then the
features whose values are equal in both cases are success
factors. Analogously, when the predicted outcome is
failure, equal feature values suggest failure factors. When
two cases are used for the prediction, we determine
whether the value for each feature in the target case is
either equal to all values in the two similar cases or
different to all values in similar cases (interpreting the
value as a failure factor in successful outcomes when

Table 1. Examples of 3 projects from the dataset

Case # Feature 83 92 115 4 14 35
PM authority No No Yes Yes Yes Yes
Initial commitment Yes Yes Yes Yes Yes Yes
Sponsors involved No Yes No Yes No Yes
SH involved NA NA No Yes No Yes
SM involved No No Yes No No No
EU involved High Some Little High RSN RSN
EU trust PM Low AVE AVE High High AVE
EU involved schedule No No Yes Yes No No
Good REQ No No No Yes Yes Yes
Realistic EU No NA No NA NA Yes
Any method REQGD No Yes No NA No No
ACCC REQ No No No No No No
Method REQGD NM INTW NM NM NM NM
Scope well defined No No No Yes Yes Yes
EU time REQGD No No No Yes Yes Yes
REQ central REP No No No Yes Yes No
REQ clear DLV No No No Yes Yes Yes
Size hurt REQGD Yes Yes No No No No
DD set with REQINF No No No Yes Yes Yes
How was DD set? No DD EXTE CLLCMT No DD SM PM
DP involved schedule NA NA No NA NA No
Enough staff No No No Yes Yes Yes
Schedule consult HR No No No No No Yes
Outcome Failure Failure Failure Success Success Success

Abbreviations: PM: project manager; SH: stakeholders; SM: senior management; EU: end users; REQ: requirements;
REQGD: REQ gathering;  ACCC: accurate and complete; DLV: deliverables; REP: repository; DD: delivery date; REQINF:
information about REQ; DP: developers; HR: human resources and employee related issues; NA: Missing; NM: No
Methodology; RSN: Reasonable; AVE: Average; No DD: No Delivery Date; INTW: Interview; EXTE: External Entity; CLLCMT:

Collaboration committee



different). We do not use values when using two cases and
the new case’s value is neither different from nor equal to
both. The EBL+CBR approach can also produce sets of
three cases actually used in the prediction. In those
predictions, we also consider when the new case has
feature values that are equal to the values of the majority of
similar cases and different from the majority. The former
values are interpreted as success factors while we consider
the criticality to be inversely proportional in the latter.

Based on domain knowledge, we adopt the knowledge-
based portion from the EBL+CBR approach to identify
critical factors. First, we examine which features of the new
case would have been assigned relevance factors by the
EBL method (described in the previous section) with the
predicted outcome. These features are the ones in which
domain knowledge supports the conclusion that they are
contributors to the predicted outcome. For simplification
purposes, we assume that the reasoner predicts a binary
variable. The dependent variable has allowable values, both
positive and negative. If the prediction is a positive
outcome, then the features that are assigned relevance
factors for a positive outcome are success factors or failure
factors otherwise. For the remaining features, we replace
the predicted outcome to assign relevance factors for a
negative outcome and then obtain the failure factors.

Finally, we combine the knowledge-based and the case-
based methods by taking the union of the factors each
individually identify. Our assumption is that cases can
complement knowledge, particularly in immature fields.
Next we compare these methods.

Preliminary Studies

In this study we want to compare the different methods
described above and explore their strengths and weaknesses
in identifying success and failure factors in the dataset
described below. More specifically, we want to determine
how the above methods perform in comparison to domain
experts with respect to the ability of the success factors
they identify to reverse predictions of failure in our dataset.

Dataset

The dataset used for this study consists of 88 real cases
describing software development projects. This dataset has
23 symbolic features describing 67 projects that have
succeeded 21 that failed. For the identification of individual
success factors, we have selected twenty projects. These
projects have all originally failed and when submitted to
the EBL+CBR prediction, they were predicted to fail.
Table 1 shows 6 projects, 3 that failed and 3 that
succeeded, as an illustration of the dataset.

Methodology

The methodology consists of 3 stages: 1) Identification,
2) Reversal, and 3) Prediction. Identification is the step
where each method identifies critical factors either for the
entire dataset or for the twelve selected projects. When
these methods use case-based prediction, they use the
EBL+CBR method described earlier. Given that all twelve
projects are initially predicted to fail, the methods will
identify exclusively critical success factors. The methods
that identify critical factors have been described previously.
For the study, we add the identification of factors by
domain experts, in order to provide a realistic base for
comparison.

Reversal is the second stage that is executed for all of the
methods in the same fashion, including the ones based on
knowledge. The method for reversal takes each factor and
reverses the value given in each of the 12 projects. The
reversal of the value uses the same categorization learned
in the elicitation of knowledge for the rules, which
establishes values that are aligned or not with an outcome.
For example, if the factor identified refers to the
availability of enough staff in the project, a value
corresponding to yes is converted into no, and vice-versa.
This reversal step does not evaluate the quality of the
converted value for the reversal. This means that the
reversal is executed regardless of the intention of success.
We decided on this approach in order to keep the
methodology uniform for all of the methods.

Prediction is the last stage; it examines the quality of the
identified factors by assessing their ability to reverse failure
predictions into success. Note that all twelve projects have
actually failed and were predicted to fail when submitted to
the case-based prediction system. Therefore, we conclude
that a set of factors, whose opposite values lead to
predictions of success for the projects using the same
prediction tool, are of good quality. Hence, each new
project obtained after the conversion of its values is
submitted to the EBL+CBR prediction system again to
assess whether the factors are capable of reversing a
prediction to fail into a success.

Table 2. Reversed predictions by method

Reversed Factors
projects
% Abs. Num. Eff.

Domain experts 66% 8 6 1.3
Gradient descent 92% 11 11 1
Logistic regression 42% 5 4 1.25
Feature-oriented 58% 7 5 1.4
Case-based 0 0 3.25 0
Knowledge-based 0 0 6.66 0
Union 8% 1 8.5 0.1




Results

Table 2 shows the results of applying the methodology as
follows. The first column shows the percentage of reversed
projects out of the twelve projects studied. The second
column lists the absolute number of reversed projects. The
third column presents the number of factors identified by
each method that targeted the entire dataset (integer values)
and the average amount (fractional values) of factors
identified per project by the methods that target each
project. The fourth column shows the project-factor ratio,
i.e. the number of reversed projects by factor. This is a first
attempt towards defining measures of efficiency.

We analyze separately the results of methods that target
the entire dataset and the ones that individualize each
project (the rows highlighted in gray). The superiority of
the gradient descent method with respect to the number of
reversed projects is evident but it does not seem promising
given the low efficiency demonstrated by the project-factor
ratio. Examining GD’s factors, we notice that most factors
identified by GD were also identified by the other methods.
However, only two factors--a well defined scope and end
users having time for requirements gathering--were
identified by all of them. The negative aspect of these
methods, particularly the GD method, is the large set of
factors. It does not seem realistic to expect that users will
be able to reverse eleven aspects in a project.

To analyze the methods that individualize each project
(last three in Table 2), we revised our methodology to
allow these methods to use their knowledge to guide their
reversal strategy. These methods indeed have the ability to
use embedded knowledge to reverse only the values that
are not supportive of success.

Table 3. Effect of knowledge-based reversal

Reversed Factors
Method projects
% Abs. Ave. Eff.
Case-based 0 0 1.9 0
Knowledge-based 16% 2 0.92 2.2
Union 8% 1 2.6 0.4

The results of this study are laid out in Table 3. Even
employing knowledge-based reversal, these methods still
perform poorly. The number of factors decreases, although
their efficiency seems to increase, given the project-factor
ratio. The knowledge-based method was able to reverse
two projects, while in the first study it did not reverse any;
showing that without the knowledge-based reversal, good
values were replaced by bad ones.

Finally, we examine the last potential contribution of
knowledge-based methods to the identification of critical
factors. We investigate whether the use of knowledge-

based reversal can be used to complement statistical and
instance-based methods. For example, GD failed to reverse
one project. However, when we perform knowledge-based
reversal we find that it still cannot reverse that one project.
More interestingly, some projects are no longer reversed.
This also occurs for the other methods. For example, the
union method has identified sixteen factors for project
number 89. Using knowledge-based reversal, only one
value is changed, namely the value for whether the size of
the project had hurt the elicitation of requirements. The
result is that after only one change, the case now is
predicted to succeed. Interestingly, this same project was
reversed when different values were changed. In fact, those
were values that contradicted domain knowledge and thus
they were not changed with knowledge-based reversal.

Discussion

The ultimate goal of equipping CBR systems with a
method to identify critical factors is to maximize the
usefulness of case-based prediction to its users. Keeping
this in mind, it is unrealistic to consider methods that
identify larges sets of factors, particularly in the context of
software development projects, where the change of a
single variable can represent a significant shift in resource
allocation.

The number of factors has been decisive in choosing our
strategy to examine potential success factors. We could
have, instead, started by examining failure factors, but
these resulted in larger sets, which is not practical as a final
solution. However, it is a source that this dataset can offer
that may be revisited.

Although most software engineering studies implement
linear modeling (e.g., Verner and Evanco 1999, Khalifa
and Verner 2000), it is likely that different factors
responsible for a given prediction are interdependent. As
we observed in our preliminary studies, different methods
were able to reverse a project’s prediction using different
sets of factors, and one method reversed a prediction
contrary to domain knowledge. These observations suggest
that an optimized CBR system that accounts for an entire
context may have the additional benefit to help uncover
knowledge previously unknown.

Conclusion and Future Work

The incorporation of knowledge into case-based prediction
has been proposed to alleviate the biases imposed by design
decisions and to compensate for sparse case bases. We
conclude that, currently, the use of domain knowledge in
immature domains should be used in combination with
other methods, in the pursuit of a minimal set of factors to
reverse unwanted predictions. It seems that there is
potential in combining knowledge, particularly instance
based methods, to explore the space of factors and uncover



relations between factors not yet studied. Additionally, the
use of previous cases has the advantage of conveying
contextual knowledge, which can also be helpful in
uncovering interdependencies among factors.

Besides the study of the interdependence of critical
factors, it is also necessary to define the level of
reversibility of factors, e.g., using measures of efficiency of
factors throughout the dataset and by project. Factors that
are easy to reverse should receive priority.

In future work, we want to compare these contributing
factors to other factors studied in CBR systems. For
example, factors used in HYPO (Ashley 1990) to support
arguments, issues in the IBP algorithm (Briininghaus and
Ashley 2003), and goal-based explanation (Leake 1991) are
likely candidates. In order to improve case-based
prediction, the first step is to incorporate methods to
identify critical factors that are able to individualize the
identification of factors, and that minimize the number of
factors while maximizing their chances to reverse
unwanted outcomes. Additionally, we would also like to
incorporate methods to identify reversible measures and to
determine their chances to reverse outcomes.
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