
A Computational Psycholinguistic Model of Natural Language Processing

Jerry T. Ball

Air Force Research Laboratory
6030 South Kent Street, Mesa, Arizona 85212

Jerry.Ball@mesa.afmc.af.mil
www.DoubleRTheory.com

Abstract

Double R Model (Referential and Relational model) is a
computational psycholinguistic model of NLP founded on the
principles of Cognitive Linguistics and implemented using
the ACT-R cognitive architecture and modeling environment.
Despite its psycholinguistic basis, Double R Model is
intended for use in the development of large-scale, functional
language comprehension systems. Given the inherently
human nature of language, this approach may be reasonable
from an AI as well as a psycholinguistic point of view.

Introduction

Communities working to implement NLP systems have
progressed in improving system quality, particularly in
limited domains. However, NLP systems still fall well short
of human-level performance. Symbolic systems are still too
brittle; statistical systems are too mushy. In part, this failure
is due to the lack of an adequate linguistic theory on which
to base such systems. Mainstream Generative Linguistic
theory, with its focus on syntax in isolation from cognition
and cognitive processing, is inadequate as a basis for the
development of NLP systems. Model Theoretic Semantics
attempts to redress the syntactic focus of Generative
Linguistics, but also falls short as a theory of cognition and
cognitive processing (Jackendoff 1983, 2002). The advent
of Cognitive Linguistics (Langacker 1987, 1991; Talmy
2003), a linguistic theory with an explicit focus on cognition
and cognitive processing, offers the prospect for the
development of NLP systems with a sound linguistic basis.
Further, the recent, general availability of ACT-R
(Anderson & Lebiere 1998), a psychologically vetted
cognitive modeling environment, facilitates the
development of cognitively plausible NLP systems.
Whether or not a psychologically motivated NLP system
can improve on non-psychologically based systems is yet to
be shown, but given the historically poor performance of
most pure AI systems, it is a goal worth pursuing.

This paper provides an introduction to the theoretical basis
of Double R Model, describes some initial design elements
and their implementation, and discusses some advantages
over alternative approaches. It continues with a processing
example and concludes with a consideration of future
research.

 Theoretical Background

Double R Grammar (Ball 2004) is the Cognitive Linguistic
theory underlying Double R Model. In Cognitive
Linguistics, all grammatical elements have a semantic basis,
including parts of speech, grammatical markers, phrases and
clauses. Our understanding of language is embodied and
based on experience in the world (Lakoff & Johnson, 1980).
Categorization is a key element of linguistic knowledge, and
categories are seldom absolute—exhibiting, instead, effects
of prototypicality, radial structure and the like (Lakoff
1987). Our linguistic capabilities derive from basic
cognitive capabilities—there is no autonomous syntactic
component separate from the rest of cognition. Knowledge
of language is for the most part learned and not innate.
Abstract linguistic categories (e.g. noun, verb, nominal,
clause) are learned on the basis of experience with multiple
instances of words and expressions which are members of
these categories, with the categories being abstracted and
generalized from experience. Also learned are schemas
which abstract away from the relationships between
linguistic categories. Over the course of a lifetime, humans
acquire a large stock of schemas at multiple levels of
abstraction and generalization representing knowledge of
language and supporting language comprehension.

 Two key dimensions of meaning that get grammatically
encoded are referential and relational meaning. Consider the
expressions
 1. The book on the table
 2. The book is on the table
These two expressions have essentially the same relational
meaning. They both express the relation “on” existing
between “a book” and “a table”. However, their referential
meaning is significantly different. The first expression, as a
whole, refers to an object whereas the second expression
refers to a situation. In the first expression the word “book”
indicates the type of object being referred to and functions
as the head of the expression, and the word “the” indicates
that an object is being referred to and functions as a (object)
specifier. The phrase “on the table” refers to a location with
respect to which the object “the book” can be identified and
functions as a modifier. In the second expression, the word
“on” indicates the type of situation and functions as the head
with the word “is” indicating that a current situation is being

referred to and functioning as a (situation) specifier. As the
examples show, the joint encoding of referential and
relational meaning leads to representations that
simultaneously reflect both these important dimensions of
meaning, with trade-offs occurring where the encoding of
referential and relational meaning compete for expression.

Double R Process is the theory of language processing
underlying Double R Model. It is a highly interactive theory
of language processing. Representations of referential and
relational meaning are constructed directly from input texts.
Unlike many other theories, there is no separate syntactic
analysis that feeds a semantic interpretation component. The
processing mechanism is driven by the input text in a
largely bottom-up, lexically driven manner. There is no top-
down assumption that a privileged linguistic constituent like
the sentence will occur. There is no phrase structure
grammar and no top-down control mechanism. How then
are representations of input text constructed? Operating on
the text from left to right, schemas corresponding to lexical
items are activated. For those lexical items which are
relational or referential in nature, associated schemas
establish expectations which both determine the possible
structures and drive the processing mechanism.

Modern cognitive research (e.g. Kintsch 1998) has shown
that a short-term working memory (STWM) is available to
support cognitive processing. In Double R Process, this
STWM is used for storing arguments which have yet to be
integrated into a relational or referential schema, partially
instantiated schemas, and completed schemas. If a relational
or referential entity is encountered which expects to find an
argument to its left in the input text then that argument is
assumed to be available in STWM. If the relational or
referential entity expects to find an argument to its right,
then the entity is stored in STWM as a partially completed
schema and waits for the occurrence of the appropriate
argument. When that argument is encountered it is
instantiated into the stored relational or referential schema.
Instantiated arguments are not separately available in
STWM. This keeps the number of separate linguistic units
which must be maintained in STWM to a minimum.

ACT-R

ACT-R is a cognitive architecture and modeling
environment for the development of computational
cognitive models (Anderson & Lebiere 1998). It is a
psychologically based cognitive architecture which has been
used extensively in the modeling of higher-level cognitive
processes, albeit on a smaller scale than that typical of AI
systems. ACT-R is a hybrid system that includes symbolic
production and declarative memory systems integrated with
sub-symbolic production selection and spreading activation
and decay processes. Production selection involves the
parallel matching of the left-hand side of all productions
against a collection of buffers (e.g. goal buffer, retrieval

buffer) which contain the active contents of memory and
perception. Production execution is a serial process—only
one production is executed at a time. The parallel spreading
activation process determines which declarative memory
chunk is put in the retrieval buffer. ACT-R supports single
inheritance of declarative memory chunks and limited,
variable-based pattern matching. Version 5 of ACT-R
(Anderson et al., 2002) adds a perceptual-motor component
supporting the development of embodied cognitive models.

Double R Model

Double R Model is the implementation of Double R Theory
within the ACT-R architecture. The major elements of the
model are a defined lexical hierarchy, left-to-right input
style, type inheritance, a chunk stack for short-term memory
processing, context accommodation, limited backtracking,
and dynamic functional assignment.

Double R Model is currently capable of processing an
interesting range of grammatical constructions including: 1)
intransitive, transitive and ditransitive verbs; 2) verbs taking
clausal complements; 3) predicate nominals, predicate
adjectives and predicate prepositions; 4) conjunctions of
numerous grammatical types; 5) modification by attributive
adjectives, prepositional phrases and adverbs, etc. Double R
Model accepts as input as little as a single word or as much
as an entire chunk of discourse, using the perceptual
component of ACT-R to read words from a text window.
Unrecognized words are simply ignored. Unrecognized
grammatical forms result in partially analyzed text, not
failure. The output of the model is a collection of declarative
memory chunks that represent the referential and relational
meaning of the input text.

Inheritance vs. Unification

Unification allows for the unbounded, recursive matching of
two logical representations. Unification is an extremely
powerful pattern matching technique used in many language
processing systems based on Prolog. Unfortunately, it is
psychologically too powerful. For example, the following
two logical expressions can be unified:
 p(a,B,c(d,e,f(g,h(i,j),K),l))
 p(X,b,c(Y,e,f(Z,T,U),l))
where capitalized letters are variables and lowercase letters
are constants. Humans are unlikely to be able to retain the
full extent of such unifications for subsequent processing.

On the other hand, although extremely powerful,
unification does not support the matching of types to
subtypes. Thus, if we have a verb type with intransitive and
transitive verb subtypes, unification cannot unify a chunk of
type verb with a chunk of type intransitive verb or transitive
verb. Unification’s inability to match types to subtypes
often results in a proliferation of rules (or conditions on
rules) to handle the various combinations. With inheritance,

a production that checks for a verb will also match a
transitive verb and an intransitive verb (assuming an
appropriate inheritance hierarchy). Humans appear to be
able to use types and subtypes in appropriate contexts with
little awareness of the transitions. For example, when
processing a verb, all verbs (used predicatively) expect to be
proceeded by a subject, but only transitive verbs expect to
be followed by an object. Thus, humans presumably have
available a general production that applies to all verbs (or
even all predicates) which will look for a subject preceding
the verb, but only a more specialized production for
transitive verbs (or transitive predicates) which will look for
an object following the verb.

Inheritance supports the matching of two representations
without requiring the recursive matching of their subparts
(unlike unification) so long as the types of the two
representations are compatible. Types are essentially an
abstraction mechanism which makes it possible to ignore
the detailed internal structure of representations when
comparing them. Of course, there may be productions that
do consider the internal structure, but types are useful here
as well. Instead of having to fully elaborate the internal
structure, types can be used to partially elaborate that
structure providing a (limited) unification like capability
where needed. In sum, inheritance and limited pattern
matching provide a psychologically plausible alternative to
a full unification capability.

To take advantage of inheritance, Double R Model
incorporates a type hierarchy. Some relevant elements of the
current hierarchy of types are shown below:
 Lexical-type
 Noun
 Verb
 Adjective
 Preposition
 Determiner
 Auxiliary
 Referential-type
 Head
 Specifier
 Modifier
 Referring-expression-type
 Object-referring-expression
 Situation-referring-expression
 Relation-type
 Argument
 Predicate
The more specialized a production is, the more specialized
the types of the chunks in the goal and retrieval buffers to
which the production matches will need to be. The most
general productions match a goal chunk whose type is top-
type and ignore the retrieval buffer chunk.

 The Context Chunk and Chunk Stack

The current ACT-R environment provides only the goal and
retrieval buffers to store the partial products of language

comprehension—although earlier versions provided a goal
stack. The lack of a stack is particularly constraining, since
a stack is the primary data structure for managing the
(limited) recursion that occurs in language. There needs to
be some mechanism for retrieving previously processed
words and expressions from STWM in last-in/first-out order
during processing (subject to various kinds of error that can
occur in the retrieval process). A stack provides this
(essentially error free) capability. It is expected that a
capacity to maintain about 5 separate linguistic chunks in
STWM is needed to handle most input—supporting at least
one level of recursion (and perhaps two for the more gifted).

To overcome these architectural problems, Double R
Model introduces a context chunk containing a bounded,
circular stack of links to declarative memory. As chunks are
stacked in the circular stack, if the number of chunks
exceeds the limit of the stack, then new chunks replace the
least recently stacked chunks (supporting at least one type of
STWM error). The actual number of chunks allowed in the
stack is specified by a global parameter. This parameter is
settable to reflect individual differences in STWM capacity.
Chunks cannot be directly used from the stack. Rather, the
stack is used to provide a template for retrieving the chunk
from declarative memory. Essentially, the chunk on the
stack provides a link to the corresponding declarative
memory chunk. Since the chunk must be retrieved from
declarative memory before use, the spreading activation
mechanism of ACT-R is not circumvented and retrieval
errors are possible—unlike the goal stack of earlier versions
of ACT-R which provided perfect memory for goals.

Lexical and Functional Entries

The lexical entries in the model provide a limited amount of
information which is stored in the word and word-info
chunks as defined by the following chunk-types:
 (chunk-type word word-form word-marker)
 (chunk-type word-info word-marker
 word-root word-type word-subtype
 word-morph-type)
The word-form slot of the word chunk contains the
physical form of the word (represented as a string in ACT-
R); the word-marker slot contains an abstraction of the
physical form. The word-root slot contains the value of
the root form of the word. The word-type slot contains the
lexical type of the word and is used to convert a word-info
chunk into a lexical-type chunk for subsequent
processing. A word-subtype slot is provided as a
workaround for the lack of multiple inheritance in ACT-R 5.
The word-morph-type slot supports the encoding of
additional grammatical information.

Sample lexical entries for a noun and verb are provided
below:
 (cow-wf isa word
 word-form "cow"
 word-marker cow)

 (cow isa word-info
 word-marker cow
 word-root cow
 word-type noun
 word-morph-type third-per-sing)
 (running-wf isa word
 word-form "running"
 word-marker running)
 (running isa word-info
 word-marker running
 word-type verb
 word-root run
 word-subtype intrans-verb
 word-morph-type pres-part)
Note that there is no indication of the functional roles (i.e.
head, specifier, predicate, argument) that particular lexical
items may fulfill. Following conversion of word-info
chunks into lexical-type chunks (e.g., verb,
adjective), functional roles are dynamically assigned by
the productions that are executed during the processing of a
piece of text. Since functional role chunks are dynamically
created, only chunk-type definitions exist for functional
categories prior to processing. As an example of a chunk-
type definition for a functional category, consider the
category pred-trans-verb (i.e. transitive verb
functioning as a predicate) whose definition involves several
hierarchically related chunk-types as shown below:
 (chunk-type top-type head)
 (chunk-type (rel-type
 (:include top-type)))
 (chunk-type (pred-type
 (:include rel-type))
 subj spec mod post-mod)
 (chunk-type (pred-trans-verb
 (:include pred-type)) obj)
The top-type chunk-type contains the single slot head.
All types are subtypes of top-type and inherit the head
slot. Rel-type is a subtype of top-type that doesn’t add
any additional slots. Pred-type is a subtype of rel-type
that adds the slots subj, spec, mod, and post-mod. It is
when a relation is functioning as a predicate that these slots
become relevant. Finally, Pred-trans-verb is a subtype
of pred-type that adds the slot obj.

Default Rules and Assignment Productions

ACT-R’s inheritance mechanism can be combined with the
production utility parameter which guides production
selection, to establish default rules. Since all types extend a
base type (top-type), using the base type as the value of
the goal chunk in a production will cause the production to
match any goal chunk. If the production is assigned a
production utility value that is lower than competing
productions, it will only be selected if no other production
matches. A sample default production is shown below:

 (p process-default--retrieve-prev-chunk

 =goal> ISA top-type
 =context> ISA context
 state process
 chunk-stack =chunk-stack
 =chunk-stack> ISA chunk-stack-chunk
 this-chunk =chunk
 prev-chunk =prev-chunk
 ==>
 =context>
 state retrieve-prev-chunk
 chunk-stack =prev-chunk
 +retrieval> =chunk)
 (spp process-default--retrieve-prev-chunk
 :p 0.75)

In this structure, p identifies a production, process-
default--retrieve-prev-chunk is the name of the
production, =goal> identifies the goal chunk, =context>
identifies a context chunk, ISA context is a chunk type,
state is a chunk slot, process is a slot value, ==>
separates the left-hand side from the right-hand side and
variables are preceded by = as in =chunk. This default
production causes the previous chunk to be retrieved from
declarative memory (using the +retrieval> form) if no
other production is selected. To make this production a
default production, the production utility parameter is set
using the spp (set production parameter) command to a
value of 0.75 (the default value is 1.0).

The following functional assignment production creates an
instance of a pred-trans-verb and provides initial values
for the slots:

 (p process-verb--assign-to-pred-trans-verb
 =goal> ISA verb
 head =verb
 subtype trans-verb
 =context> ISA context
 state assign-verb-to-pred-verb
 ==>
 +goal> ISA pred-trans-verb
 subj none
 spec none
 mod none
 head =goal
 post-mod none
 obj none
 =context>
 state retrieve-prev-chunk)

In this production, a verb whose subtype slot has the
value trans-verb is dynamically assigned the function of
a pred-trans-verb for subsequent processing (where
+goal> specifies the creation of a new goal chunk). The
only slot of pred-trans-verb that is given a value other
than none is the head slot whose value is set to be the old
goal chunk (head =goal). This production has the effect
of assigning a transitive verb the functional role of predicate
(specialized as a transitive verb predicate).

Context Accommodation vs. Backtracking

Context accommodation is a mechanism for changing the
function of an expression based on the context without
backtracking. For example, when an auxiliary verb like
“did” occurs it is likely functioning as a predicate (of
situation) specifier as in “he did not run” where the
predicate is “run” and “did not” provides the specification
for that predicate. However, auxiliary verbs may also
function as (abstract) predicates when they are followed by
a noun phrase as in “he did it”. Determining the ultimate
function of an auxiliary verb can only be made when the
expression following the auxiliary is processed. In a
backtracking system, if the auxiliary verb is initially
determined to be functioning as a predicate specifier, then
when the noun phrase “it” occurs, the system will backtrack
and reanalyze the auxiliary verb, perhaps selecting the
predicate function on backtracking. However, note that
backtracking mechanisms typically lose the context that
forced the backtracking. Thus, on backtracking to the
auxiliary verb, the system has no knowledge of the
subsequent occurrence of a noun phrase to indicate the use
of the auxiliary verb as a predicate. Thus, without additional
structures to retain the information the system cannot make
an informed selection of a new function for the auxiliary.

A better alternative is to accommodate the function of the
auxiliary verb in the context which forces that
accommodation. In this approach, when the noun phrase “it”
is processed and the auxiliary verb functioning as a
predicate specifier is retrieved, the function of the auxiliary
verb can be accommodated in the context of a subsequent
noun phrase to be a predicate. Context accommodation
avoids the need to backtrack in this case and allows the
context to adjust the function of an expression just where
that accommodation is supported by the context.

Processing Example

As an example of the processing of a piece of text and the
creation of declarative memory chunks to represent the
meaning of the text, consider the following text:

 The dog lover is asleep

The processing of the word “the” results in the creation of
the following declarative memory chunks:
 Goal25
 isa DETERMINER
 head The
 Goal26
 isa OBJ-SPEC
 head Goal25
 mod None
The first chunk, goal25, is a determiner whose head
slot has the value The. This chunk represents the inherent
part of speech of the word “the”. The second chunk,

goal26, is an obj-spec (object specifier) whose head slot
has the value goal25 and whose mod slot has the value
none. This second chunk represents the referential function
of “the”. Note that if “the” were the only word in the input
text, the creation of these two chunks would still occur since
the processing mechanism works bottom-up from the lexical
items and makes no assumptions about what will occur
independently of the lexical items.

The processing of the second word “dog” creates the
following declarative memory chunks:
 Goal39
 isa NOUN
 head Dog
 Goal40
 isa HEAD
 head Goal39
 mod None
 post-mod None
 Goal41
 isa OBJ-REFER-EXPR
 head Goal40
 referent None-For-Now
 spec Goal26
 mod None
 post-mod None
Goal41 is a full object referring expression and contains a
referent slot to support a link to an object in the situation
model corresponding to this piece of text. Currently, the
model cannot establish the value of the referent slot
pending development of the situation model that will
provide representations of the referents.

The processing of the third word “lover” creates or
modifies the following declarative memory chunks:
 Goal47
 isa NOUN
 head Lover
 Goal48
 isa HEAD
 head Goal47
 mod Goal40
 post-mod None
 Goal41
 isa OBJ-REFER-EXPR
 head Goal48
 referent None-For-Now
 spec Goal26
 mod None
 post-mod None
Note that goal47 (“lover”) is now the head of goal48
which is the head of the object referring expression
(goal41) with goal40 functioning as a modifier of
goal48. This is an example of context accommodation.

Continuing with the next word “is” leads to the creation of
the following chunks:
 Goal54
 isa REG-AUX
 head Is-Aux
 Goal55
 isa PRED-SPEC
 head Aux-1

 mod None
 modal-aux None
 neg None
 aux-1 Goal54
 aux-2 None
 aux-3 None
Note that the pred-spec chunk type has a modal-aux,
neg, and three auxiliary slots (aux-1, aux-2, and aux-3)
to handle the range of predicate specifiers that can occur.
For this instance of a pred-spec (goal55), goal54 fills
the aux-1 slot and functions as the head of goal55.

The processing of the final word “asleep” creates the
following declarative memory chunks:
 Goal61
 isa ADJECTIVE
 head Asleep
 Goal62
 isa PRED-ADJ
 head Goal61
 subj Goal41
 spec Goal55
 mod None
 post-mod None
In the context of the predicate specifier “is” (goal55), the
adjective “asleep” functions as a predicate adjective filling
the head slot of goal62 with goal41 (an object referring
expression) filling the subj slot (subject).

Following the processing of “asleep” the model attempts
to read the next word. The failure to read a word signals the
end of processing and a wrap-up production is executed.
This wrap-up production creates a situation referring
expression (goal65) with goal62 filling the head slot.
 Goal65
 isa SIT-REFER-EXPR
 head Goal62
 referent None-For-Now
 mod None
At the end of processing a single chunk of type situation-
referring-expression is available in the chunk-stack to
support subsequent processing with the determination of the
referent slot pending development of the situation model.

Summary and Future Research

Double R Model may be the first attempt at the
development of an NLP system founded on the principles of
Cognitive Linguistics and implemented in the ACT-R
cognitive modeling environment. Double R Model is a
hybrid symbolic/sub-symbolic system which leverages the
symbolic and sub-symbolic capabilities of ACT-R.

Much work remains to be done. Double R Model has not
yet reached a scale at which it can handle more than a subset
of English. To expand the symbolic capabilities of Double R
Model we are evaluating the integration of the CYC
knowledge base, WordNet, and/or FrameNet. More
specifically, we are working on the development of a
knowledge base of pilot communications as part of a

software agent application with NLP capabilities. To expand
the sub-symbolic capabilities of Double R Model (e.g. in
support of lexical disambiguation), we are evaluating the
use of LSA, and considering improvements to ACT-R’s
single-level spreading activation mechanism. Further, full
implementation of referential meaning must await
development of the situation model to represent the objects
and situations that are referred to by input texts. Finally, it
has not yet been demonstrated that Double R Model can
achieve the level of success that has long eluded AI and
computational linguistic based systems.

Acknowledgements

I would like to thank Kevin Gluck, Col (s) Stuart Rodgers
and Wink Bennett of the Air Force Research Laboratory for
supporting this research.

References

Anderson, J. and Lebiere, C. 1998. The Atomic Components
of Thought. Mahway, MJ: LEA.

Anderson, J., Bothell, D., Byrne, M. and LeBiere, C 2002.
An Integrated Theory of the Mind. http://act-
r.psy.cmu.edu/papers/403/IntegratedTheory.pdf

Ball J. 2004. Double R Grammar.
http://www.doublertheory.com/DoubleRGrammar.pdf

Jackendoff, R. 1983. Semantics and Cognition. The MIT
Press, Cambridge, MA.

Jackendoff, R. 2002. Foundations of Language. Oxford
University Press, New York, NY.

Kintsch, W. 1998. Comprehension, a Paradigm for
Cognition. New York, NY: Cambridge University Press.

Lakoff, G. 1987. Women, Fire and Dangerous Things.
Chicago: The University of Chicago Press.

Lakoff, G., and Johnson, M. 1980. Metaphors We Live By.
Chicago: The University of Chicago Press.

Langacker, R. 1987. Foundations of Cognitive Grammar,
Volume 1, Theoretical Prerequisites. Stanford, CA:
Stanford University Press.

Langacker, R. 1991. Foundations of Cognitive Grammar,
Volume 2, Descriptive Applications. Stanford, CA: Stanford
University Press.

Talmy, L. 2003. Toward a Cognitive Semantics, Vols I and
II. Cambridge, MA: The MIT Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1240 1240]
 /PageSize [612.000 792.000]
>> setpagedevice

