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Abstract 
This paper presents a hybrid algorithm that combines local 
search and constraint programming techniques to solve a 
network routing problem. The problem considered is that of 
routing traffic demands from a set of requests over a 
network with limited capacity so as to minimise the cost of 
any unrouted demands. The hybridisation is twofold: pure 
local search is used to find a good cost bound for a 
subsequent branch-and-bound optimisation phase, with 
local search again applied at the nodes of the branch-and-
bound search tree. Constraint propagation occurs in the 
search tree to reduce the domains of the decision variables, 
using a set of constraints that are independent of the action 
of local search at the nodes. In contrast to previous 
constraint programming/local search hybridisations, here 
local search is used to satisfy the hard problem constraints, 
while optimisation is handled in the framework of 
constraint programming. The resulting algorithm is 
incomplete, but is shown to be compare favourably with a 
complete approach to this problem. 

Introduction   
This paper presents a novel hybridisation of local search 

and constraint programming techniques that was developed 
while studying traffic placement problems in network 
routing. The specific optimisation problem we consider has 
the following form: assuming a network containing already 
routed traffic demands (a demand being a requirement for 
a connection of some specified bandwidth from a source to 
a destination), and a set of new demands to be routed, find 
routes for the new demands such that the “cost” of the new 
demands which cannot be admitted onto the network is 
minimised. In particular, we are interested in tightly-
constrained or over-constrained problems, where it is 
difficult or impossible to route all the requested demands 
without exceeding link capacities. If a solution is found 
which routes all demands without exceeding link 
capacities, the algorithm does not perform any additional 
                                                 
Copyright © 2004, American Association for Artificial Intelligence  
 (www.aaai.org). All rights reserved. 
 

optimisation on, for example worst-case or average case 
link utilisation.  

Apart from its application to the specific problem 
considered here, the algorithm is interesting in that it 
proposes a new way to hybridise local search and 
constraint propagation techniques. Previously, the relative 
strengths of local search in the area of optimisation with 
few hard constraints, and constraint-based techniques for 
problems in which hard constraints can provide significant 
reductions of the search-space through propagation, has 
suggested hybrid algorithms in which local search handles 
the optimisation component, while constraint propagation 
provides pruning using the hard problem constraints. 
Examples can be found in (Casseau and Laburthe, 1999),  
(Genreau and Pesant, 1999), (Jussien and Lhomme, 2000), 
(Kamarainen and El-Sakkout, 2002), (Schaerf, 1997), 
(Shaw, 1998) and (Zhang and Zhang, 1996).  

In the hybrid form presented here, satisfaction of the 
hard constraints – the capacity of links for traffic being 
routed – is addressed by the local search component, while 
constraint propagation is applied in a branch-and-bound 
search tree that aims to minimise the cost of unrouted 
demands. The local search component is, by its nature, not 
a complete algorithm for solving the hard constraints, and 
this incompleteness is inherited by the hybrid algorithm. 
However, the complex nature of the application itself 
precludes the development of a complete algorithm that is 
effective for problems of significant scale. 

The paper is organised as follows: after introducing the 
problem, discussing possible approaches and motivating 
the strategy adopted here, we outline the three phases of 
the algorithm, and the local search procedure for 
restoration of consistency. Before concluding, we report 
experimental results on data derived from a large-scale real 
network. 

The Demand Admission Problem 
The demand admission problem considered in this paper 

can be stated as follows: given a network made up of 
nodes and links, each link having an available capacity, 



and a set of point-to-point traffic demands, each with a 
bandwidth requirement and a cost incurred if that demand 
is not placed on the network, find routes for demands that 
satisfy the link capacities, while minimising the cost of any 
unrouted demands.  

For the purposes of this presentation, we assume that 
demands already routed on the network have their paths 
fixed, and their bandwidth requirements have been taken 
into account when specifying the available link capacities. 
In principle, there is no problem in allowing existing 
demands to be re-routable and/or “droppable” i.e. 
removable from the network in favour of new demands. In 
practice, this increases the problem scale, which is 
essentially determined by two factors: the number of 
demands whose paths are moveable, and the number of 
demands that need not be routed.  Also, we assume that a 
single path is required for each demand. 

The algorithm we present is also able to solve problems 
in which demands have a maximum propagation delay, 
which the sum of the propagation delays of the links a path 
for that demand must not exceed. However, the 
implementation of this feature is not core to the algorithm 
and to simplify the presentation we will not discuss it 
further in this paper. 

Solution Strategies 
At the simplest level, heuristic algorithms based on the 

use of the constrained shortest path first (CSPF) algorithm 
(Lee, Hluchyi, and Humblet 1995) can be applied. 
Demands are considered in a certain order, and an attempt 
is made to route each one, given the current available link 
capacities. If this is successful, the demand is placed on the 
network and its bandwidth requirement subtracted from the 
available capacity of the links on its path. If not, the 
demand is rejected. Some improvements may be gained by 
considering various different orderings of the demands, but 
the approach remains a heuristic one and does not perform 
search in any deep way. 

There have been a number of papers presenting 
algorithms for a related problem - that of optimising 
network utilisation under the assumption that all demands 
are placed. Methods proposed for this problem often apply 
mathematical programming techniques based on multi-
commodity flow formulations, and include (Barnhart, 
Hane and Vance, 2000) and (Wang and Wang, 1999). 
When moving to over-constrained demand admission 
problems, another level of choices is added to the demand 
routing problem, namely, which demands are placed and 
which are not. Introducing choices at this level presents 
challenges for mathematical programming models from the 
point of view of scalability. An alternative strategy in 
which it is first assumed that all demands are placed 
(allowing capacity violations), then one algorithm is 
applied to reduce capacity violations and a second applied 
to remove demands so as to satisfy the capacity 
constraints, would scale better. However, this imposes a 

separation between routing and demand selection which 
can lead to solutions that are significantly sub-optimal.  

In (Liatsos, Novello, and El-Sakkout, 2003), a technique 
is presented in which a search tree is constructed, using 
Mixed Integer Programming to reroute a single demand at 
the nodes of the tree. Finite domain constraints based on 
minimal cuts for subsets of demands are used to propagate 
information concerning the routing of demands over links. 
It is assumed that all demands are placed, and the 
optimisation component is on the maximum utilised link in 
the network. An unpublished variant of their technique that 
is able to make choices about which demands are placed in 
over-constrained problems has been developed, and is used 
for comparison in the experimental results section of this 
paper. 

The strategy adopted in the algorithm we propose here is 
as follows: 

1) obtain an initial solution, using CSPF methods 
2) improve the initial solution incrementally by 

adding in demands not yet placed and using local 
search to restore consistency with respect to the 
link capacity constraints 

3) execute a hybrid branch-and-bound tree search in 
which alternative  combinations of placed and 
unplaced demands are considered, with local 
search again used to restore consistency 

While investigating the problem, local search proved to 
be an effective technique for restoring consistency in a 
“slightly” inconsistent network by re-routing demands. 
The degree of inconsistency introduced by adding a single 
demand is generally small, and a short run of local search 
can often restore consistency when this is possible. 
Capacity violations are handled through the optimisation 
function. Although penalisation of hard constraint 
violations in this way can be problematic when it mixes 
constraint violation penalties with “real” optimisation 
criteria, here, the hard constraint violations completely 
determine the solution cost. 

The scope of decisions handled by local search is 
restricted to routing decisions - while inclusion of the 
potential to remove, as well as reroute, placed demands in 
the neighbourhood operator of local search is a possibility, 
it did not appear a promising direction. However, as the 
local search procedure is applied many times within the 
context of the incremental improvement and tree search 
phases – which address the selection of placed demands - 
the two levels of decision-making remain closely 
integrated in the algorithm. 

The Initial CSPF Solution 
The initial solution is constructed using the CSPF 

method, applied to each demand in turn, after ordering 
them in order of cost, highest first. The path must satisfy 
the bandwidth requirement of the demand without 
violating available link capacities. The metric used is 
“inverse free capacity” i.e. the reciprocal of the free 
capacity remaining on the link if the demand were routed 



over it. The metric value of a path defined as the sum of 
the metrics of its links. This metric was chosen as it tends 
to give good average-case link utilisation, which benefits 
later phases of the algorithm. 

If a valid path is found for a demand, it is placed on the 
network i.e. its required bandwidth is subtracted from the 
free capacity of the links in its path. If no valid path is 
found, the demand remains unplaced and will be passed 
into later phases of the algorithm for routing. 

The Incremental Improvement Phase 
The incremental improvement phase seeks to extend the 

set of demands placed in the initial solution by means of a 
loop which proceeds as follows: 

1) choose an unplaced demand 
2) place it on the network, allowing violations of the 

link capacity constraints 
3) call a local search procedure that attempts to 

restore consistency by rerouting demands 
If the local search procedure is successful in restoring 

consistency, the demand has been successfully placed, and 
will remain placed for the remainder of the incremental 
improvement phase – though its route may change. In this 
way, the local search procedure does not need to consider 
dropping previously placed demands as a possible means 
of restoring consistency. However, the price to pay for this 
is relatively high, as the order in which demands are 
considered strongly determines the solutions that can be 
found. It is for this reason that the tree search phase that 
follows, in which all combinations of placed/unplaced 
demands are potentially considered, was introduced.  

The unplaced demands are considered in order of cost, 
highest first. When an unplaced demand is initially placed 
on the network, its path is computed using the CSPF 
algorithm, with link capacity violation as metric. The local 
search procedure used to restore consistency is also used in 
the tree search phase of the algorithm, and will be 
described in detail later. 

As there is a random element in the local search 
procedure, and as the routing of demands changes as 
demands are placed, it can be beneficial to make a number 
of passes through the set of unplaced demands: demands 
that at first failed to be placed may be successfully placed 
when reconsidered. This helps to establish a stronger 
bound for the tree search phase that follows. 

Hybrid Tree Search 
The Hybrid Tree Search phase of the algorithm 

constructs a branch-and-bound search tree with the aim of 
optimising the total cost of the unplaced demands.  Each 
demand Di is associated with a boolean variable Bi, which 
has the value 1 if-and-only-if the associated demand is 
routed. The total cost is thus given by 

 
 

 
Starting from a network in which none of the demands 

are placed, finite domain constraints on the demand 
booleans are generated (described in more detail below), 
and a search tree is constructed as follows: 

 
i) select the next demand for labelling 
ii) label the demand boolean to 1, leaving a 

choice point. On backtracking to this choice 
point, the boolean will be labelled to 0 

iii) if the boolean was labelled to 1, then it is 
placed on the network, allowing link capacity 
violations. If there are violations, local search 
is called with the objective of restoring 
consistency: if consistency is restored, search 
continues on that branch, otherwise, 
backtracking follows 

 
The overall structure is therefore a binary tree with the 

demand booleans as decision variables. Local search is 
called at the nodes of the tree that follow a boolean being 
labelled to 1. Two factors may cause backtracking: 
constraint propagation following the labelling of a demand 
boolean, or failure of local search to restore consistency. 
Note that as the local search procedure executed at the 
nodes is incomplete, so is the overall search.  

The demands are ordered by cost, largest first, prior to 
tree search, but there is a dynamic aspect to the order in 
which demands are labelled: constraint propagation may 
instantiate demand booleans to 1 before the corresponding 
demand has been selected for labelling, indicating that the 
must be placed, and such demands are labelled before the 
remaining demands, again in order of cost, largest first. 

When a demand is to be routed, its initial route is 
calculated using CSPF, with link capacity violation as 
metric. The local search phase that follows is the same as 
that applied during the preceding incremental improvement 
phase, and is described in the next section. In particular, it 
has the freedom to reroute any routed demands in order to 
restore consistency of the network with respect to the link 
capacity constraints. The number of moves that can be 
made by local search is kept fairly small: as in the 
incremental improvement phase, the hope is that routing a 
single demand on a consistent network can create 
relatively few capacity violations, and if consistency can in 
theory be restored, the local search algorithm should be 
effective enough to do so within a reasonably small 
number of moves.  

The hybrid tree search is executed in the context of 
finite domain constraints. These constraints can act 
through propagation to instantiate the demand booleans, 
which can influence the order in which demands are 
labelled, or can cause a branch to fail early. In the design 
of the algorithm, the routing of demands is achieved using 
methods other than constraint programming, and in 
particular, in contrast to network flow models there are no 
boolean variables that reflect the presence of a particular 
demand on a particular link. The routes of placed demands 
are changed freely by the local search algorithm at the 
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nodes of the search tree without affecting the values of any 
variables. It is in general possible to derive constraints that 
relate demand booleans and link capacities from 
information about the necessary presence of demands on 
links, regardless of the specific routes taken by the 
demands. For example, a link is a necessary link for a 
demand if whenever that demand is routed, it must pass 
over that link. This may happen because of topological or 
capacity considerations, or because of a maximum 
propagation delay constraint on the path of the demand. 
More generally, it is possible to compute cut-sets for a 
demand - sets of links such that, if the demand is placed, it 
must pass through one member of the cut-set. 

Necessary links can be computed easily – by, for 
example, finding a path using CSPF, then prohibiting the 
individual links of that path and calling CSPF a second 
time: if a path cannot then be found, the prohibited link is 
necessary. Certain other cut-sets are also easy to derive: 
the outgoing links from the source of the demand is a cut-
set, as is the set of outgoing links from the destination of a 
necessary link, and similarly for incoming links to the 
demand’s destination, and to the source of a necessary 
link. While these are the means used in the current 
implementation, it could be fruitful to explore work in 
graph and network theory to add further forms of cuts. 

For each link in a cut-set, a boolean variable is created 
that represents the presence of the demand on that link. 
The sum of these variables is constrained to be equal to the 
demand boolean. After generating cut-set booleans and 
recording them on their links, a constraint is asserted for 
each link that the weighted sum of the cut-set booleans for 
that link – the weights being the bandwidths of the 
associated demands – is within the link capacity. 

Since the tree is constructed in the context of branch-
and-bound optimisation, there is a cost-bound constraint 
on the total cost of unrouted demands, which is initially 
bounded to be less than the cost of the best solution found 
prior to tree search, and is updated as the branch-and-
bound search proceeds in the usual way. If the incremental 
search phase that precedes tree search was restricted to one 
pass through the unplaced demands of the initial CSPF 
solution, it could be seen as the left-most branch of the 
tree, rather than as a search phase in its own right. 
However, multiple passes have proved effective in 
providing a better bound for tree search. Also, it is possible 
for the incremental search phase to solve the problem 
completely (i.e. place all demands) prior to tree search, 
without requiring generation of cut-set constraints (or 
constraint propagation). 

The Local Search Procedure for Restoring 
Consistency 

The local search procedure for restoring consistency in 
an inconsistent demand placement is a key component of 
both the Incremental Improvement and Hybrid Tree Search 
phases of the algorithm. Essentially, local search 
algorithms maintain a current search state, and proceed by 

moving from one state to another by computing a 
“neighbourhood” of a state, and selecting a neighbouring 
state to move to. In the present context, a state is defined 
by the routes of all routed demands. The state may have a 
number of links in which the capacity is exceeded – if 
there are no such links, consistency has been restored and 
search terminates with success.  

The neighbourhood of a state is defined as all states that 
can result from rerouting a demand whose route includes 
the link whose capacity is exceeded maximally so that the 
demand’s route no longer includes that link. This 
neighbourhood is typically rather large, and is certainly 
expensive to compute in full due to the routing calculations 
involved. Consequently, a ‘lazy’ approach is taken: a 
subset of demands on the maximally violated link are 
passed forward for rerouting, and a single reroute is 
generated for each such demand, using CSPF with link 
capacity violation as metric. Each such reroute is given a 
rating, based on a function of the violations it improves or 
introduces and those it worsens or removes, and one of the 
better reroutes is chosen – with a degree of randomness to 
discourage the search from falling into repetitive loops. 

Associated with a state is a cost, i.e. the value of an 
objective function that the search is aiming to minimise. 
Here, the aim of search is to remove link capacity 
violations and the cost of a state is defined by a term 
whose arguments are the number of links whose capacity 
is exceeded in the current state, and the sum of the 
bandwidth violations, respectively. One cost term is better 
than another if it is lexicographically smaller. 

Within local search techniques there are a number of 
attitudes towards neighbours that worsen the objective 
function. In hill-climbing, such neighbours are prohibited, 
while in simulated annealing (Kirkpatrick, Gelatt Jr. and 
Vecchi 1983), they may be accepted with a probability that 
diminishes as search proceeds. The approach taken here is 
to allow moves to such neighbours, within a hard bound on 
the degree of worsening. This bound can mean that no 
demands on the link whose capacity is exceeded that were 
passed forward into rerouting produce an acceptable 
neighbour, in which case an alternative subset of demands 
routed on that link will be selected, until all such demands 
have been tried. If this point is reached, the “least-bad” 
neighbour will be chosen in order to allow search to 
proceed. The hard bound on worsening is set quite 
generously, and functions as a filter for very bad moves. 
This technique was chosen as it proved important to allow 
moves that worsen the objective function in order to 
escape from local optima, while the fact that the local 
search procedure is run repeatedly through the incremental 
improvement and hybrid tree search phases of the 
algorithm precluded application of simulated annealing, 
which typically needs fairly long runs to converge to good 
solutions. 

Having allowed moves to worsen the objective function, 
it was necessary to introduce a mechanism to discourage 
search from going “too far in the wrong direction” from a 
promising state. This is implemented through a “fallback 
bound”: the best state found so far is recorded, along with 



its cost, and if a state with better cost is not found within 
the number of moves specified by the fallback bound, the 
best found state is recalled, and search proceeds from it 
again. At the same time, the fallback bound is increased to 
give search greater freedom. The fallback bound is reset to 
its initial value each time a new best state is found. Given 
the large size of the neighbourhood, and the randomised 
nature of the selection of reroutes, search will typically go 
in different directions each time a fallback occurs. 

Experimental Results 
In this section we give experimental results for a variety 

of problems on a large scale, real-world network. Due to 
commercial sensitivities, exact details of the network 
cannot be provided, however, it has roughly 100 routers 
and 350 (directed) links. Demands were derived from 
actual demand data for the network, with scaling 
procedures applied to make the problems hard or over-
constrained. The cost of not placing a demand is taken to 
be the bandwidth of the demand.  

All components of the hybrid algorithm were 
implemented in the ECLiPSe constraint logic 
programming language, and experiments were run on a 
2GHz Pentium 4 processor under Linux. Memory 
requirements are modest, with the largest problems 
requiring about 120mb RAM. 

First we consider a set of 200 problems, which have 
between 12 and 324 demands to be routed on an already 
loaded network. The average number of new demands per 
problem was 118. The original demand profile was used to 
load the network, while the choice of new demands to be 
routed was governed by possible use-case scenarios, such 
as adding a new set of services to the network. Two 
loading factors were used to multiply demand bandwidths, 
in order to generate different degrees of overconstrained 
problems – there were 100 problems at each loading factor. 
The percentage of requested bandwidth unplaced in the 
CSPF solution was 3.27% for the lower loading factor and 
7.47% for the higher. In order to understand the relative 
contributions of the different phases of the hybrid 
algorithm, we give results for the initial CSPF solution, the 
solution achieved after incremental improvement, and 
solution found by the algorithm as a whole, i.e. after 
running tree search. Results are given in Figures 1 & 2, 
where Total Cost is the sum of costs of all problems, while 
Percentage Cost Reduction is relative to the initial CSPF 
solution. 
 

Algorithm Total Cost % Cost Reduction 
CSPF 7837755 - 
CSPF + Incremental 
Improvement 

7745647 1.18 

Full LS/CP Hybrid 7554663 3.61 

Figure 1: Demand Admission, lower loading 

 
Algorithm Total Cost % Cost Reduction 
CSPF 19987968 - 
CSPF + Incremental 
Improvement 

19420280 2.84 

Full LS/CP Hybrid 18685141 6.52 

Figure 2: Demand Admission, higher loading 

In order to get some measure of the incompleteness 
inherent in the LS/CP Hybrid, for the above demand 
admission problems we compare the deficiency cases 
between this algorithm and Probe Backtrack Search 
algorithm presented in (Liatsos, Novello, and El-Sakkout, 
2003), extended by the authors of that paper to cover over-
constrained problems. A problem instance counts as a 
deficiency for an algorithm if the alternate algorithm finds 
a better solution on that problem. Both algorithms were run 
with a timeout of 600 cpu-seconds.  
 

Algorithm Deficiency Cases 
(lower loading) 

Deficiency Cases 
(higher loading) 

LS/CP 
Hybrid 

11 23 

PBT Search 18 24 

Figure 3: Demand Admission deficiency cases 

This comparison indicates that the problems are indeed 
hard for both algorithms, as each beats the other in a 
significant number of cases. However, the local 
search/constraint programming hybrid achieves better 
results than the complete algorithm within the allowed 
cpu-time. The relative improvement for PBT in the higher 
loading case can perhaps be explained by the fact that it 
uses a more extensive set of constraints for propagation 
than the LS/CP hybrid, and in the higher loading case 
demand bandwidths are greater with respect to available 
capacities, giving more opportunity for pruning. 

We continue by reporting some results on a large scale 
problem, in which all demands of the actual demand data 
were considered as new demands, and their bandwidths 
scaled in order to generate a tightly-constrained but 
solvable problem with approximately 1900 demands to be 
routed. The aim was to increase the scale factor as far as 
possible while still placing all demands. The results do not 
include the hybrid tree search phase, which did not 
succeed in placing all demands when the incremental 
improvement phase had failed to do so. These results 
appear in Figure 4, and show that the incremental 
improvement phase produced an increase of 2.92% over 
the bandwidth placed in the initial solution, within a 
relatively short run-time. 
 

Algorithm Scale Factor CPU time  
CSPF Initial Solution 2.74 4.05 seconds 
CSPF + Incremental 
Improvement 

2.82 109.42 seconds 

Figure 4: Scaled Actual Demands 



There are two further points to mention. First, the scale 
of demand admission problems is related to two aspects: 
the number of demands that may have their routes 
changed, and the numbers of demands that need not be 
routed i.e. may be rejected or dropped. The former 
influences that scale of the reroute problem, while the 
latter determines the potential scale of the branch-and-
bound search tree. In situations when demands already on 
the network may be rerouted but not dropped, the scale of 
the reroute problem is increased independently of that of 
tree search. The performance on the large scale problem 
above demonstrates the effectiveness of local search 
procedures for the routing aspect of demand admission 
problems.  

Secondly, for large scale problems, or problems in 
which there remain many unrouted demands following the 
incremental improvement phase, the search tree is 
potentially very large. In such cases, initial experiments 
indicate that it can be interesting to apply Limited 
Discrepancy Search (Harvey and Ginsberg 1995) to bound 
the degree to which solutions may differ from the best 
solution found by the earlier search phases. This keeps 
search within the vicinity of a good solution, while 
exploring changes to all assignments of that solution. 

Conclusions and Further Work 
We have presented a hybrid algorithm combining 

constraint propagation and local search in a novel way, 
with local search used to satisfy the hard problem 
constraints in the context of branch-and-bound 
optimisation in which constraint propagation also occurs. 
The algorithm was developed with the aim of solving 
complex, large scale demand admission problems, and has 
been shown to be effective for such problems. A potential 
contribution from Limited Discrepancy Search has been 
identified, and will be investigated further. 
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