
A New Approach for Heterogeneous Hybridization

of Constraint Satisfaction Search Algorithms

Debasis Mitra and Hyoung-rae Kim
Department of Computer Science, Florida Tech. FL.

dmitra@cs.fit.edu, hokim@fit.edu

Abstract
In the recent years, CSP's have come to be seen as the core
problem in many applications. We propose here a hybrid
algorithm (MC-FC) that combines two different search
methods, where a problem is solved partially with a random
answer using Min-conflict algorithm (MC) and then the
partial solution guides the systematic search algorithm
(Forward-checking, FC) to solve the remainder of the
problem. The specific problems used for this study are
primarily the graph coloring problems with various degree of
connectivity. The time complexity of the MC-FC is much
better than the pure MC and FC under many circumstances.
Furthermore, its time-complexity is more predictable over
multiple experiments compared to that of the pure MC or
FC, and the former algorithm uses less storage than the pure
algorithms. We attempt to motivate our heterogeneous
hybridization technique with some preliminary experiments
and simple manual calculations.

1. Introduction

Algorithms for solving CSP's usually fall into one of the
three main categories: systematic search algorithms, local
search algorithms, and hybrid algorithms. Systematic
algorithms start from a state where all variables are empty
and are subsequently instantiated until the state of a
complete assignment. The disadvantages of these
algorithms are thrashing, redundant work, and late
detection of the conflict - starting with a wrong variable will
explore the whole sub trees [9]. Local search algorithms
(e.g., min-conflict [10], GSAT [15], tabu search [5], etc.)
perform an exploration of the search space by selecting the
best possible assignments locally. These algorithms start
with a full assignment to all variables, and then repair
inconsistent assignments. The disadvantage is that there is
still a danger of falling into local minima. These methods are
also incomplete – if a problem has no solution it will not
terminate. Hybrid algorithms, on the other hand, are
integration between local and systematic searches. The
hybrid approaches have led to good results on large-sized
problems. There have been many works combining local
and systematic search algorithms by coordinating between
the two [8,11,14,12,13,16,19].
 In order to enhance the systematic search of Forward-
checking algorithm (FC) we start from a randomly built
partial solution. Then the FC algorithm may succeed in

Copyright © 2004, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

finding a solution or fail, more efficiently since it could
prune many inconsistent domain values from the
beginning. Our approach is to obtain a partial random
solution for the first portion (random part) of the problem
(ZK, D, C, where ZK is a k-subset of the set of variable Z, D
a set of domain of values for each variable, and C a set of
constraints between the variables [18]) in an arbitrary (or
any natural) ordering of the variable 1 through N. Then our
approach uses that partial solution to guide the systematic
search for the remainder (systematic part) of the problem
(ZN-K, D, C). This guidance reduces the workload for the
systematic search (especially for the Forward Checking
algorithm) by pruning the initial search space because
every complete solution of the problem contains a partial
solution as a subset (although every partial solution may
not lead to a complete solution).
 We have used Min-conflict algorithm (MC) [10] for the
random part and Forward-checking algorithm (FC) [6,18] for
systematic part. We call this technique a heterogeneous
hybridization scheme (for the obvious reason). A
“homogeneous” hybrid algorithm has a tighter integration,
e.g., a systematic search may act for propagating
constraints or checking validity of assignments at each
step of repair of a local search [14,19]. Our experiments
primarily focus on the graph coloring problems, but we
have also worked with the N-queens problem.
 Our primary contribution is the new heterogeneous way
of hybridizing two completely separate parts, and
consequent method of experimenting with problem
structure. The advantages of this approach are to reduce
the time complexity and also to yield more stable complexity
(by stable we mean having a small confidence interval for
the mean over multiple experiments), compared with what
the pure local or the pure systematic search algorithm
achieve. The disadvantage of, the algorithm is that not
complete, i.e., it may not find a solution even if one exists.
To compensate for this disadvantage we have hinted two
other variations of our algorithm that are complete. Our
objective is to propose the heterogeneous way of
hybridizing algorithms, rather than finding the fastest
algorithm for the graph coloring problem or the N-queens
problem. For this reason we have experimented with two
pure versions of algorithms, namely the MC and the FC,
rather than their more efficient versions.
 The rest of this paper is organized as follows: Section 2
describes partial solution and the motivation of
heterogeneous algorithm. Section 3 details MC-FC

algorithm. Section 4 describes our experiments. Section 5
analyzes the results from the experiments. Section 6
discusses related work in hybrid algorithms. Section 7
summarizes our findings and suggests possible future
work.

2. Partial Solutions

When the number of nodes is large, FC does not remove
inconsistent domain values efficiently in general. In order
to alleviate this problem we start with a randomly generated
partial solution. Then FC may work faster since many
inconsistent domain values could be pruned initially. Our
algorithm divides a problem into two partitions (ZK∪ZN-K,
D, C), for N variables and 1<=K<=N, and we run the two
different types of search algorithms over the two different
partitions. For example, in 16-queens problem, if K is 2, the
initial problem is to put two queens in a 16 by 2 board.
Since we are using a random partial solution for guiding the
subsequent search over the complementary partial problem,
studying the characteristics of partial solution is important.
Below we study the complexity (and another relevant
parameter) of the partial problem solving process by the
two search techniques.
 Firstly, as mentioned before, the Informed Backtracking
algorithm (MC) with Min-Conflict heuristics [10] is chosen
for the random part. The MC starts with random initial
values and is guided by the Min-conflict heuristic, which
tries to find the best alternative in its search-path that
conflicts minimally. Since we plan to study the change of
time complexity against different partial problem sizes (we
use variable K as the partitioning parameter, 0<=K<=N,
where N is the variable number in the CSP), this algorithm is
the appropriate choice, as we wanted to find a partial
solution quickly. We have varied K from 1 through N in this
study. Las Vegas algorithm [3] also depends on
randomness, and also is a potential candidate. However, it
is slower than the MC algorithm [6] in general.
 Secondly, we also need to measure the change of
complexity for the systematic search part (K+1 through N
variables) by varying K (from 1 through N). Kondrak and
Beek [9] compared the efficiency of several systematic
search algorithms theoretically and empirically. Even
though there are faster algorithms than FC (e.g., FC_CBJ)
[9], the FC algorithm, being a "pure" algorithm, is more
suitable and logistically easy for measuring how well the
random initial value affects the final results. This is why we
have picked up the FC algorithm for the systematic part.
 Both the parts above are over complementary partitions
of the problem space. Thus, for an arbitrary ordering of
variables, one part is 0 through K, and the other part is K+1
through N, where K=0 indicates pure FC, and K=N
indicates pure MC.
 One of the ways to motivate such a heterogeneous
hybridization is to experiment separately over each partition
independently (without using the second algorithm), and

then to aggregate the result from the two cases. If the first
part (running MC) sharply increases and the second part
(running FC) decreases as K increases, then we expect the
hybridization to produce better results. In sections 5.2 and
5.3 we presents results from such motivating experiments.
We control two parameters: K (size of the partial solution),
and R (number of allowed repetitions with random starts for
MC). We can assign a large value to R in order to increase
the accuracy. We measure accuracy by the number of
successes in finding a solution over multiple experiments –
the probability of success.

3. The MC-FC Algorithm

In this section we explain the hybrid MC-FC algorithm. We
solve the partial problem using MC from 1 through K
(1<=K<=N), and then use FC for the remainder of the
problem. Partial solutions are fed to FC and the FC starts
with pruning of the remainder of the variables’ domains
accordingly. However, MC may feed a partial solution that
does not lead to a complete solution for the whole of the
problem. If the FC does not find a solution, the process is
repeated, up to the pre-assigned maximum repetition
number (R) or until FC finds a solution. The value of K is
varied not only to prove our conjecture that hybridization is
more efficient than each of its component algorithms, but
also to find the optimum value of K for the best time-
complexity.

procedure MC-FC (k)
 Count = 0
 While Count < R do
 Count++;
 Initialize Z, D, C;
 COMPOUND_LABEL = MC(k, Z, D, C);
 Result = FC(k, COMPOUND_LABEL, Z, D, C)
 if Result == valid then
 return result;
 else return false;
 end if
 end while
end procedure

Figure 1. MC-FC algorithm

 This algorithm in Figure 1 is not complete. A modified
complete algorithm (MC-FC-2) can be designed to alleviate
this weakness. As an enhancement we add a hash table to
keep all the tested COMPOUND_LABELs (partial
solutions) over different repetitions (<=R). A new
COMPOUND_LABEL is checked against this no-good
database before it is fed to the FC. This would work when
the size of the possible COMPOUND_LABEL is small.
However, over a very large number of repetitions, the hash
table size also increases: in the worst case the space
complexity of the hash table becomes O(|D||Z|), with |Z|
number of variables and |D| values in each variable’s
domain. Another alternative algorithm (MC-FC-3) will be to
revise MC to actually backtrack when FC fails rather than to

start from the scratch in the latter case, i.e., let MC to keep
track of what it has visited, which is similar to the work by
Zhang [20]. This is also a complete algorithm and the
asymptotic time complexity is the same as the original MC-
FC. The disadvantage of MC-FC-3 is that the solution
could depend on the initial assignment too much. Thus, it
loses the power of randomness and is likely to backtrack
more than necessary. As one of the purposes of this work
is to prove the new paradigm of hybridization, we use the
original MC-FC that yields the most randomized partial
solution.

4. Experiments

Data. We used N-node graph coloring problems over
various percentages of connected nodes (CN), and the 16-
queens problem. Graph coloring problem is a well-known
NP-complete problem [7]. We have chosen N=16, 18, and 20
for the reported set of experiments. To create a graph, we
connected N nodes randomly depending on the pre-
assigned value of CN. We created various N-node graph
coloring problems over different graph connectivity
CN=0.55, 0.7, and 0.8, where CN = ((number of arcs) / (N(N-
1)/2)), for N nodes, and with different number of colors (|D|).
We use the minimum number of colors needed for different
values of CN (determined by separate preliminary
experimentation). We have used various CN’s representing
different problem structures for the graph coloring
problems in order to cover various types of problems.
Criteria. We have analyzed the number of consistency
checks (CC) for the time complexity, and statistical
confidence interval (CI) over multiple experiments for the
stability. The most common methods to measure the time
complexity are visited nodes (VNs) and consistency checks
(CC) [9]. Since CC subsumes VN, we mainly use CC in our
experiments. We define a data point (mean) to be stable
when the confidence interval [1] is small on the mean
values of a distribution of CC over repeated experiments
(up to R or until a solution is found). In other words, the CI
indicates the quality of the data points.
Procedure. We have run FC and MC for experimenting over
the partial problems (motivating experiments), and the
hybrid MC-FC algorithm over the whole problem.
Implementations used Java™ and our experiments are
performed on a Sun Ultra 60™ workstation. We have
averaged our results around 300 different runs of the three
programs. There are three different set of experiments: for
the random part (MC), the systematic part (FC), and the
hybridized algorithm over the whole problem.

5. Analysis

5.1. The Complexity of MC Over Partial
Problems
Procedure. We measured the growth rate of CC of the MC
algorithm against the size (K) of the partial problem. For

example in the 16-queens problem, if K is 2, the problem is
to put two queens in a 16 by 2 board. As K grows up to 16,
the problem becomes the complete 16-queens problem. So,
such a partial problem is really an N×K queens problem.
Results. The results are shown in Table 1. Nodes mean the
number of nodes in N-node graph coloring problem. CN
stands for average connected nodes. C stands for the
minimum number of colors to solve the problem. The results
show that the CC increases sharply toward the high K
value. The CC for N=16, for CN= 0.7 or 0.8, and with K=16,
is abnormally higher than the CC value for the CN=0.55
values, which means that those points are more difficult for
MC to solve than the other points (by more difficult we
mean it takes more time). We did not show CN=0.3 and 0.9
because those have relatively low CC values. 16-queens
problem also yield similar results. As K approaches N, CC
increases sharply. We have actually observed this pattern
over many other N values for the N-queens problem. We
did not show any CI value because the average of CC alone
explains the changes well here.

Table 1. CC (x103) with N-graph coloring problem over
various CN in MC part

16 graph coloring 18 graph coloring 20 graph coloring
CN 0.55 0.7 0.8 0.55 0.7 0.8 0.55 0.7 0.8 K

16-
queen

C 5 6 8 5 8 8 6 8 10
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0.1 0.1 0.1 0.1 0 0.1 0 0 0 0
6 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0 0.1 0.1
7 0.3 0.1 0.1 0.2 0.1 0.2 0.2 0.1 0.1 0.3
8 0.4 0.2 0.2 0.3 0.2 0.2 0.3 0.2 0.2 0.3
9 0.6 0.3 0.3 0.3 0.3 0.4 0.4 0.3 0.4 0.4
10 0.7 0.4 0.4 0.5 0.4 0.4 0.5 0.5 0.5 0.7
11 0.9 0.5 0.5 0.7 0.5 0.6 0.6 0.6 0.6 0.8
12 1.2 2.2 0.7 0.8 0.6 0.8 0.8 0.8 0.8 1.0
13 1.5 2.3 0.8 1.0 0.7 1.0 1.1 0.8 0.9 1.2
14 2.0 2.5 1.1 2.6 0.9 1.2 1.2 1.1 1.2 1.4
15 3.0 2.3 2.4 2.1 5.3 1.4 1.4 1.2 1.5 1.7
16 7.1 4.4 3357.9 5643.1 190.1 10.4 100.6 2.4 2.2 1.8
17 293.5 6.9 120.6 6.3 2.8 19.0
18 181.4 9.2 149.6 2.7 7.0 33.5
19 4.3 1088.8 56.2
20 1642.4 1184.9 176.3

5.2. The Complexity in the Systematic Part (FC)
Over the Partial Problems

Procedure. Analysis of the systematic search part is
slightly different from the previous mode of study for the
random part. We have randomly generated partially
satisfying assignments for variables numbered 0 through K,
and then used that partial solution to initialize the FC
algorithm for running over the rest of the problem (for
variables K+1 through N). If the FC fails to find a complete
solution of the whole problem (1 through N), then we
reinitialize again in a similar way as before and rerun FC, i.e.,
we repeat the experiment. By repeating the experiment we
derive a statistical average of CC for the FC algorithm, for

different values of K. An upper limit R for the number of
such repetitions is pre-assigned (which is also varied). We
have studied accuracy against K in order to make sure we
use high value of R in our subsequent experiments with FC
algorithm for investigating only the “solvable” problems.
The max repetition number R was set to 100,000.

Figure 2. 4-queens problem

 We explain how we calculate the time complexity and the
accuracy for the systematic part. We use 4-queens problem
as an example since its domain size is small, and we only
count VNs (visited nodes) to simplify the counting process
(although we have used CC for the experiments). All visited
nodes are expanded by an FC algorithm as shown in the
Figure 2. K is the number of variables that are assigned to a
value initially as a partial solution tuple, with a varying K. If
the attempt (FC) fails to find a solution we rerun it one more
time, so, R=2 here. A row indicates the corresponding
variable, and the columns indicate the domain values of any
variable.
 For K=1 there are four possible starting assignments for
the first variable indicated by the nodes {(1),(2),(3),(4)} (see
Figure 2). The possibility of an occurrence of the node (1) is
1/4, and the VNs is 3 and it always fails (for every random
attempt of initializing at that node). The remaining
occurrences (nodes 2, 3, and 4) are calculated in the same
way. Every initial node causes FC to visit exactly three
nodes following the respective initialization. So, the
average number of VNs is 3 and the standard deviation
(SD) is 0. The possibility of success (accuracy) is ½ (50%)
in average. Suppose we allow rerun (say, for pre-assigned
R=2), the rerun happens only when FC fails, i.e., when initial
nodes is 1 or 4. So, there are only 10 such cases [{(1),(1)},
{(1),(2)}, {(1),(3)}, {(1),(4)}, {(2)}, {(3)}, {(4), (1)}, {(4), (2)},
{(4),(3)}, {(4),(4)}]. As an example, the situation of {(1),(2)}
means the first initialization was at node (1) and the second
rerun started with node (2). Each case in this scenario has
1/10 possibility of occurrence; the possibility of success is
6/10 (60%); VN is 6 for 8 cases and 3 for 2 cases (5.4 in
average).
For K=2, it has 6 possible starting points {nodes (5), (6),
(7)… (10)}. The possibility of success is 2/6 (33%); the
average VNs is 6/6 (=1). When we rerun one more time (say,
R=2), it has 26 possible starting points [{(5),(5)}, {(5),(6)},

{(5),(7)} … {(10),(10)}]. The possibility of occurrence for
each case is 1/26, the possibility of success is 10/26 (38%),
and it has 40/26 (=1.5) VNs in average - the SD is 0.9. We
can observe from this simple calculation that as we increase
K to 2 and allow rerun, the possibility of success
(accuracy) and VN are both reduced. We showed how we
calculate the possibility of success, in order to provide an
insight into the relationship between success and the
number of visited nodes (or CC).
Results. In 16-queens problem, as K increases we can
clearly see that the CC reduces. As we allow more
repetition, the accuracy reaches to 100%, which is expected
because we are solving the partial problem, starting with
randomly chosen different initial solutions, and repeating
this until we get the solutions. Table 2 shows that the CC
drops as K increases (K represents the size of partial
solutions). 16-node graph coloring problem with CN=0.7
shows the same type of changes. The one with CN=0.8 of
N=16 had low CC values in the middle. We did not show CI
because the average of CC alone shows the changes well
enough.

Table 2. CC (x103) with N-graph coloring problem over
various CN in FC part

16 graph coloring 18 graph coloring 20 graph coloring
CN 0.55 0.7 0.8 0.55 0.7 0.8 0.55 0.7 0.8 K

16-
queen

C 5 6 8 5 8 8 6 8 10
0 10.0 0.4 761.2 972.9 0.6 0.8 24.1 942.3 1.0 1.2
1 4.2 0.3 84.5 937.2 59.8 1.1 24.1 128.5 770.4 1.2
2 2.3 1.3 235.4 227.8 130.4 1.9 28.0 158.1 801.9 1.6
3 1.6 1.1 120.4 260.8 11.5 1.4 12.0 19.0 143.6 1.2
4 1.7 2.7 147.9 39.6 3.8 1.3 14.9 22.4 162.6 5.3
5 1.0 1.2 71.4 16.3 2.6 2.4 9.9 17.1 45.7 2.9
6 0.5 1.1 20.7 15.1 8.2 2.6 9.6 9.0 50.3 20.6
7 0.1 1.1 13.1 6.3 2.8 7.4 12.6 10.4 30.0 17.2
8 0 1.5 6.9 6.7 7.7 3.9 14.7 7.2 10.0 61.3
9 0 1.1 4.9 11.1 11.4 1.9 37.0 4.5 4.4 14.5
10 0 2.5 4.7 19.1 11.6 4.5 19.2 4.8 23.0 15.2
11 0 1.1 3.7 60.9 19.7 1.3 24.5 5.5 8.9 5.7
12 0 0.2 3.5 68.8 9.7 1.0 12.8 4.8 9.8 3.6
13 0 0.2 5.0 43.5 9.1 1.6 2.6 6.3 10.0 2.4
14 0 0.1 3.1 8.2 11.1 2.6 3.7 4.2 3.0 1.7
15 0 0.1 0.3 5.2 3.8 1.9 3.4 5.9 7.0 1.6
16 0 0 0 0 0.5 0.4 0.4 4.0 5.9 1.8
17 0.1 0.1 0.2 2.4 3.2 1.1
18 0 0 0 2.5 3.0 1.5
19 0.5 0.1 0.4

5.3. The Complexity of Hybridization Over
Varying K-values

Procedure. In the following experiments with our hybrid
algorithm, we allow large value of R in order to have 100%
accuracy in each test. We also vary K from 0 through N,
where K=0 corresponds to the pure FC algorithm and K=N
corresponds to the pure MC algorithm.
Results. The results of the hybridized algorithm were
reported in Table 3. ANOVA (single factor) clearly shows
that there were differences among different K values, by
yielding less than 0.05 of P value. We can also clearly
observe that FC is misdirected away from the solution in

4 3 2 1

0

10 9 8 7 6 5

14 13 12 11

16 15

the search space in the case of N=20, CN=0.55 and K=0
because its value is so high compared to the value of N=20,
CN=0.7 and K=0. In nodes=20, CN=0.7 with pure FC
algorithm (K=0) it had very low CC, but when we started the
MC-FC algorithm with the starting position randomly (K=1)
the value of CC became larger, which shows the brittleness
of FC.
 Case with nodes=16, CN=0.7 and 0.8 are more difficult
than that with CN=0.55; with nodes=18, CN=0.55 and 0.8 is
more difficult than that with CN=0.7; and with nodes=20,
CN=0.55 and 0.7 are more difficult than CN=0.8. Whenever
the problem is difficult, it has the minimum CC value in the
middle (other than the CC for the pure FC). The results
show that in 16-graph coloring problem with CN=0.7, K=8
provided the best results (CC=8385 and CI=2762). The
upper bound and lower bound were 11,147 and 5,623; it
overlapped only with its neighboring interval (K=7 and
K=9), but not with the other data points, which means it is
better than the others in confidence level of 0.05.
Furthermore, the CI of K=8 (2762) was lower than that for
other K values generally. Since every different case of K
had the same number of sample data, the K with the lower
CI is more stable than the ones with higher CI values.
 The CI values are also low for each data point where CC
values are found to be minimum. The “CI M” stands for CI
values corresponding to the minimum CC values. This
value can be used for checking whether they are
statistically different from the other neighboring data points .
We omitted the other CI values due to the space limitation.

Table 3. The results with N-graph coloring problems
over various CN in MC-FC (x103)

16 graph coloring 18 graph coloring 20 graph coloring
CN 0.55 0.7 0.8 0.55 0.7 0.8 0.55 0.7 0.8 K

16-
queen

C 5 6 8 5 8 8 6 8 10
0 148.4 0.4 761.2 972.9 0.6 0.8 24.1 942.3 1.0 1.2
1 69.7 0.3 111.4 939.0 87.1 0.9 24.1 252.9 866.5 1.2
2 35.6 1.8 314.9 262.0 137.7 2.1 27.7 127.7 866.5 1.5
3 28.6 1.0 116.9 107.6 21.9 1.6 12.9 81.6 1726.5 1.3
4 22.3 2.3 136.7 30.7 4.4 1.4 15.2 15.4 105.3 2.9
5 18.3 0.8 92.1 33.2 2.0 1.5 7.3 22.2 40.6 3.0
6 11.6 1.0 31.2 14.7 9.4 2.1 20.5 9.4 41.1 33.6
7 13.2 1.0 15.5 5.4 6.4 5.2 12.6 12.8 26.8 9.7
8 18.4 1.4 8.3 8.0 13.1 3.3 10.0 8.5 13.5 103.5
9 27.0 2.9 10.0 19.0 14.2 2.6 85.4 7.9 8.1 16.5
10 41.5 5.5 14.5 36.5 22.3 4.9 31.2 6.9 24.9 23.5
11 65.1 3.6 23.6 164.0 32.5 2.8 37.1 17.3 14.4 10.1
12 79.5 2.7 14.2 215.2 28.5 3.0 31.8 12.6 20.9 6.7
13 80.5 3.6 23.3 189.2 38.2 4.0 8.2 17.1 25.6 6.8
14 67.1 2.7 30.1 106.0 55.3 17.1 13.6 14.3 10.9 5.6
15 55.4 3.0 40.4 121.5 89.7 7.9 15.0 21.5 27.6 6.6
16 46.1 2.8 3806.2 7702.4 735.3 17.6 170.0 34.6 42.5 5.5
17 220.9 7.9 173.6 32.6 61.3 52.6
18 254.8 10.5 128.8 35.3 129.7 125.5
19 32.0 3107.2 70.8
20 1471.8 1397.8 80.6

Best K 6 1 8 7 5 0 5 9 9 1
CI M 0.9 0 2.7 1.6 0.5 0 4.1 2.9 2.5 0

 All of the results with the other N-queens problems (20,
24, 26, 28, 30, and 32) have similar patterns as we vary the K
value, i.e., all N-queens problems had its minimum CC when

K is around in the middle. 16-qeens problem has its lowest
CC value at K=6.
 The best K value for each case are indicated by
highlighting the complexities or the CC value that is the
lowest in each column of Table 3. The best K varies with
the problem. However, we can observe that the best K
value is around in the middle for the harder problems (e.g.,
N=16 and CN=0.7 is harder than N=16 and CN=0.55) in
terms of computational requirements.
 We have experimented also with the complete algorithm
MC-FC-2 and the results are very similar to that for MC-FC.
However, as we have discussed before that MC-FC-2 is not
scalable for large problems. We do not present those
results here for the lack of space.

6. Related Research

Jussien and Lhomme [8] presented a new hybrid technique.
It performed a local search over partial assignments instead
of complete assignments, and used filtering techniques and
conflict-based heuristic to efficiently guide the search.
They used a tabu search algorithm. Zhang [20] proposed a
hybrid algorithm that used automatic symmetry breaking
method as a preprocessing step, and then the propositional
satisfiability procedure is called for completing the search.
This method is similar to our MC-FC-3. However, the MC-
FC algorithm allows randomness in the MC part by
completely separating them. Schaerf [14] proposed a
solution technique that combined backtrack-free
constructive methods and local search techniques. This
technique incrementally constructed the solution
performing a local search on partial solutions each time the
construction reached a dead-end. Pargas and Ludwick [11]
combined genetic algorithms with search algorithms,
providing clues that ideally accelerate each other’s ability
to find the optimal solution. Pesant and Gendreau [12]
proposed a novel way of looking at local search algorithms.
They concentrated on the neighborhood exploration. Shaw
[16] combined local search and constraint programming. His
“Large Neighborhood Search” explored a large
neighborhood of the current solution by selecting a number
of “related” customer visits, and re-inserting these visits
using a constraint-based tree search. He used Limited
Discrepancy Search during the tree search to re-insert
visits. Richards and Richards [13] explored the performance
of a complete non-systematic search algorithm learn-SAT,
which was based on restart-repair and learning no-goods.
None of the previous works has decomposed the problem
space completely as we are proposing.
 Hogg et al. [7] presented and experimentally evaluated
(over the graph coloring problem) the hypothesis that
cooperative parallel search is well suited for hard graph
coloring problems near phase transition zone. They found
that simple cooperative methods could often solve such
problems faster than the same number of independent
agents. Our method uses single agent unlike their method.

7. Conclusions and Future Work

We have proposed here a technique for hybridizing
algorithms that is a systematic search guided by a partial
solution. We have used the MC algorithm to get the partial
solution for the random part and the FC algorithm for the
systematic part of the problem. We have also quantified the
degree of hybridization with the size (K number of initial
variables in an arbitrary total order of the variables) over
which the local search runs and we have experimented by
varying K. The best results with the lower time-complexity
and the smaller CI (confidence interval, for the distribution
of that complexity over multiple experiments) are observed
at some mid-range K values between 0 and N. This not only
proves the power of the hybridization (as we have
motivated with the preliminary experiments), but also
quantifies where such optimal efficiency is expected.
 We emphasize that the purpose of this article is to
introduce a new way of hybridization rather than to
introduce a faster algorithm. For instance, Sumitaka [17]
proposed a faster algorithm that finds one solution for the
N-queens problem. Our contribution is to prove the
conjecture that the heterogeneous hybridization is
promising. This is also why we used standard MC and FC
algorithms.
 Another advantage of our heterogeneous hybrid
algorithm is that it uses less memory than the pure MC or
FC. This is because as FC starts to execute, the expanded
nodes by MC are deleted, except just the partial solution
that MC returns. Also, MC-FC “forgets” the FC algorithm’s
work when it repeats back the MC on FC’s failure in finding
a solution. Therefore, it either keeps only the nodes
expanded by MC (up to variable K) or those by FC (for
variables K+1 through N). Our hybridization technique is
also quite easy to implement because of its heterogeneous
nature. Our experimentation with the degree of
hybridization by varying K opens a lot of possibility for
creating such heterogeneous combination between
algorithms (e.g., combination of other local searches and
systematic searches) and we will pursue those possibilities.
 We have “invented” a (N×K)-queens problem, where the
number of queens is the smaller of the two numbers. In this
problem when K approaches N the problem apparently
becomes the hardest, which may be considered as a special
type of phase transition (our unreported experiment shows
a sharp increase in complexity as K gets closer to N,
followed by a sharp decrease as K>N moves away from N,
with the expected symmetry on both the phases). We also
intend to study these phenomena closely in the future.
Another future direction is to apply different search
algorithms replacing MC and FC. We want to study how
hybridization improves efficiency with the algorithms faster
than MC and FC. In order to find the optimal K we need
more experimentation with some real data sets (e.g., from
the DIMAC center’s dataset). We also intend to increase
the size of the studied problems.
Acknowledgment: NSF has partly supported this work.

References
1. Anderson, D.R., Sweendy, D.J. (eds): Statistics. West

Publishing Company, (1986).
2. Bayardo, Ur.R., Schrag, R.: Using look-back techniques to

solve exceptionally hard SAT instances, in Proc. CP-96
(1996) 46-60.

3. Brassard, G. and Harvey, W.: Algorithmics – Theory and
Practice, Englewood Cliffs, NJ, Prentice Hall (1988).

4. Dechter, R.: Enhancement Schemes for Constraint Processing:
Backjumping, Learning, and Cutset Decomposition, Artificial
Intelligence 41 Vol 3 (1990) 273-312.

5. Glover, F. and Laguna, M.: Tabu Search, Kluwer Academic
Publishers, 1997.

6. Haralick, R.M. and Elliott, G.L.: Increasing Tree Search
Efficiency for Constraint Satisfaction Problems. Artificial
Intelligence 14 Vol. 3 (1980) 263-313.

7. Hogg, T. and Williams, C.: Solving the Really Hard Problems
with Cooperative Search, in Proc. of AAAI93 (1993) 231-
236.

8. Jussien, N. and Lhomme O.: Local Search with Constraint
Propagation and Conflict-based Heuristics, Artificial
Intelligence. 139 (2002) 21-45.

9. Kondrak, G. and Beek, P. van: A Theoretical Evaluation of
Selected Backtracking Algorithms. Artificial Intelligence
Journal 89 (1997) 365-387.

10. Minton, S., Philips, A., Johnston, M.D., and Laird P.:
Minimizing Conflicts: A Heuristic Repair Method for
Constraint-Satisfaction and Scheduling Problems, Journal of
Artificial Intelligence Research 1 (1993) 1-15.

11. Pargas, R.P. and Ludwick, J. (eds): Hybrid Search
Algorithms. Proceedings of the ACM Symposium on
Applied Computing, San Jose, California (1997) 269-273.

12. Pesant, G. and Gendreau, M.: A View of Local Search in
Constraint Programming. Springer, Berlin (1996) 353-366.

13. Richards, E.T. and Richards, B.: Non-systematic Search and
Learning: An Empirical Study. in Proc. Conference on
Principles and Practice of Constraint programming, Pisa
(1998) 370-384.

14. Schaerf, A.: Combining Local Search and Look-Ahead for
Scheduling and Constraint Satisfaction Problems. Proc.
IJCAI-97, Nagoya, Japan (1997) 1254-1259.

15. Selman, B., Levesque, H., Mitchell, D.: A New Method for
Solving Hard Satisfiability Problems, in Proc. AAAI-92, San
Jose, CA (1992) 440-446.

16. Shaw, P.: Using Constraint Programming and Local Search
Methods to solve Vehicle Routing Problems, Proc. 4th
Conference on Principles and Practice of Constraint
Programming. Pisa (1998) 417-431.

17. Sumitaka, A.: Explicit Solutions of the N-Queens Problem,
SIGART, 2 Vol. 2 (1991).

18. Tsang, E.: Foundations of constraint Satisfaction, Academic
Press Ltd., London, (1993).

19. Williams, C.P. and Hogg T.: Exploiting the Deep Structure of
Constraint Problems, Artificial Intelligence 70 (1994) 73-117.

20. Zhang, J.: Automatic Symmetry Breaking Method Combined
with SAT. Proceedings of the ACM Symposium on Applied
Computing, LasVegas, Nevada (2001) 17-21.

