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Abstract 
In the recent years, CSP's have come to be seen as the core 
problem in many applications. We propose here a hybrid 
algorithm (MC-FC) that combines two different search 
methods, where a problem is solved partially with a random 
answer using Min-conflict algorithm (MC) and then the 
partial solution guides the systematic search algorithm 
(Forward-checking, FC) to solve the remainder of the 
problem. The specific problems used for this study are 
primarily the graph coloring problems with various degree of 
connectivity. The time complexity of the MC-FC is much 
better than the pure MC and FC under many circumstances. 
Furthermore, its time-complexity is more predictable over 
multiple experiments compared to that of the pure MC or 
FC, and the former algorithm uses less storage than the pure 
algorithms. We attempt to motivate our heterogeneous 
hybridization technique with some preliminary experiments 
and simple manual calculations. 

1. Introduction   

Algorithms for solving CSP's usually fall into one of the 
three main categories: systematic search algorithms, local 
search algorithms, and hybrid algorithms. Systematic 
algorithms start from a state where all variables are empty 
and are subsequently instantiated until the state of a 
complete assignment. The disadvantages of these 
algorithms are thrashing, redundant work, and late 
detection of the conflict - starting with a wrong variable will 
explore the whole sub trees [9]. Local search algorithms 
(e.g., min-conflict [10], GSAT [15], tabu search [5], etc.) 
perform an exploration of the search space by selecting the 
best possible assignments locally. These algorithms start 
with a full assignment to all variables, and then repair 
inconsistent assignments. The disadvantage is that there is 
still a danger of falling into local minima. These methods are 
also incomplete – if a problem has no solution it will not 
terminate. Hybrid algorithms, on the other hand, are 
integration between local and systematic searches. The 
hybrid approaches have led to good results on large-sized 
problems. There have been many works combining local 
and systematic search algorithms by coordinating between 
the two [8,11,14,12,13,16,19]. 
 In order to enhance the systematic search of Forward-
checking algorithm (FC) we start from a randomly built 
partial solution. Then the FC algorithm may succeed in 
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finding a solution or fail, more efficiently since it could 
prune many inconsistent domain values from the 
beginning. Our approach is to obtain a partial random 
solution for the first portion (random part) of the problem 
(ZK, D, C, where ZK is a k-subset of the set of variable Z, D 
a set of domain of values for each variable, and C a set of 
constraints between the variables [18]) in an arbitrary (or 
any natural) ordering of the variable 1 through N. Then our 
approach uses that partial solution to guide the systematic 
search for the remainder (systematic part) of the problem 
(ZN-K, D, C). This guidance reduces the workload for the 
systematic search (especially for the Forward Checking 
algorithm) by pruning the initial search space because 
every complete solution of the problem contains a partial 
solution as a subset (although every partial solution may 
not lead to a complete solution). 
 We have used Min-conflict algorithm (MC) [10] for the 
random part and Forward-checking algorithm (FC) [6,18] for 
systematic part. We call this technique a heterogeneous 
hybridization scheme (for the obvious reason). A 
“homogeneous” hybrid algorithm has a tighter integration, 
e.g., a systematic search may act for propagating 
constraints or checking validity of assignments at each 
step of repair of a local search [14,19]. Our experiments 
primarily focus on the graph coloring problems, but we 
have also worked with the N-queens problem. 
 Our primary contribution is the new heterogeneous way 
of hybridizing two completely separate parts, and 
consequent method of experimenting with problem 
structure. The advantages of this approach are to reduce 
the time complexity and also to yield more stable complexity 
(by stable we mean having a small confidence interval for 
the mean over multiple experiments), compared with what 
the pure local or the pure systematic search algorithm 
achieve. The disadvantage of, the algorithm is that not 
complete, i.e., it may not find a solution even if one exists. 
To compensate for this disadvantage we have hinted two 
other variations of our algorithm that are complete. Our 
objective is to propose the heterogeneous way of 
hybridizing algorithms, rather than finding the fastest 
algorithm for the graph coloring problem or the N-queens 
problem. For this reason we have experimented with two 
pure versions of algorithms, namely the MC and the FC, 
rather than their more efficient versions. 
 The rest of this paper is organized as follows: Section 2 
describes partial solution and the motivation of 
heterogeneous algorithm. Section 3 details MC-FC 



algorithm. Section 4 describes our experiments. Section 5 
analyzes the results from the experiments. Section 6 
discusses related work in hybrid algorithms. Section 7 
summarizes our findings and suggests possible future 
work. 

2. Partial Solutions 

When the number of nodes is large, FC does not remove 
inconsistent domain values efficiently in general. In order 
to alleviate this problem we start with a randomly generated 
partial solution. Then FC may work faster since many 
inconsistent domain values could be pruned initially. Our 
algorithm divides a problem into two partitions (ZK∪ZN-K, 
D, C), for N variables and 1<=K<=N, and we run the two 
different types of search algorithms over the two different 
partitions. For example, in 16-queens problem, if K is 2, the 
initial problem is to put two queens in a 16 by 2 board. 
Since we are using a random partial solution for guiding the 
subsequent search over the complementary partial problem, 
studying the characteristics of partial solution is important. 
Below we study the complexity (and another relevant 
parameter) of the partial problem solving process by the 
two search techniques. 
 Firstly, as mentioned before, the Informed Backtracking 
algorithm (MC) with Min-Conflict heuristics [10] is chosen 
for the random part. The MC starts with random initial 
values and is guided by the Min-conflict heuristic, which 
tries to find the best alternative in its search-path that 
conflicts minimally. Since we plan to study the change of 
time complexity against different partial problem sizes (we 
use variable K as the partitioning parameter, 0<=K<=N, 
where N is the variable number in the CSP), this algorithm is 
the appropriate choice, as we wanted to find a partial 
solution quickly. We have varied K from 1 through N in this 
study. Las Vegas algorithm [3] also depends on 
randomness, and also is a potential candidate. However, it 
is slower than the MC algorithm [6] in general. 
 Secondly, we also need to measure the change of 
complexity for the systematic search part (K+1 through N 
variables) by varying K (from 1 through N). Kondrak and 
Beek [9] compared the efficiency of several systematic 
search algorithms theoretically and empirically. Even 
though there are faster algorithms than FC (e.g., FC_CBJ) 
[9], the FC algorithm, being a "pure" algorithm, is more 
suitable and logistically easy for measuring how well the 
random initial value affects the final results. This is why we 
have picked up the FC algorithm for the systematic part.  
 Both the parts above are over complementary partitions 
of the problem space. Thus, for an arbitrary ordering of 
variables, one part is 0 through K, and the other part is K+1 
through N, where K=0 indicates pure FC, and K=N 
indicates pure MC.  
 One of the ways to motivate such a heterogeneous 
hybridization is to experiment separately over each partition 
independently (without using the second algorithm), and 

then to aggregate the result from the two cases. If the first 
part (running MC) sharply increases and the second part 
(running FC) decreases as K increases, then we expect the 
hybridization to produce better results. In sections 5.2 and 
5.3 we presents results from such motivating experiments. 
We control two parameters: K (size of the partial solution), 
and R (number of allowed repetitions with random starts for 
MC). We can assign a large value to R in order to increase 
the accuracy. We measure accuracy by the number of 
successes in finding a solution over multiple experiments – 
the probability of success. 

3. The MC-FC Algorithm 

In this section we explain the hybrid MC-FC algorithm. We 
solve the partial problem using MC from 1 through K 
(1<=K<=N), and then use FC for the remainder of the 
problem. Partial solutions are fed to FC and the FC starts 
with pruning of the remainder of the variables’ domains 
accordingly. However, MC may feed a partial solution that 
does not lead to a complete solution for the whole of the 
problem. If the FC does not find a solution, the process is 
repeated, up to the pre-assigned maximum repetition 
number (R) or until FC finds a solution. The value of K is 
varied not only to prove our conjecture that hybridization is 
more efficient than each of its component algorithms, but 
also to find the optimum value of K for the best time-
complexity. 

procedure MC-FC (k) 
  Count = 0 
  While Count < R do 
    Count++; 
    Initialize Z, D, C; 
    COMPOUND_LABEL = MC(k, Z, D, C); 
    Result = FC(k, COMPOUND_LABEL, Z, D, C) 
    if Result == valid then 
      return result; 
    else return false; 
    end if 
  end while 
end procedure 

Figure 1. MC-FC algorithm 

 This algorithm in Figure 1 is not complete. A modified 
complete algorithm (MC-FC-2) can be designed to alleviate 
this weakness. As an enhancement we add a hash table to 
keep all the tested COMPOUND_LABELs (partial 
solutions) over different repetitions (<=R). A new 
COMPOUND_LABEL is checked against this no-good 
database before it is fed to the FC. This would work when 
the size of the possible COMPOUND_LABEL is small. 
However, over a very large number of repetitions, the hash 
table size also increases: in the worst case the space 
complexity of the hash table becomes O(|D||Z|), with |Z| 
number of variables and |D| values in each variable’s 
domain. Another alternative algorithm (MC-FC-3) will be to 
revise MC to actually backtrack when FC fails rather than to 



start from the scratch in the latter case, i.e., let MC to keep 
track of what it has visited, which is similar to the work by 
Zhang [20]. This is also a complete algorithm and the 
asymptotic time complexity is the same as the original MC-
FC. The disadvantage of MC-FC-3 is that the solution 
could depend on the initial assignment too much. Thus, it 
loses the power of randomness and is likely to backtrack 
more than necessary. As one of the purposes of this work 
is to prove the new paradigm of hybridization, we use the 
original MC-FC that yields the most randomized partial 
solution. 

4. Experiments 

Data. We used N-node graph coloring problems over 
various percentages of connected nodes (CN), and the 16-
queens problem. Graph coloring problem is a well-known 
NP-complete problem [7]. We have chosen N=16, 18, and 20 
for the reported set of experiments. To create a graph, we 
connected N nodes randomly depending on the pre-
assigned value of CN. We created various N-node graph 
coloring problems over different graph connectivity 
CN=0.55, 0.7, and 0.8, where CN = ((number of arcs) / (N(N-
1)/2)), for N nodes, and with different number of colors (|D|). 
We use the minimum number of colors needed for different 
values of CN (determined by separate preliminary 
experimentation). We have used various CN’s representing 
different problem structures for the graph coloring 
problems in order to cover various types of problems. 
Criteria. We have analyzed the number of consistency 
checks (CC) for the time complexity, and statistical 
confidence interval (CI) over multiple experiments for the 
stability. The most common methods to measure the time 
complexity are visited nodes (VNs) and consistency checks 
(CC) [9]. Since CC subsumes VN, we mainly use CC in our 
experiments. We define a data point (mean) to be stable 
when the confidence interval [1] is small on the mean 
values of a distribution of CC over repeated experiments 
(up to R or until a solution is found). In other words, the CI 
indicates the quality of the data points.  
Procedure. We have run FC and MC for experimenting over 
the partial problems (motivating experiments), and the 
hybrid MC-FC algorithm over the whole problem. 
Implementations used Java™  and our experiments are 
performed on a Sun Ultra 60™  workstation. We have 
averaged our results around 300 different runs of the three 
programs. There are three different set of experiments: for 
the random part (MC), the systematic part (FC), and the 
hybridized algorithm over the whole problem. 

5. Analysis 

5.1. The Complexity of MC Over Partial 
Problems  
Procedure. We measured the growth rate of CC of the MC 
algorithm against the size (K) of the partial problem. For 

example in the 16-queens problem, if K is 2, the problem is 
to put two queens in a 16 by 2 board. As K grows up to 16, 
the problem becomes the complete 16-queens problem. So, 
such a partial problem is really an N×K queens problem. 
Results. The results are shown in Table 1. Nodes mean the 
number of nodes in N-node graph coloring problem. CN 
stands for average connected nodes. C stands for the 
minimum number of colors to solve the problem. The results 
show that the CC increases sharply toward the high K 
value. The CC for N=16, for CN= 0.7 or 0.8, and with K=16, 
is abnormally higher than the CC value for the CN=0.55 
values, which means that those points are more difficult for 
MC to solve than the other points (by more difficult we 
mean it takes more time). We did not show CN=0.3 and 0.9 
because those have relatively low CC values. 16-queens 
problem also yield similar results. As K approaches N, CC 
increases sharply. We have actually observed this pattern 
over many other N values for the N-queens problem. We 
did not show any CI value because the average of CC alone 
explains the changes well here. 

Table 1. CC (x103) with N-graph coloring problem over 
various CN in MC part  

16 graph coloring 18 graph coloring 20 graph coloring 
CN 0.55 0.7 0.8 0.55 0.7 0.8 0.55 0.7 0.8 K 

16-
queen 

C 5 6 8 5 8 8 6 8 10 
1 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 
5 0.1 0.1 0.1 0.1 0 0.1 0 0 0 0 
6 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0 0.1 0.1 
7 0.3 0.1 0.1 0.2 0.1 0.2 0.2 0.1 0.1 0.3 
8 0.4 0.2 0.2 0.3 0.2 0.2 0.3 0.2 0.2 0.3 
9 0.6 0.3 0.3 0.3 0.3 0.4 0.4 0.3 0.4 0.4 
10 0.7 0.4 0.4 0.5 0.4 0.4 0.5 0.5 0.5 0.7 
11 0.9 0.5 0.5 0.7 0.5 0.6 0.6 0.6 0.6 0.8 
12 1.2 2.2 0.7 0.8 0.6 0.8 0.8 0.8 0.8 1.0 
13 1.5 2.3 0.8 1.0 0.7 1.0 1.1 0.8 0.9 1.2 
14 2.0 2.5 1.1 2.6 0.9 1.2 1.2 1.1 1.2 1.4 
15 3.0 2.3 2.4 2.1 5.3 1.4 1.4 1.2 1.5 1.7 
16 7.1 4.4 3357.9 5643.1 190.1 10.4 100.6 2.4 2.2 1.8 
17     293.5 6.9 120.6 6.3 2.8 19.0 
18     181.4 9.2 149.6 2.7 7.0 33.5 
19        4.3 1088.8 56.2 
20        1642.4 1184.9 176.3 

5.2. The Complexity in the Systematic Part (FC) 
Over the Partial Problems  

Procedure. Analysis of the systematic search part is 
slightly different from the previous mode of study for the 
random part. We have randomly generated partially 
satisfying assignments for variables numbered 0 through K, 
and then used that partial solution to initialize the FC 
algorithm for running over the rest of the problem (for 
variables K+1 through N). If the FC fails to find a complete 
solution of the whole problem (1 through N), then we 
reinitialize again in a similar way as before and rerun FC, i.e., 
we repeat the experiment. By repeating the experiment we 
derive a statistical average of CC for the FC algorithm, for 



different values of K. An upper limit R for the number of 
such repetitions is pre-assigned (which is also varied). We 
have studied accuracy against K in order to make sure we 
use high value of R in our subsequent experiments with FC 
algorithm for investigating only the “solvable” problems. 
The max repetition number R was set to 100,000. 
 
 
 
 
 
 
 
 
 
 

Figure 2. 4-queens problem 

 We explain how we calculate the time complexity and the 
accuracy for the systematic part. We use 4-queens problem 
as an example since its domain size is  small, and we only 
count VNs (visited nodes) to simplify the counting process 
(although we have used CC for the experiments). All visited 
nodes are expanded by an FC algorithm as shown in the 
Figure 2. K is the number of variables that are assigned to a 
value initially as a partial solution tuple, with a varying K. If 
the attempt (FC) fails to find a solution we rerun it one more 
time, so, R=2 here. A row indicates the corresponding 
variable, and the columns indicate the domain values of any 
variable. 
 For K=1 there are four possible starting assignments for 
the first variable indicated by the nodes {(1),(2),(3),(4)} (see 
Figure 2). The possibility of an occurrence of the node (1) is 
1/4, and the VNs is 3 and it always fails (for every random 
attempt of initializing at that node). The remaining 
occurrences (nodes 2, 3, and 4) are calculated in the same 
way. Every initial node causes FC to visit exactly three 
nodes following the respective initialization. So, the 
average number of VNs is 3 and the standard deviation 
(SD) is 0. The possibility of success (accuracy) is ½ (50%) 
in average. Suppose we allow rerun (say, for pre-assigned 
R=2), the rerun happens only when FC fails, i.e., when initial 
nodes is 1 or 4. So, there are only 10 such cases [{(1),(1)}, 
{(1),(2)}, {(1),(3)}, {(1),(4)}, {(2)}, {(3)}, {(4), (1)}, {(4), (2)}, 
{(4),(3)}, {(4),(4)}]. As an example, the situation of {(1),(2)} 
means the first initialization was at node (1) and the second 
rerun started with node (2). Each case in this scenario has 
1/10 possibility of occurrence; the possibility of success is 
6/10 (60%); VN is 6 for 8 cases and 3 for 2 cases (5.4 in 
average). 
For K=2, it has 6 possible starting points {nodes (5), (6), 
(7)…  (10)}. The possibility of success is 2/6 (33%); the 
average VNs is 6/6 (=1). When we rerun one more time (say, 
R=2), it has 26 possible starting points [{(5),(5)}, {(5),(6)}, 

{(5),(7)} …  {(10),(10)}]. The possibility of occurrence for 
each case is 1/26, the possibility of success is 10/26 (38%), 
and it has 40/26 (=1.5) VNs in average - the SD is 0.9. We 
can observe from this simple calculation that as we increase 
K to 2 and allow rerun, the possibility of success 
(accuracy) and VN are both reduced. We showed how we 
calculate the possibility of success, in order to provide an 
insight into the relationship between success and the 
number of visited nodes (or CC). 
Results. In 16-queens problem, as K increases we can 
clearly see that the CC reduces. As we allow more 
repetition, the accuracy reaches to 100%, which is expected 
because we are solving the partial problem, starting with 
randomly chosen different initial solutions, and repeating 
this until we get the solutions. Table 2 shows that the CC 
drops as K increases (K represents the size of partial 
solutions). 16-node graph coloring problem with CN=0.7 
shows the same type of changes. The one with CN=0.8 of 
N=16 had low CC values in the middle. We did not show CI 
because the average of CC alone shows the changes well 
enough. 

Table 2. CC (x103) with N-graph coloring problem over 
various CN in FC part  

16 graph coloring 18 graph coloring 20 graph coloring 
CN 0.55 0.7 0.8 0.55 0.7 0.8 0.55 0.7 0.8 K 

16-
queen 

C 5 6 8 5 8 8 6 8 10 
0 10.0 0.4 761.2 972.9 0.6 0.8 24.1 942.3 1.0 1.2 
1 4.2 0.3 84.5 937.2 59.8 1.1 24.1 128.5 770.4 1.2 
2 2.3 1.3 235.4 227.8 130.4 1.9 28.0 158.1 801.9 1.6 
3 1.6 1.1 120.4 260.8 11.5 1.4 12.0 19.0 143.6 1.2 
4 1.7 2.7 147.9 39.6 3.8 1.3 14.9 22.4 162.6 5.3 
5 1.0 1.2 71.4 16.3 2.6 2.4 9.9 17.1 45.7 2.9 
6 0.5 1.1 20.7 15.1 8.2 2.6 9.6 9.0 50.3 20.6 
7 0.1 1.1 13.1 6.3 2.8 7.4 12.6 10.4 30.0 17.2 
8 0 1.5 6.9 6.7 7.7 3.9 14.7 7.2 10.0 61.3 
9 0 1.1 4.9 11.1 11.4 1.9 37.0 4.5 4.4 14.5 
10 0 2.5 4.7 19.1 11.6 4.5 19.2 4.8 23.0 15.2 
11 0 1.1 3.7 60.9 19.7 1.3 24.5 5.5 8.9 5.7 
12 0 0.2 3.5 68.8 9.7 1.0 12.8 4.8 9.8 3.6 
13 0 0.2 5.0 43.5 9.1 1.6 2.6 6.3 10.0 2.4 
14 0 0.1 3.1 8.2 11.1 2.6 3.7 4.2 3.0 1.7 
15 0 0.1 0.3 5.2 3.8 1.9 3.4 5.9 7.0 1.6 
16 0 0 0 0 0.5 0.4 0.4 4.0 5.9 1.8 
17     0.1 0.1 0.2 2.4 3.2 1.1 
18     0 0 0 2.5 3.0 1.5 
19        0.5 0.1 0.4 

5.3. The Complexity of Hybridization Over 
Varying K-values 

Procedure. In the following experiments with our hybrid 
algorithm, we allow large value of R in order to have 100% 
accuracy in each test. We also vary K from 0 through N, 
where K=0 corresponds to the pure FC algorithm and K=N 
corresponds to the pure MC algorithm.  
Results. The results of the hybridized algorithm were 
reported in Table 3. ANOVA (single factor) clearly shows 
that there were differences among different K values, by 
yielding less than 0.05 of P value. We can also clearly 
observe that FC is misdirected away from the solution in 

4 3 2 1 

0 

10 9 8 7 6 5 

14 13 12 11 

16 15 



the search space in the case of N=20, CN=0.55 and K=0 
because its value is so high compared to the value of N=20, 
CN=0.7 and K=0. In nodes=20, CN=0.7 with pure FC 
algorithm (K=0) it had very low CC, but when we started the 
MC-FC algorithm with the starting position randomly (K=1) 
the value of CC became larger, which shows the brittleness 
of FC. 
 Case with nodes=16, CN=0.7 and 0.8 are more difficult 
than that with CN=0.55; with nodes=18, CN=0.55 and 0.8 is 
more difficult than that with CN=0.7; and with nodes=20, 
CN=0.55 and 0.7 are more difficult than CN=0.8. Whenever 
the problem is difficult, it has the minimum CC value in the 
middle (other than the CC for the pure FC). The results 
show that in 16-graph coloring problem with CN=0.7, K=8 
provided the best results (CC=8385 and CI=2762). The 
upper bound and lower bound were 11,147 and 5,623; it 
overlapped only with its neighboring interval (K=7 and 
K=9), but not with the other data points, which means it is 
better than the others in confidence level of 0.05. 
Furthermore, the CI of K=8 (2762) was lower than that for 
other K values generally. Since every different case of K 
had the same number of sample data, the K with the lower 
CI is more stable than the ones with higher CI values. 
 The CI values are also low for each data point where CC 
values are found to be minimum. The “CI M” stands for CI 
values corresponding to the minimum CC values. This 
value can be used for checking whether they are 
statistically different from the other neighboring data points . 
We omitted the other CI values due to the space limitation. 

Table 3. The results with N-graph coloring problems 
over various CN in MC-FC (x103) 

16 graph coloring 18 graph coloring 20 graph coloring 
CN 0.55 0.7 0.8 0.55 0.7 0.8 0.55 0.7 0.8 K 

16-
queen 

C 5 6 8 5 8 8 6 8 10 
0 148.4 0.4 761.2 972.9 0.6 0.8 24.1 942.3 1.0 1.2
1 69.7 0.3 111.4 939.0 87.1 0.9 24.1 252.9 866.5 1.2
2 35.6 1.8 314.9 262.0 137.7 2.1 27.7 127.7 866.5 1.5
3 28.6 1.0 116.9 107.6 21.9 1.6 12.9 81.6 1726.5 1.3
4 22.3 2.3 136.7 30.7 4.4 1.4 15.2 15.4 105.3 2.9
5 18.3 0.8 92.1 33.2 2.0 1.5 7.3 22.2 40.6 3.0
6 11.6 1.0 31.2 14.7 9.4 2.1 20.5 9.4 41.1 33.6
7 13.2 1.0 15.5 5.4 6.4 5.2 12.6 12.8 26.8 9.7
8 18.4 1.4 8.3 8.0 13.1 3.3 10.0 8.5 13.5 103.5
9 27.0 2.9 10.0 19.0 14.2 2.6 85.4 7.9 8.1 16.5
10 41.5 5.5 14.5 36.5 22.3 4.9 31.2 6.9 24.9 23.5
11 65.1 3.6 23.6 164.0 32.5 2.8 37.1 17.3 14.4 10.1
12 79.5 2.7 14.2 215.2 28.5 3.0 31.8 12.6 20.9 6.7
13 80.5 3.6 23.3 189.2 38.2 4.0 8.2 17.1 25.6 6.8
14 67.1 2.7 30.1 106.0 55.3 17.1 13.6 14.3 10.9 5.6
15 55.4 3.0 40.4 121.5 89.7 7.9 15.0 21.5 27.6 6.6
16 46.1 2.8 3806.2 7702.4 735.3 17.6 170.0 34.6 42.5 5.5
17       220.9 7.9 173.6 32.6 61.3 52.6
18       254.8 10.5 128.8 35.3 129.7 125.5
19           32.0 3107.2 70.8
20              1471.8 1397.8 80.6

Best K 6 1 8 7 5 0 5 9 9 1 
CI M 0.9 0 2.7 1.6 0.5 0 4.1 2.9 2.5 0

 
 All of the results with the other N-queens problems (20, 
24, 26, 28, 30, and 32) have similar patterns as we vary the K 
value, i.e., all N-queens problems had its minimum CC when 

K is around in the middle. 16-qeens problem has its lowest 
CC value at K=6. 
 The best K value for each case are indicated by 
highlighting the complexities or the CC value that is the 
lowest in each column of Table 3. The best K varies with 
the problem. However, we can observe that the best K 
value is around in the middle for the harder problems (e.g., 
N=16 and CN=0.7 is harder than N=16 and CN=0.55) in 
terms of computational requirements. 
 We have experimented also with the complete algorithm 
MC-FC-2 and the results are very similar to that for MC-FC. 
However, as we have discussed before that MC-FC-2 is not 
scalable for large problems. We do not present those 
results here for the lack of space. 

6. Related Research 

Jussien and Lhomme [8] presented a new hybrid technique. 
It performed a local search over partial assignments instead 
of complete assignments, and used filtering techniques and 
conflict-based heuristic to efficiently guide the search. 
They used a tabu search algorithm. Zhang [20] proposed a 
hybrid algorithm that used automatic symmetry breaking 
method as a preprocessing step, and then the propositional 
satisfiability procedure is called for completing the search. 
This method is similar to our MC-FC-3. However, the MC-
FC algorithm allows randomness in the MC part by 
completely separating them. Schaerf [14] proposed a 
solution technique that combined backtrack-free 
constructive methods and local search techniques. This 
technique incrementally constructed the solution 
performing a local search on partial solutions each time the 
construction reached a dead-end. Pargas and Ludwick [11] 
combined genetic algorithms with search algorithms, 
providing clues that ideally accelerate each other’s ability 
to find the optimal solution. Pesant and Gendreau [12] 
proposed a novel way of looking at local search algorithms. 
They concentrated on the neighborhood exploration. Shaw 
[16] combined local search and constraint programming. His 
“Large Neighborhood Search” explored a large 
neighborhood of the current solution by selecting a number 
of “related” customer visits, and re-inserting these visits 
using a constraint-based tree search. He used Limited 
Discrepancy Search during the tree search to re-insert 
visits. Richards and Richards [13] explored the performance 
of a complete non-systematic search algorithm learn-SAT, 
which was based on restart-repair and learning no-goods. 
None of the previous works has decomposed the problem 
space completely as we are proposing. 
 Hogg et al. [7] presented and experimentally evaluated 
(over the graph coloring problem) the hypothesis that 
cooperative parallel search is well suited for hard graph 
coloring problems near phase transition zone. They found 
that simple cooperative methods could often solve such 
problems faster than the same number of independent 
agents. Our method uses single agent unlike their method.  



7. Conclusions and Future Work 

We have proposed here a technique for hybridizing 
algorithms that is a systematic search guided by a partial 
solution. We have used the MC algorithm to get the partial 
solution for the random part and the FC algorithm for the 
systematic part of the problem. We have also quantified the 
degree of hybridization with the size (K number of initial 
variables in an arbitrary total order of the variables) over 
which the local search runs and we have experimented by 
varying K. The best results with the lower time-complexity 
and the smaller CI (confidence interval, for the distribution 
of that complexity over multiple experiments) are observed 
at some mid-range K values between 0 and N. This not only 
proves the power of the hybridization (as we have 
motivated with the preliminary experiments), but also 
quantifies where such optimal efficiency is expected. 
 We emphasize that the purpose of this article is to 
introduce a new way of hybridization rather than to 
introduce a faster algorithm. For instance, Sumitaka [17] 
proposed a faster algorithm that finds one solution for the 
N-queens problem. Our contribution is to prove the 
conjecture that the heterogeneous hybridization is 
promising. This is also why we used standard MC and FC 
algorithms. 
 Another advantage of our heterogeneous hybrid 
algorithm is that it uses less memory than the pure MC or 
FC. This is because as FC starts to execute, the expanded 
nodes by MC are deleted, except just the partial solution 
that MC returns. Also, MC-FC “forgets” the FC algorithm’s 
work when it repeats back the MC on FC’s failure in finding 
a solution. Therefore, it either keeps only the nodes 
expanded by MC (up to variable K) or those by FC (for 
variables K+1 through N). Our hybridization technique is 
also quite easy to implement because of its heterogeneous 
nature. Our experimentation with the degree of 
hybridization by varying K opens a lot of possibility for 
creating such heterogeneous combination between 
algorithms (e.g., combination of other local searches and 
systematic searches) and we will pursue those possibilities.
 We have “invented” a (N×K)-queens problem, where the 
number of queens is the smaller of the two numbers. In this 
problem when K approaches N the problem apparently 
becomes the hardest, which may be considered as a special 
type of phase transition (our unreported experiment shows 
a sharp increase in complexity as K gets closer to N, 
followed by a sharp decrease as K>N moves away from N, 
with the expected symmetry on both the phases). We also 
intend to study these phenomena closely in the future. 
Another future direction is to apply different search 
algorithms replacing MC and FC. We want to study how 
hybridization improves efficiency with the algorithms faster 
than MC and FC. In order to find the optimal K we need 
more experimentation with some real data sets (e.g., from 
the DIMAC center’s dataset). We also intend to increase 
the size of the studied problems. 
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