
Constraint Processing with Reactive Agents

Georg Ringwelski∗ and Richard J. Wallace
Cork Constraint Computation Center†, UCC, Cork, Ireland

g.ringwelski|r.wallace@4c.ucc.ie

Abstract

The integration of methods of Constraint Programming and
Multi-Agent-Systems is discussed in this paper. We describe
different agent topologies for Constraint Satisfaction Prob-
lems and discuss their properties with a special focus on dy-
namic and distributed settings. This motivates our new ar-
chitecture for constraint processing with reactive agents. The
resulting systems are very flexible and can be used to pro-
cess dynamic and distributed problems. We define the local
behaviors of the agents in this new approach and verify their
collective behavior in the context of CSP.

Introduction
In Multi-Agent-Systems (MAS), local behaviors for the
agents are defined such that the global system will behave in
an intended way. The methods for this implementation are
rather restricted compared to traditional software systems.
There is no global knowledge or shared memory that can be
accessed by the agents and the only (very inefficient) way to
communicate with other agents is by sending and receiving
messages. The benefit of MAS on the other hand is that the
resulting systems are much more flexible in many respects.
Since agents only use little knowledge from its closest en-
vironment, they are much more tolerant against changes of
the overall system or unexpected situations that may result
from system faults or other agents that don’t behave in the
expected way. Due to the message-based communication,
agents are widely used in distributed software environments.
Especially in such settings, the flexibility of agents is impor-
tant, since hardware is more likely to fail and intruders may
try to violate the system.

The motivation of our research is to make use of the flexi-
bility of MAS in distributed and dynamic constraint process-
ing. We investigate different ways to process and solve Dy-
namic, Distributed Constraint Satisfaction Problems (DD-
CSP) with MAS. This yields a CP framework that is more
flexible to use than current constraint solvers or algorithms.

∗This work was partially funded by the Embark initiative of the
Irish Research Council for Science, Engineering and Technology
under grant PD/2002/21.

†The Cork Constraint Computation Center is supported from
Science Foundation Ireland under Grant 00/PI.1/C075.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

This paper describes the basis for these investigations. We
motivate, describe and verify our new, purely agent-based
architecture for DDCSP processing.

Background
CP Preliminaries

Solving a CSP is finding a variable assignment into a do-
main of valuesass : V → D, that satisfies all constraints.
Every variable is associated a finite set of allowed values,
called its (variable) domain, bydom : V → P(D). Ev-
ery constraintc is posted over a tuple of variablesvar(c) ∈
{(v1, v2, ..., vn) | vi ∈ V } and defines a set of allowed tu-
ples of values for these variables. A constraint is said to be
satisfied, if in its variables at least one of the allowed tu-
ples can be composed from the current variable domains.
These constraint semantics are usually given by relations in
the addressed constraint system:sem(c) ⊆ dom+(var(c)),
wheredom+ : V × V... × V → P(D) × P(D)... × P(D)
is the point-wise extension ofdom to tuples of variables. In
most commercial constraint processing systems, the allowed
tuplessem(c) are not stored explicitly (i.e. as tuples), but
as boolean functions in the Cartesian product of all variable
domains (so-called propagators (Schulte & Carlson 2002;
Ringwelski 2003) or local consistency operators (Debruyne
et al. 2003)). In addition to the satisfaction check, these
propagators remove values from variable domains that are
proven not to be part of any solution. For a detailed de-
scription of this idea please refer to (Codognet & Diaz
1996). Propagators are interpreted (Apt 1998) by monotonic
and inflationary Domain Reduction Functions (DRF)red in
×

v∈V
P(D) that reduce the domains of variablesVout ⊆ V

if applicable, such that∀v ∈ Vout : red ↓v (dom(v)) ⊆
dom(v) and∀v ∈ V \ Vout : red ↓v (dom(v)) = dom(v).
The propagator has to be implemented such that the domain
reduction matchessem(c). The semantics of a constraint
program is in this setting the fixed point of the repeated ap-
plication of all propagators. If the implementations of all
propagators are correct, this yields the same variable do-
mains as

∧
c∈C

sem(c).

With these notions, we can define some tackled problem
classes of the Constraint Programming framework.

Definition 1 (CSP,DistrCSP) A Constraint Satisfaction
Problem(C, V, dom) in a constraint domainD is given by
a finite setC of constraints, a finite setV of variables and
a total mappingdom : V → P(D). Such that∀c ∈ C :
var(c) ⊆ V ∧ sem(c) ⊆ dom+(var(c)). A Distr ibuted
CSP (C, V, dom,A, loc) is a CSP(C, V, dom) with an ad-
ditional set of agents A and a relationloc ⊆ (V ∪ C)×A.

These definitions address static closed world settings,
where constraints, variables and their initial domains are
known in advance. Real-world problems often require a
more dynamic setting, where solutions are to be adapted to
new knowledge. This new knowledge can arise in our frame-
work in the following ways: the addition of new constraints
and thus their incremental integration into a (partially) pro-
cessed CSP, and the exclusion of former beliefs and thus the
retraction of constraints.

The addition or removal of variables from a CSP is not
tackled in this paper. As in Logic Programming we assume
a finite, but sufficiently large set of variablesV to be given in
advance and that for all constraintsvar(c) ⊆ V holds. Con-
sequently variable assignments arepartial mappings and so-
lutions are assignments that are defined for all variables oc-
curring in any constraint. These assumptions do not restrict
generality, because variables can always be constructed on
demand.

Definition 2 (DynCSP,DDCSP)A Dynamic CSP is a se-
quenceao, a1, of CSPs, wherea0 = (V,C0, dom0) with
∀v ∈ V : dom0(v) = D and an = (V,Cn, domn), with
∀v ∈ V : domn(v) ⊆ D and Cn = Cn−1 ∪ {c} or
Cn = Cn−1 \ {c}. A DynamicDistributedCSP is a similar
sequence of Distributed CSPsa0 = (V, ∅, dom0, A0, loc0)
andan = (V,Cn, domn, An, locn), where∀a ∈ V ∪ (Cn ∩
Cn−1) : locn(a) = locn−1(a) holds. The set of AgentsAn

is always updated to the codomain oflocn

MAS Preliminaries
In this section we want to clarify our understanding of some
basic notions of Multi-Agent-Systems. We want to make
clear, what we mean as we have observed a lot of confusion
in this area due to different understanding of basic vocab-
ulary. We consider an agent a software object that has the
following properties:

• It can communicate with other agents by messages

• It holds its own resources: memory and computation time

• It holds a partial representation of its environment, typi-
cally proxies1 of other agents

• It is driven by a set of objectives it tries to achieve by its
behavior.

For this, agents require some communication infrastructure
(middleware), which we do not discuss in this paper. We
make the general assumption, that every message occasion-
ally arrives at its receiver. A MAS is then given by a set of
agents and the middleware in an open computing system.

1A proxy is a “surrogate or placeholder of another object to
controll access to it” (Gammaet al. 1995).

Regarding different research areas we separate two main
approaches to MAS: Cognitive/intelligent agents and reac-
tive agents (Ferber 1999). Cognitive agents, mainly known
from Distributed AI, are ’intelligent’ entities, that can solve
parts of the global problem themselves and communicate
their results with similar agents. Every cognitive agent
makes use of its own knowledge base and has problem solv-
ing capabilities. The MAS then consists of a rather small
number of such agents, typically one per physical machine.

In contrast to cognitive agents, reactive agents are not ’in-
telligent’ themselves. They just provide some simple behav-
iors such that the overall MAS will be ’intelligent’. This is,
they react on events without any internal planning, or ex-
aminations of the history or environment to solve complex
problems cooperatively.

Download!
We have implemented a rudimentary demo tool for
our new approach, which can be downloaded from
http://www.4c.ucc.ie/˜gringwelski/racp .
It provides some Java classes and documentation for
DDCSP processing in the Internet and a GUI to define
problems and observe variable domains.

Identifying Agents for DDCSP (Related Work)
Given the definition of agents from the MAS preliminaries,
different agent topologies can be found for DDCSP process-
ing. Regarding the above enumeration of agent properties
the first step towards agents is to identify separate objectives
that can be achieved with local knowledge for every class
of agents. In this section, we discuss such identifications
for general DDCSP, which use both, the cognitive and the
reactive agents approach.

Cognitive and Intelligent Agents
In distributed CSP applications today, the cognitive agents
approach (Decker, Durfee, & Lesser 1989) is widely used.
Every agent uses a local constraint reasoning engine and
communicates its results with other agents. In this archi-
tecture, usually exactly one agent is running on every par-
ticipating host, that processes a CSP in its local standard
solver (e.g. (Schlenker 2003)). The main advantage of
this architecture is, that the existing and efficient constraint-
implementations of established solvers can be used for Dis-
trCSP. Message passing is only used where it is necessary
and not within one process, where method invocation is
much faster. A DistrCSP(C, V, dom,A, loc) is in these set-
tings partitioned (Hannebauer 2001) into a conjunction of
one CSP per Agent:

∧
a∈A

(C/≡, V/≡, dom ↓{v∈V |loc(v)=a}),

where≡= ker(loc) is the equivalence relation defined by
the kernel ofloc. Domain specific protocols for such sys-
tems are used to communicate the results by messages be-
tween separate agents. The objectives of such agents are
determined by the application domain. In many cases, this
will include consistency maintenance in its local CSP.

In the Mozart and the j.cp (Ringwelski 2002)
solver, a generic approach to DistrCSP with cogni-
tive agents was chosen: Two agents are connected

by variables, of which a copy exists in both agents.
The protocol used in these systems implements an
equality-constraint between these two copies of the
semantically identical variable. A DistrCSP(C, V ∪

V ′, dom, {A1, A2}, loc(v) =
{

A1, if v ∈ V,

A2, if v ∈ V ′ for exam-

ple is then internally extended toC ∪ {eq1, ..., eqn}, V ∪
V ′ ∪ {v1, v

′
1, ..., vn, v′n}, dom, {A1, A2}, loc, where

∀i ∈ [1..n] : var(eqi) = (vi, v
′
i) ∧ (vi ∈ V ∨ v′i ∈

V ′)∧ loc(vi) = A1 ∧ loc(v′i) = A2 holds. The semantics of
eqi is equality, which propagates values (forward-checking)
in the case of Mozart and all domain reductions (full
look-ahead) in j.cp.

The difficulty with cognitive agent approaches to Dis-
trCSP often arises with the implementation of search algo-
rithms. Search algorithms, that make use of global knowl-
edge cannot not be applied, because this is not accessible
from the local view of an agent. Since most known algo-
rithms require such knowledge (e.g. states in BT or BJ,
evaluation functions in LS) some special effort has to be
taken to apply them in distributed settings. This could be
encapsulation of search spaces (Schulte, Smolka, & Würtz
1994), synchronization (Meisels & Razgon 2001) or us-
ing constraint retraction for erroneous instantiations (Ring-
welski 2003). In special application domains, one can
also consider (generally incomplete) specialized protocols
that communicate just what is needed (Schlenker 2003;
Hannebauer & M̈uller 2001) in the application domain.

For DynCSP, cognitive agents inherit the capabilities of
the used local solvers. If dynamic solvers are used locally,
a distributed network of such agents will support DDCSP.
The local solvers are used as a local interface to the dis-
tributed problem. Currently, however, only j.cp as a generic
solver for DDCSP is (informally) available. While incre-
mental constraint addition is supported in many solvers (e.g.
CLP), constraint retraction has been a crucial research topic
for more than 5 years, but has not yet found its way into
any popular CP system. The use of most existing retrac-
tion algorithms are almost excluded from DistrCSP, because
they make intensive use of global knowledge ((Wolf 2001;
Debruyneet al. 2003; Bessíere 1991) and others). The ACS
retraction algorithm (Ringwelski 2003), which decentralizes
such structural information can be used for DDCSP process-
ing. However, with this algorithm a great deal of commu-
nication is required to supply the necessary information to
supply the necessary information to all agents that need it.

Reactive Agents

Reactive agents are defined to be small, non-’intelligent’ en-
tities that cooperatively behave ’intelligently’ (Ferber 1999).
In the context of CSP this would mean, a reactive agent has
no capabilities in constraint solving, but represents one es-
sential object that behaves in a way that will make the overall
system solve CSPs. The main advantage of reactive agents
is their flexibility. If the behaviors of the agents are defined
properly, it is expected, that the overall system will always
behave in the intended way. Thus, if an agent dies or be-
haves in an unexpected way, the overall system will still be

able to converge towards (if not actually reach) the overall
solution. This topic of fault-tolerance will be a central point
of our future research with our new CP platform.

The most popular approach to DistrCSP uses such agents:
In complete Asynchronous Backtracking search algorithms
(Yokoo & Hirayama 2000) every variable is represented by
one agent. The (binary) constraints are stored explicitly
(i.e. as tuples of allowed values) in the variable agents
in this family of algorithms (Yokoo & Hirayama 2000;
Silaghi, Sam-Haroud, & Faltings 2000; 2001). In a Dis-
trCSP (C, V, dom,A, loc), the relationloc will thus map
a set of agents to every constraint and be a bijective func-
tion on V . The objective of the variable agents is to find
a value that satisfies all constraints. This is implemented
by storing and communicating nogoods, which are provably
unsuccessful partial variable assignments. Unfortunately, a
global structure between agents must be imposed in these
algorithms, which makes them intolerant to system faults.
The reason for this is, that the agents are not designed conse-
quently as reactive agents: They store some history of their
environment (namely the nogoods) which seems already to
be too much external knowledge to maintain the flexibility
of reactive agents. If one variable-agent stops behaving in
its usual way, these algorithms will not be able to compute
anything further. Maybe, this is the price to pay for com-
plete search. Being a terminating, non-incremental algo-
rithm, ABT (and variants) cannot be used directly for truth-
maintenance in a dynamic CSP. However, an agent that im-
poses an ABT search within a DDCSP system would be a
natural integration of such an algorithm into a dynamic con-
straint processing system. But what kind of an agent should
be used to represent and invoke the search?

This leads to another kind of reactive agents in CSP,
which we found most reasonable in our current research:
Constraints as reactive agents. The mentioned search algo-
rithm would then represent a labeling-”constraint” as it is
provided by many incremental CP systems. Much more in-
tuitive are, however, constraint agents that represent regular
constraints, such as arithmetic (in-)equations or global con-
straints for example. The main objective of such a reactive
constraint-agent is to reduce variable domains in accordance
to its intended semantics. The behavior that implements this
objective is a regular propagator which is triggered, when-
ever it might infer new domain reductions.

When identifying constraints as agents, the storage of
constraints in variables should be omitted in order not to
store same things multiple times. Reactive agents that repre-
sent variables will have to take care that propagators are in-
voked, whenever they could detect an inconsistency or prop-
agate. For this, the variable agent will have to send its con-
straints a message, if its domain was reduced. In our current
research, we identified this the main objective of variable
agents.

Conception of RACP Systems

In order to integrate the advantages of both, the cognitive
and the reactive approaches we define RACP systems for
DDCSP processing in two layers of agents (Fig. 1):

Figure 1: The application layer and the CSP layer.

1. The application layer, which contains cognitive agents
and user interfaces

2. The CSP layer, which contains two sorts of reactive
agents: Variables and constraints

The agents (AA) in the application layer can take care that
communication between agents that are started in its own
process communicate by method invocation to achieve the
performance of monolithic solvers for the local problems.
The agents in the CSP layer (variable agents VA and con-
straint agents CA) communicate with other agents in a way
that is established by the creating AA. This will allow to
preserve most advantages of cognitive agent approaches or
even centralized solvers in RACP. On the other hand, the VA
and CA perform the DDCSP processing on themselves and
do not rely on any global structure or the existence of other
agents. As we will show in the next section, they use local
knowledge exclusively to cooperatively process the DDCSP
which they make up themselves. This will preserve the main
advantage of reactive agents: Flexibility and fault-tolerance.

The Local Behaviors in RACP
In this section we enumerate the behaviors that VA and CA
implement in order to achieve their objectives as described
above. In the following section we will evaluate these be-
haviors with respect to the overall behavior of the resulting
Multi-Agent-System.

Variables
(1) Upon its construction, the VA stores its finite initial vari-

able domaindom locally.

(2) Whenever aconfirm(n) message arrives, the proxy of
its senderc (a CA) will be stored in the set of adjacent
constraintscon 2. Furthermore the proxies of variables in
n are added to the locally stored setneighbors and a
propagate v(dom) message is sent toc.

(3) Whenever apropagate c(d) message arrives, it
assigns dom := dom ∩ d and sends apropa-

2Actually, constraints are stored in separate sets. In a similar
way to (Codognet & Diaz 1996) one set is stored for specified prop-
erties of the variable domain. Thus only the constraints that might
infer further domain reductions are triggered, which improves the
overall performance

gate v(dom) message to allc ∈ con , that might infer
new domain reductions from that.

(4) Whenever adisconfirm message arrives, its senderc
(a constraint proxy) is removed fromcon , dom is relaxed
to its initial size,c is stored in the setrelaxedFor in
domand allv ∈neighbors are sent arelax(c) mes-
sage. After that, apropagate d(dom) message is sent
to all c ∈ con .

(5) Whenever arelax(c) message arrives and it has not
relaxed forc before, it relaxesdom to its initial domain,
storesc in the setrelaxedFor in dom and sends all
v ∈ neighbors a relax(c) message.

Constraints
(6) Upon its construction it stores the proxies of all its vari-

ables inVc and sends them aconfirm(Vc) message.

(7) Upon receivingretract method, it sends allv ∈ Vc a
disconfirm message.

(8) Whenever it receives apropagate v(d) message from
any v ∈ Vc, it storesd in its local copy of the variable
domainsdom[v] and calls its propagator method, iff

(8a) A copy of the domain of allv ∈ Vc was stored before.
(8b) In dom[v] for all v ∈ Vc, the setsrelaxedFor are

identical.

The propagator will then infer new variable domainsdv

for its variables from its current knowledgedomand send
a propagate c(d v) message to allv ∈ Vc for which
dv ⊂dom[v] holds.

Search
As we have indicated before, search can be integrated as
a constraint in RACP. The declarative semantics of such a
constraint is: ”The domain of all my variables has a cardi-
nality of one”. Established distributed search algorithm can
be integrated in RACP by encapsulating them in such global
constraints. If synchronization is required (e.g. in (Meisels
& Razgon 2001)), distributed snapshots (Mattern 1993) can
be used to make use of the system inherent propagation. If
this is not intended, as in ABT for example, the search has to
be performed within the components created for this ”con-
straint” before its result is used in the DDCSP.

However, such global ”labeling constraints” are not really
compatible with the idea of reactive agents, because they
use global knowledge such as snapshots for example. Our
research thus focuses on de-centralized search algorithms.
Using variable instantiation constraints, propagation and re-
traction, we define local behaviors directly related to vari-
ables that try to make the overall system converge to a so-
lution. A first prototype of a unary labeling constraint is
already implemented for RACP. If a value for a variable is
searched for, such a constraint is posted over it. If a global
solution is searched for, such a constraint is posted over ev-
ery variable. The propagator of this constraint reacts on the
size of the domain of its variable in the following way: If the
domain has more than one value, it chooses one and posts
an instantiation for it; if the domain has exactly one value it

does nothing because it is satisfied; if the domain is empty
and an instantiation was posted before, it retracts the instan-
tiation. In the latter case it will be triggered as soon as the
retraction is finished and has then the chance to find another
value for the instantiation. If the domain is empty, but no
instantiation was posted before, another source of the incon-
sistency has to be found and the propagator does nothing. A
set of such unary labeling constraints yields an incomplete
search algorithm.

The termination of such de-centralized search algorithms
will be hard to prove and completeness will never be
achieved (Collin, Dechter, & Katz 1999). The latter is obvi-
ous, since we use local search algorithms, however, in many
real-world problems solutions can be found with this class
of algorithms. Termination in dynamic and continious sys-
tems is a crucial topic. We think, in our targeted application
domains, a globally stable state will be impractical to wait
for, since many users in a large network can always change
the problem. Every client can be expected to be interested
only in a small part of the CSP, for which it can read the cur-
rent knowledge. Due to the complexity of the system, this
can already be outdated, but it is the best, that is currently
available.

The Global Behavior of RACP
RACP can be used for processing any DDCSP withan =
(V,Cn, domn, An, locn). The functionslocn and the sets
of agentsAn are a priori given as the CSP layer defined
by application agents. This topology cannot change (except
through constraint addition or removal) during DDCSP pro-
cessing as we do not support mobile agents (see Def. 2).

We verify the correctness of the possible transformations
(adding and removing constraints) in DDCSP processing by
induction over the achieved global states. We thus prove that
correct variable domains with respect to all currently valid
constraints are maintained. We don’t prove that the system
will find a solution or that a search algorithm terminates.
Correct means in this context, thatdomn+1 is the fixed point
of Chaotic Iteration (Apt 1998) of the DRF that are implied
by the propagators of allc ∈ Cn+1. Due to lack of space we
only give the main outline of the proof.

The operations are preformed incrementally and we
start from the empty set of constraints ina0 =
(V, ∅, dom0, A0, loc0). As the anchor of induction we use
this trivially correct state. From there, we assume thatdomn

is correct and show for both transitions, that they infer cor-
rect domainsdomn+1.

Adding Constraints
Let’s assume, that a constraintc that is implemented by a
propagator methodpc, which implies a DRFfc is added to
an then we get a globally stable statean+1 if pc terminates
and creates finitely many constraints. This follows from the
fact, thatpropagate messages are only sent upon domain
reductions (3) and (8) and that we assume finite variable do-
mains (1). Consequently, there can only be finitely many
propagate messages and thus also invocations of con-
straint propagators (8).

If c ∈ Cn, thendomn was computed includingpc and no
more domain reductions can be inferred from (3) or (8), such
thatdomn+1 = domn. In this caseCn = Cn+1 hold and
thusdomn represents the correct variable domains inan+1.

If c /∈ Cn, we getdom′
n+1 in an+1. This is sound wrt.

domn+1, becausedomn+1 is computed withfc. In other
words, no un-intended values are excluded from the variable
domains, because the semantics of a constraintis its implied
DRF. In order to show, thatdom′

n+1 is complete, we make a
proof by contradiction: Assuming,dom′

n+1 is not complete
and thus∃v ∈ V : domn+1(v) ⊂ dom′

n+1(v). From this
and the uniqueness ofdomn+1 (Apt 1998) follows, that∃c ∈
Cn+1, v ∈ V : fc(domn+1(V)) ↓v⊂ fc(dom′

n+1(V)) ↓v

and this would mean, that a propagatorpc that might infer
further domain reductions was not executed in RACP. But
since we assume a running communication infrastructure,
this is a contradiction to (3) and (8), because of the correct
integration (6)(2) of every constraint in the DDCSP.

Deleting Constraints
The constraint retraction algorithm in this approach is rather
trivial: Enlarge all possibly affected variable domains to
their initial size and then propagate all their constraints. This
algorithm is not ”as incremental as” those mentioned above,
but we found it the most appropriate for the use in distributed
settings. The main reason for this is, that it does not re-
quire much synchronization or centralization. This algo-
rithm can be executed in parallel and doesn’t have to wait
until the complete CSP is relaxed. According to (8b), every
constraint can continue pursuing its main objective (domain
reduction) as soon, as its closest environment , i.e.its vari-
ables, has finished the relaxation. Constraint retraction in
RACP does not require any further synchronization. In gen-
eral, constraint retraction does not affect found solutions,
since every solution will remain valid in a relaxed prob-
lem. We have observed in previous research on constraint
retraction algorithms, that this trivial algorithm is in many
real-world cases (non-binary, one-component CSPs) simi-
larly efficient as more sophisticated retraction algorithms
(e.g. (Georget, Codognet, & Rossi 1999)). The extra cost
for propagation is more than made up in distributed settings
by the fact, that no structural information on multiple agents,
such as justifications (Debruyneet al. 2003) for example,
must be considered for the retraction algorithm.

Now we sketch the proof of correctness of constraint re-
traction in RACP, we still assume in our induction thatdomn

is correct for anyan during DDCSP processing. The con-
straint retraction algorithm described by (7),(4) and (5) will
terminate, since variables only relax their domains (5), if
they did not so before. This imposes a wave of markers
(Mattern 1993), which will always terminate, as we assume
finite problems (Def. 1). The following propagation (4)
will also terminate as shown in the previous section. The
resulting globally stable state withdom′

n+1 is correct wrt.
the resultdomn+1 of Chaotic Iteration of the DRF implied
by Cn+1. This follows from the fact, that all domains are
relaxed and that the sound and complete propagation is re-
invoked after the relaxation (4).

The main difficulty in these two steps is, not to confuse

old and new knowledge in the process of propagation. As
known from the theory of Chaotic Iteration, domain enlarge-
ments must not be performed during propagation in order to
reach a well defined fixed point. However, the local relax-
ation enlarges variable domains in (4) and (5). We solve this
problem by separating the new propagation phase from the
old one by a global cut (Mattern 1993) which is imposed by
the setsrelaxedFor in the domains. With this storing of
the retracted constraints a variable has already relaxed for in
(4) we omit this source of confusion. Restricting constraint
propagation (8b) to the cases, where all used domains are
from ”after the cut”, i.e. their variables have fished the re-
laxation, synchronizes the relaxation with the new propaga-
tion in every constraint locally. Overall we thus impose a
new propagation after every relaxation. The constraints will
not contribute to this new propagation process, before all its
variables have finished their relaxation phase, i.e. before ex-
clusively new knowledge is used.

Conclusion and Future Work
We have discussed different ways to integrate Multi-Agent-
Systems and Constraint Programming. This motivated the
new RACP architecture for DDCSP processing in two layers
of agents. In the application layer, cognitive agents are used
to make up an open system of application programs which
create variables and constraints on the CSP layer. Every con-
straint and variable is a reactive agent on the CSP layer.They
cooperatively solve distributed CSPs dynamically and pre-
serve the potential of fault-tolerance and flexibility that is
achieved with reactive agents. The new RACP framework
was defined and verified.

In order to find solutions in DDCSP, search algorithms
have to be used. We described very briefly a first de-
centralized algorithm, which is to find global solutions with-
out using any global control. One main branch of our fu-
ture research will concentrate on such algorithms. This will
yield fault-tolerant and flexible agents that (re-)compute so-
lutions for changing CSPs with local behaviors of the reac-
tive agents.

The general topic of our future research will be to investi-
gate fault-tolerance for distributed CSP. We plan to define a
semantics, that takes care of agents that do not behave in the
expected way, of messages that don’t arrive and knowledge,
that disappears. With this, we plan to find ways, to omit the
currently in DistrCSP generally made but unrealistic precon-
dition of an error-free communication infrastructure.

References
Apt, K. R. 1998. The essence of constraint propagation.Theoret-
ical Computer Science221(1-2):179–210.

Bessíere, C. 1991. Arc-consistency in dynamic constraint satis-
faction problems. InProc. AAAI’91, 221–226.

Codognet, P., and Diaz, D. 1996. Compiling constraints in
clp(fd). Journal of Logic Programming.

Collin, Z.; Dechter, R.; and Katz, S. 1999. Self-stabilizing dis-
tributed constraint satisfaction.Chicago Journal of Theoretical
Computer Science.

Debruyne, R.; Ferrand, G.; Jussien, N.; Lesaint, W.; Ouis, S.;
and Tessier, A. 2003. Correctness of constraint retraction algo-
rithms. InSpecial Track on Constraint Solving and Programming
of FLAIRS 2003.

Decker, K.; Durfee, E.; and Lesser, V. 1989. Evaluating research
in cooperative distributed problem solving.Distributed Artificial
Intelligence2:485–519.

Ferber, J. 1999.Multi-Agent-Systems, An Introduction to Dis-
tributed Artificial Intelligence. Addison-Wesley.

Gamma, E.; Helm, R.; Johnson, R.; and Vlissides, J. 1995.De-
sign Patterns. Reading, MA: Addison Wesley.

Georget, Y.; Codognet, P.; and Rossi, F. 1999. Constraint retrac-
tion in CLP(FD).Constraints4(1):5–42.

Hannebauer, M., and M̈uller, S. 2001. Distributed constraint
optimization for medical appointment scheduling. InProceed-
ings of the Fifth International Conference on Autonomous Agents
(AGENTS-2001).

Hannebauer, M. 2001.Autonomous Dynamic Reconfiguration in
Collaborative Problem Solving. Ph.D. Dissertation, TU Berlin.
also published as Springer LNCS 2427 in 2002.

Mattern, F. 1993. Efficient algorithms for distributed snapshots
and global virtual time approximation.Journal of Parallel and
Distributed Computing18(4):423–434.

Meisels, A., and Razgon, I. 2001. Distributed forward checking
with dynamic ordering. InProc. CP01 workshop on collective
search algorithms.

Ringwelski, G. 2002. Object-oriented constraint programming
with j.cp. In Coello, C., ed.,Advances in Artificial Intelligence,
MICAI2002, LNAI 2313, 194–203. Springer.

Ringwelski, G. 2003. Asynchrones Constraintlösen. Ph.D.
Dissertation, Technical University Berlin. edocs.tu-
berlin.de/diss/2003/ringwelski_georg.htm .

Schlenker, H. 2003. Distributed constraint-based railway simula-
tion. Doctoral Programme of CP03.

Schulte, C., and Carlson, M. 2002. Finite domain constraint
programming systems. Tutorial at CP02 conference, Ithaca, USA.
www.it.kth.se/schulte/talks/FD .

Schulte, C.; Smolka, G.; and Ẅurtz, J. 1994. Encapsulated
search and constraint programming in Oz. In Borning, A., ed.,
Second Workshop on Principles and Practice of Constraint Pro-
gramming, LNCS 874, 134–150.

Silaghi, M.-C.; Sam-Haroud, D.; and Faltings, B. 2000. Asyn-
chronous search with aggregations. InProc. AAAI/IAAI 2000,
917–922.

Silaghi, M.-C.; Sam-Haroud, D.; and Faltings, B. 2001. Consis-
tency maintainance for abt. In Walsh, T., ed.,Principles and Prac-
tice of Constraint Programming - CP 2001, 271–285. Springer
LNCS 2239.

Verfaillie, G., and Schiex, T. 1994. Solution reuse in dynamic
constraint satisfaction problems. InNational Conference on Arti-
ficial Intelligence, 307–312.

Wolf, A. 2001. Adaptive constraint handling with chr in java. In
Walsh, T., ed.,Proc. CP2001, LNCS 2239, 256–270. Springer.

Yokoo, M., and Hirayama, K. 2000. Algorithms for distributed
constraint satisfaction: A review.Autonomous Agents and Multi-
Agent Systems3(2):185–207.

