
Structure Discovery from Sequential Data

Jeffrey Coble, Diane J. Cook, Lawrence B. Holder and Runu Rathi

Department of Computer Science and Engineering
The University of Texas at Arlington

Box 19015, Arlington, TX 76019
{coble,cook,holder,rathi}@cse.uta.edu

Abstract

In this paper we describe I-Subdue, an extension to the
Subdue graph-based data mining system. I-Subdue operates
over sequentially received relational data to incrementally
discover the most representative substructures. The ability
to incrementally refine discoveries from serially acquired
data is important for many applications, particularly as
computer systems become more integrated into human lives
as interactive assistants. This paper describes initial work to
overcome the challenge of locally optimal substructures
overshadowing those that are globally optimal. We
conclude by providing an overview of additional challenges
for sequential structure discovery.

Introduction
While much of data mining research is focused on
algorithms that can identify sets of attributes that
discriminate particular data entities, such as shopping or
banking trends for a particular demographic group, our
work is focused on data mining techniques to discover
relationships between entities. Our work is particularly
applicable to problems where the data is event driven, such
as the types of intelligence analysis performed by counter-
terrorism organizations or the agent-based MavHome
smart home project (Cook et al. 2003). These types of
problems require discovery of relational patterns between
the events in the environment so that these patterns can be
exploited for the purposes of prediction and action.

In this paper we present I-Subdue, which represents our
work to extend structure discovery to serially acquired
data. Systems such as MavHome require agents to operate
in an environment over long periods of time, which means
that the data is received sequentially and discriminating
structures must be evolved by processing only the newest
evidence. The same can be said for analytical tasks where
data streams in over time. Domain examples in this paper
are drawn from our work on the Defense Advanced
Research Project Agency’s Evidence Extraction and Link
Discovery (EELD) program, which is a multi-faceted
project designed to provide information-oriented tools to
support counter-terrorism intelligence analysis.

Processing only new data with the intent of refining
global knowledge is challenging from a variety of

perspectives. The work presented in this paper describes
our efforts to address the situation where discovery from a
new data increment yields a locally optimal structure that
is inconsistent with the globally optimal structure. We
present a method by which metrics can be collected from
the local discovery process, which can then be used to
evaluate discovered structures for their global value.

We conclude by introducing additional challenges, such
as identifying temporally displaced relationships and
shifting concepts, both of which are complicated by the
sequential discovery process.

Structure Discovery
The purpose of I-Subdue is to sequentially discover
structural patterns in data received serially. The work we
describe in this paper is built upon Subdue (Holder et al.
2002), which is a graph-based data mining system
designed to discover common structures from relational
data. Subdue represents data in graph form and can

support either directed or undirected edges. Subdue
operates by evaluating potential substructures for their
ability to compress the entire graph, as illustrated in Figure
1. In each iteration, Subdue finds the best substructure and
compresses the graph by replacing the substructure in the
graph with a placeholder vertex. Repeated iterations will
discover additional substructures, potentially those that are
hierarchical, containing previously compressed
substructures.

Subdue uses the Minimum Description Length Principle
(Rissanen 1989) as the metric by which graph compression
is evaluated. Subdue is also capable of using an inexact
graph match parameter to evaluate substructure matches,

Figure 1. Subdue discovers common substructures
within relational data by evaluating their ability to
compress the graph.

Copyright  2004, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

D

E

Y

X Z

S1
S1A

D

C

B

E

C
B

A

Y

X Z

Common Substructures Compressed Graph

so that slight deviations between two patterns can be
considered as the same pattern.

Incremental Subdue
For our work on I-Subdue, we assume that data is
streaming into a repository, which we then process

incrementally in blocks. We view each new data
increment as a distinct graph structure. Figure 2 illustrates
one conceptual approach to mining sequential data, where
each new increment received at time step ti is considered
independently of earlier data increments so that the
accumulation of these structures is viewed as one large, but
disconnected, graph. The original Subdue algorithm would
still work equally well if we applied it to the accumulated
graph after each new data increment is received. The
obstacle is the computational burden required for repeated
full batch processing.

It is easy to see how the concept depicted in Figure 1 can
be applied to real problems. For instance, a software agent

deployed to assist an intelligence analyst would gradually
build up a body of data as new information streams in over
time. This streaming data could be viewed as independent
increments from which common structures are to be
derived. Although the data itself may be generated in very

small increments, we would expect to collect some
minimum amount before we mine it. Duplicating nodes
and edges in the accumulated graph serves the purpose of
giving more weight to frequently repeated patterns. This
incremental mechanism would also be suited for
applications such as long-term behavioral monitoring of
the inhabitants of a smart home, with the intent of
continuously evaluating and refining observed patterns.

Figure 3 represents another option for dealing with
serially acquired data in which new increments are a
mechanism for introducing new vertices and edges.
Envisioning circumstances under which such a scheme
would be desirable is more difficult, but we may want to
model a situation in which new associations are made
between variables, without necessarily weighting the
existing variables more heavily by repeating their vertices.

Sequential Discovery
Storing all accumulated data and continuing to periodically
repeat the entire structure discovery process is intractable
both from a computational perspective and for data storage
purposes. Instead we wish to devise a method by which
we can discover structures from the most recent data
increment and simultaneously refine our knowledge of the
globally best substructures discovered so far.

However, we can easily encounter a situation where
sequential applications of Subdue to individual data
increments will yield a series of locally best substructures
that are not the globally best substructures, which would be
found assuming the data could be evaluated as one
aggregate block.

Figure 4 illustrates an example where Subdue is applied
sequentially to each data increment as it is received. At
each increment Subdue discovers the best substructure for
the respective data increment, which turns out to only be
locally best. However, as illustrated in Figure 5, applying
Subdue to the aggregate data will yield a different best
substructure, which in fact is globally best. Although our
simple example could easily be aggregated at each time
step, realistically large data sets would be too unwieldy to
do so.
In general, sequential discovery and action brings with it a
set of unique challenges, which are generally driven by the
underlying system that is generating the data from which
structures are discovered. One problem that is almost
always a concern is how to reevaluate the accumulated
data at each time step in light of newly added data. There
is generally a tradeoff between the amount of data that can
be stored and reevaluated and the quality of the result. A
summarization technique is usually employed to capture
salient metrics about the data. The richness of this
summarization is a tradeoff between the speed of the
incremental evaluation and the range of new substructures
that can be considered.

Figure 2. Data received incrementally can be viewed
as a unique extension to the accumulated graph.

Figure 3. Data received incrementally can be
viewed as augmentation of the accumulated graph,
with duplicate nodes serving as anchor points for
new nodes and vertices.

A

CB

A

CB

A

CD

t0

A

CB

A

CD
t1

E

CD

A

CB

A

CD

E

CDt2

Time Step
Incremental

Addition
Accumulated

Graph

A

CB

A

CD

E

CD

A

CB

A

DB C

A

DB CE

Time Step
Incremental

Addition
Accumulated

Graph

t0

t1

t2

Figure 4. Three data increments received serially and
processed individually by Subdue. The best substructure is
shown for each local increment.

Figure 6. The top n=3
substructures found
independently in each iteration.

Figure 5. Result from applying Subdue to the three aggregated data increments in one batch.

Person
A

Travels
to

C
om

m
u

ni
ca

te
s

w
ith

Cairo

Person
B

Person
A

C
om

m
un

ic
at

es
w

ith

Person
C

Person
A

Travels
to

C
om

m
u

ni
ca

te
s

w
ith

Cairo

Person
C

Person
A

Travels
to

C
om

m
un

ic
at

es
w

ith

Cairo

Person
D

Increment #1

Travels
to

Riyadh Person
A

Travels
to

Cairo
S1

C
om

m
un

ic
at

es
w

ith

Person
B

Person
A

Travels
to

C
om

m
un

ic
at

e
s

w
ith

Riyadh

Person
C

S1

C
om

m
un

ic
at

es
w

ith

Person
C

S1

C
om

m
un

ic
at

es
w

ith

Person
D

Best Substructure
Discovered

S1

Compressed Increment #1

Compress with S1

Person
A

Travels
to

C
om

m
un

ic
at

es
w

ith

Karachi

Person
E

Person
A

Travels
to

C
om

m
un

ic
at

es
w

ith

Tehran

Person
C

Person
A

Travels
to

C
om

m
u

ni
ca

te
s

w
ith

Karachi

Person
C

Person
A

Travels
to

C
om

m
un

ic
at

es
w

ith

Karachi

Person
F

Person
A

Travels
to

Karachi

Increment #2

S2
C

om
m

un
ic

at
es

w
ith

Person
E

Person
A

Travels
to

C
om

m
un

ic
at

e
s

w
ith

Tehran

Person
C

S2

C
o

m
m

un
ic

a
te

s
w

ith

Person
C

S2

C
o

m
m

un
ic

a
te

s
w

ith

Person
F

S2

Best Substructure
Discovered

Compressed Increment #2

Person
A

Travels
to

C
om

m
un

ic
at

es
w

ith

Beirut

Person
E

Person
A

Travels
to

C
om

m
u

ni
ca

te
s

w
ith

Riyadh

Person
C

Person
A

Travels
to

C
om

m
u

ni
ca

te
s

w
ith

Beirut

Person
C

Person
A

Travels
to

C
o

m
m

u
ni

ca
te

s
w

ith

Beirut

Person
F

Person
A

Travels
to

Beirut

S3

S3

C
om

m
u

ni
ca

te
s

w
ith

Person
F

Person
A

Travels
to

C
om

m
un

ic
at

es
w

ith

Riyadh

Person
C

S3

C
om

m
un

ic
at

es
w

ith

Person
C

S3

C
o

m
m

un
ic

a
te

s
w

ith

Person
C

Best Substructure
Discovered

Compressed Increment #3

Compress with S2

Compress with S3

Increment #3

Person
A

Travels
to

CairoS1

Person
A

Communicates
with

Person
C

Person
A

C
o

m
m

un
ic

at
e

s
w

ith

Person
C

Travels
to

Riyadh

S2

S3

Person
A

Travels
to

KarachiS1

Person
A

Communicates
with

Person
C

Person
A

C
om

m
un

ic
at

e
s

w
ith

Person
C

Travels
to

Tehran

S2

S3

Person
A

Travels
to

BeirutS1

Person
A

Communicates
with

Person
C

Person
A

C
om

m
u

ni
ca

te
s

w
ith

Person
E

Travels
to

Beirut

S2

S3

Increment #1

Increment #2

Increment #3

S1Accumulated Graph Compressed Graph Best Substructure

Person
A

Travels
to

C
om

m
un

ic
at

es
w

ith

Riyadh

Person
E

Person
A

Travels
to

C
om

m
un

ic
at

es
w

ith

Beirut

Person
C

Person
A

Travels
to

C
om

m
un

ic
at

es
w

ith

Beirut

Person
C

Person
A

Travels
to

C
om

m
un

ic
at

es
w

ith

Beirut

Person
F

Person
A

Travels
to

C
om

m
un

ic
at

es
w

ith

Karachi

Person
E

Person
A

Travels
to

C
om

m
un

ic
at

es
w

ith

Tehran

Person
C

Person
A

Travels
to

C
om

m
un

ic
at

es
w

ith

Karachi

Person
C

Person
A

Travels
to

C
om

m
un

ic
at

es
w

ith

Karachi

Person
F

Person
A

Travels
to

C
om

m
un

ic
at

es
w

ith

Cairo

Person
B

Person
A

Travels
to

C
om

m
un

ic
at

es
w

ith

Riyadh

Person
C

Person
A

Travels
to

C
om

m
un

ic
at

es
w

ith

Cairo

Person
C

Person
A

Travels
to

C
om

m
un

ic
at

es
w

ith

Cairo

Person
D

Person
A

C
om

m
un

ic
at

es
w

ith
Person

C

Person
A

Travels
to

C
om

m
un

ic
at

es
w

ith

Riyadh

Person
E

Travels
to

Beirut

Travels
to

Beirut
Person

A
Travels

to

C
om

m
un

ic
at

es
w

ith

Beirut

Person
F

Person
A

Travels
to

C
om

m
un

ic
at

es
w

ith

Karachi

Person
E

Travels
to

Tehran

Travels
to

Karachi
Person

A
Travels

to

C
om

m
un

ic
at

es
w

ith

Karachi

Person
F

Person
A

Travels
to

C
om

m
un

ic
at

es
w

ith

Cairo

Person
B

Travels
to

Riyadh

Travels
to

Cairo
Person

A
Travels

to

C
om

m
un

ic
at

es
w

ith

Cairo

Person
D

S1

S1

S1

S1

S1

S1

Summarization Metrics. Our goal for this research is
to develop a summarization metric that can be maintained
from each incremental application of Subdue that will
allow us to derive the globally best substructure without
reapplying Subdue to the accumulated data.

To accomplish this goal, we rely on a few artifacts of
Subdue’s discovery algorithm. First, Subdue maintains a
list of the n best substructures discovered from any dataset,
where n is configurable by the user. The default value for
n is 3, but any number of ranked substructures can be
maintained, limited only by constraints on the beam search
that Subdue uses to prune its search space.

Second, we use the value metric Subdue maintains for
each substructure. Subdue measures graph compression
with the minimum description length principle as
illustrated in Equation 1, where DL(S) is the description
length of the substructure being evaluated, DL(G|S) is the
description length of the graph as compressed by the
substructure, and DL(G) is the description length of the
original graph. The better our substructure performs, the
smaller the compression ratio will be. The description
length of a graph (or substructure) consists of the number
of bits needed to encode the vertex labels, the adjacency
matrix, the number of edges between vertices, and the edge
labels. C.f. (Cook and Holder 1994) for a full discussion
of the MDL computation used by Subdue to encode
graphs.

Subdue’s evaluation algorithm ranks the best

substructure by measuring the inverse of the compression
value in Equation 1. Favoring larger values serves to pick
a substructure that minimizes DL(S) + DL(G|S), which
means we have found the most descriptive substructure.

For I-Subdue, we must use a modified version of the
compression metric to find the globally best substructure,
illustrated in Equation 2.

With Equation 2 we calculate the compression achieved

by a particular substructure, Si, up through and including
the current data increment m. The DL(Si) term is the
description length of the substructure, Si, under
consideration. The term

represents the description length of the accumulated graph
after it is compressed by the substructure Si.

Finally, the term

represents the full description length of the accumulated
graph.

At any point we can then reevaluate the substructures using
Equation 3 (inverse of Equation 2), choosing the one with
the highest value as globally best.

The process of computing the global substructure value
takes place in addition to the normal operation of Subdue
on the isolated data increment. We only need to store the
requisite description length metrics after each iteration for
use in our global computation.

As an illustration of our approach, consider the results
from the example depicted in Figure 4. The top n=3
substructures from each iteration are shown in Figure 6.
Table 1 lists the values returned by Subdue for the local
top n substructures discovered in each iteration. The
second best substructures in iterations 2 and 3 (S22, S32) are
the same as the second best substructure in iteration 1 (S12),
which is why the column corresponding to S12 has a value
for each iteration. The values in Table 1 are the result of
the compression evaluation metric from Equation 1. The
locally best substructures illustrated in Figure 4 have the
highest values, demarcated by the highlighted cells in
Table 1.

Table 2 depicts our application of I-Subdue to the
increments from Figure 4. After each increment is
received, we apply Equation 3 to select the globally best
substructure. The values in Table 2 are the inverse of the
compression metric from Equation 2. As an example, the
calculation of the compression metric for substructure S12
after iteration 3 would be:

Consequently the value of S12 would be:

For this computation we rely on the metrics computed

by Subdue when it evaluates substructures in a graph,
namely the description length of the discovered
substructure, the description length of the graph
compressed by the substructure, and the description length
of the graph. By storing these values after each increment
is processed, we can retrieve the globally best substructure
using Equation 3. Figure 7 illustrates the basic algorithm,
where Subdue is invoked to discover the candidate
substructures and the byproduct evaluation metrics are

Eq. 1

Eq. 2

Eq. 3

)G(DL

)S|G(DL)S(DL
nCompressio

+=

∑ ∑
=

=
+

=
m

j
j

m

j
iji

im

)G(DL

)S|G(DL)S(DL

)S(Compress

1

1

 +∑∑
=

=
m

j
iji

m

j
j

)S|G(DL)S(DL

)G(DL

)imax(arg

1

1

14741
74966396639615

116117117
.

...
=

+++
++

)G(DL)G(DL)G(DL

)S|G(DL)S|G(DL)S|G(DL)S(DL

321

12312212112

++
+++∑

=

m

j
ij)S|G(DL

1

∑
=

m

j
j)G(DL

1

collected and used to calculate the globally best
substructures after each new data increment is processed.

In circumstances where a specific substructure is not
present in a particular data increment, such as S31 in
iteration 2, then

and the substructure’s value would be calculated as
follows:

Conclusions
In this paper we have presented our introductory work on
I-Subdue, an extension to the Subdue structure discovery

Table 2. Using I-Subdue to calculate the global value of each substructure. The description
length of each graph iteration (Gj) and of each substructure (Si) are shown. Highlighted cells
indicate the global best substructure at each iteration.

Table 1. Substructure values computed independently for each iteration.
Highlighted cells indicate maximum values in each iteration.

//Call I-Subdue on the new data increment Gj
I-Subdue(Gj)

//Subdue returns description length values and top n substructures for current data increment,
//which are stored for global calculations
CandidateSubstructures[], SubstructureSizes[], CompressedGraphSizes[], size_Gj ⇐ Subdue(Gj)
total_graph_size = total_graph_size + size_Gj

/**/
Get_Global_Best(total_graph_size,CandidateSubstructures[], SubstructureSizes[], CompressedGraphSizes[])
 best_value = 0
 global_best_substructure = nil
 for(i=1 to sizeof(CandidateSubstructures))
 size_si = CandidateSubstructureSizes[i]

compressed_graph_size = 0
 for(j=1 to num_data_increments)

compressed_graph_size = compressed_graph_size +
CompressedGraphSizes[i][j]) //DL(Gj|Si)

 value_si = graph_size/(size_si + compressed_graph_size)
 if value_si > best_value
 best_value = value_si
 global_best_substructure = CandidateSubstructures[i]
 return global_best_substructure

Figure 7. Application of I-Subdue to store metrics returned from running Subdue over a single data
increment, then calculating the global best substructure using the collected metrics.

04551
768511711715

116117117
.

.
=

+++
++

)DL(G)S|DL(G 2312 =

Global Best Calculation
After Iteration #

S11 S12 S13 S21 S23 S31 S33 DL(Gj)*
1 1.2182 1.04808 0.9815 117
2 1.0983 1.1235 0.9906 1.0986 0.9906 117
3 1.0636 1.1474 0.9937 1.0638 0.9937 1.0455 0.9884 116

DL(Si)* 15 15 25.755 15 25.7549 15 26.5098
*measured in bits

New Substructures from
Iteration #1

New Substructures
from Iteration #2

New Substructures
from Iteration #3

Iteration #

S11 S12 S13 S21 S23 S31 S33

1 1.2182 1.04808 0.9815
2 1.04808 1.21882 0.98151
3 1.03804 1.15126 0.96602

New Substructures from
Iteration #1

New Substructures
from Iteration #2

New Substructures
from Iteration #3

system. We have presented a set of metrics and associated
rules for their application that allows our system to
discover globally best substructures from serially
processed data increments. This work allows us to
overcome a problem inherent to the sequential discovery
process, namely that of overlooking globally best
substructures because of discoveries that are locally best to
the specific data increment being mined.

Future Work
Our preliminary analysis indicates that there would be
some benefit to formulating I-Subdue so that the algorithm
uses what it has learned from previous data iterations to
direct the discovery process in future iterations. By using
the ranking of globally best substructures, I-Subdue may
be able to prune substructures from the search space that
are clearly only good in the local context. However, care
must be taken not to prematurely judge a substructure as
unimportant. Doing so may inappropriately bias the global
discovery process.

Sequential Relationships. Many applications areas in
which we are applying our research are event driven. For
example the smart home application generates data about
events created by the human occupants. The counter-
terrorism application domain used throughout this paper is
also a collection of events. The goal of structure discovery
is then to derive representative patterns from sets of these
events. This is complicated in the sequential learning
process, since event correlations may transcend multiple
data iterations. For example, in the smart home one might
assume that the temporal adjacency of two events is
significant enough to infer a relationship. This time
window is certainly subjective, however, one might also
choose to assume a relationship between two events that
fall outside of the time window but happen to have some
conceptual relationship; the use of a washer and dryer for
instance. One may start the wash on one day and dry it on
another. Although the events may not be temporally
related, they are conceptually related. We will address
sequential relationships in our future work.

Shifting Concepts. In the traditional machine learning
problem (Mitchell 1997, Vapnik, 1995), it is generally
stated that some function F(x) is generating an attribute
vector x, based on a fixed relationship, whether
probabilistic or deterministic. The attribute vector x
represents the observable features of the problem space.
This definition extends intuitively to data mining.
However, in sequential discovery problems, the
applications are such that the underlying relationships
between system variables often change. Referring back to
our smart home application, changes in lifestyle, seasons,
or anomalous weather events may perturb the typical
system behavior. There are approaches to machine
learning in the presence of shifting concepts, such as the
sliding window approach presented in (Widmer and Kubat
1996), but these are often naïve in the sense that they
disregard valuable information learned outside of the data

window. Our future work will focus on developing
methods for structure discovery when the underlying
system is undergoing change.

Acknowledgments
This research is sponsored by the Defense Advanced
Research Projects Agency (DARPA) and managed by the
Air Force Research Laboratory (AFRL) under contract
F30602-01-2-0570. The views and conclusions contained
in this document are those of the authors and should not be
interpreted as necessarily representing the official policies,
either expressed or implied of DARPA, AFRL, or the
United States Government.

References
1. Cook, D. and Holder, L. 1994. Substructure

Discovery Using Minimum Description Length and
Background Knowledge. In Journal of Artificial
Intelligence Research, Volume 1, pages 231-255.

2. Cook, D., Youngblood, M., Heierman, E.,
Gopalratnam, K., Rao, S, Litvin, A. and Khawaja, F.
2003. MavHome: An Agent-Based Smart Home,
Proceedings of the First IEEE International
Conference on Pervasive Computing. Fort Worth,
Texas: IEEE Computer Society.

3. Holder, L., Cook, D., Gonzalez, J., and Jonyer, I.
2002. In Structural Pattern Recognition in Graphs.
Pattern Recognition and String Matching, Chen, D.
and Cheng, X. eds. Kluwer Academic Publishers.

4. Mitchell, Tom. 1997 Machine Learning. McGraw
Hill.

5. Rissanen, J. 1989. Stochastic Complexity in Statistical
Inquiry. World Scientific Publishing Company, 1989.

6. Vladimir N. Vapnik. 1995. The Nature of Statistical
Learning Theory. Springer, New York, NY, USA.

7. Widmer, G. and Kubat, M. 1996. Learning in the
Presence of Concept Drift and Hidden Contexts.
Machine Learning, 23, 69-101

