
Using Automated Tests and Restructuring Methods
for an Agile Development of Diagnostic Knowledge Systems

Joachim Baumeister and Dietmar Seipel, and Frank Puppe
Department of Computer Science, University of Wuerzburg, Germany

email:{baumeister, seipel, puppe}@informatik.uni-wuerzburg.de

Abstract

We introduce an agile process model for the develop-
ment of diagnostic knowledge systems. As key prac-
tices of this evolutionary process model we identify
structured modifications of the knowledge by restruc-
turing methods, and the continuous validation of the
knowledge using automated testing methods. Finally,
we report promising experiences gained by the evalua-
tion of a development project implementing a medical
documentation and consultation system.

Introduction
Classical process models are often not appropriate for de-
veloping diagnostic knowledge systems, if, e.g., a full spec-
ification is not known beforehand, and the project team is
small. In our context, we investigated the development of
medical knowledge systems, that were typically constructed
and maintained by 1-2 physicians. In that case, the knowl-
edge is usually formulated by the domain specialists them-
selves. If we consider classical process models like, e.g.,
CommonKADS (Schreiberet al. 2001), then we see that
they are facing some problems, when applied under the cir-
cumstances described above:
• Technical feasibility is not always known in advance. A

small prototype would provide a good basis for deciding
about the overall project.

• Full specification is often not known in advance. Dur-
ing the development of a knowledge system new require-
ments arise and previously defined requirements become
less important.

Moreover, for small-size or mid-size development projects
document-centred approaches seem to be cumbersome and
costly for domain experts. Verbose specifications and nec-
essary decisions about the project design often deter experts
from starting or continuing a knowledge system project. In
fact, experts were motivated, if early results would be taken
out from small specifications, and, if systems could grow
incrementally from a small pilot.

In this paper, we briefly introduce a novel process model,
which allows for an agile construction and maintenance of
diagnostic knowledge systems. We identify the automated

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

validation and restructuring of knowledge as the key prac-
tices for a successful application of the agile process model.

In knowledge engineering research, validation techniques
have been undergoing fruitful research for the last decades.
Classical work by (Coenen & Bench-Capon 1993) was con-
tinued, e.g., by (Preece 1998). Especially, for the rule-based
implementation of knowledge systems an extensive frame-
work was defined by (Knauf 2000). Interestingly, this frame-
work does not only describe the evaluation of test knowledge
(represented as test cases), but especially its suitable gener-
ation. In the context of our projects, test cases were either
already available or manually defined by the experts, which
on one hand raises the question for completeness, and on the
other hand is a complex and time consuming task. For this
reason, the integration of a formal method generating suit-
able test cases will be a promising extension of the presented
work.

The introduction of restructuring methods for a step-wise
and algorithmic modification of the knowledge base was in-
spired by refactoring methods introduced for software engi-
neering (Opdyke 1992; Fowler 1999). As an advantage to
general software engineering, where test case adaptation is
mainly done manually, the implementation of restructuring
methods for knowledge systems often can propagate their
changes to the attached test knowledge, e.g., by modifying
the corresponding objects in test cases. However, the re-
finement of the knowledge base performed by restructuring
methods differs from refinement techniques, e.g., described
by (Boswell & Craw 1999; Knaufet al. 2002), since re-
structuring is mainlynotapplied for improving the accuracy
of the system, but for improving the design of the knowl-
edge base, i.e., the structure of the implemented knowledge.
Especially for this reason a restructuring method is currently
initiated manually, though supported by automated adapta-
tions of attached knowledge.

An interesting issue remaining partially solved is the
maintenance of test knowledge. This problem was for-
mulated by Menzies as therecursive maintenance prob-
lem(Menzies 1999). In his article, he argued that test knowl-
edge was introduced to simplify the maintenance of knowl-
edge, but the maintenance of test knowledge also needs
to be considered sufficiently, possibly by meta-test knowl-
edge. A partial solution for this problem will be presented
by the automated propagation of the restructuring methods

also adapting test cases according to the performed changes.
Modifications of the knowledge base and the test knowledge
with respect to a changing world, i.e., domain expertise, can
be resolved by refinement techniques mentioned in the fol-
lowing.

The paper is organized as follows: The following section
briefly introduces the agile process model and its steps, re-
spectively. Based on this process model we describe auto-
mated tests and restructuring methods in the next sections.
Thereafter, we report promising experiences gained by the
evaluation of a development project implementing a med-
ical documentation and consultation system. We conclude
the paper with a summary of the presented work, and show
possible directions for future research.

An Overview of the Agile Process Model
The presented process model was inspired by the agile pro-
cess model eXtreme programming (XP). In software engi-
neering research and practice XP (Beck 2000) has attracted
great attention, and showed its significance in numerous
projects. An agile process model has the following prop-
erties:
• an early, concrete and continuing feedback
• an incremental planning approach
• a flexible schedule of the development process
• the design process lasts as long as the system lasts
In contrast to XP the presented process model does not con-
sider the implementation of general software using an all
purpose programming language (e.g., C or Java), but fo-
cusses on the development of knowledge systems, that are
constructed by the insertion, the change, and the review of
knowledge represented in a declarative language.

The Steps of the Agile Process Model
The agile process model (cf. Figure 1) is a light-weight pro-
cess model and consists of the following cycle: analysis
of the system metaphor, design of the planning game, im-
plementation (plan execution: including tests, restructuring
and maintenance), and integration. We briefly discuss these
4 steps in the following.

System Metaphor

Planning Game

ImplementationIntegration

Figure 1: The agile process model for developing knowledge
systems.

The System Metaphor. The system metaphor describes
the basic idea and the designated goals of the knowledge
system to be implemented, and it is used to facilitate a bet-
ter communication between the developer (i.e., the domain

specialist) and the user of the system. Thus, the metaphor
stands for a common system of names and a common system
description. Using a common system metaphor can greatly
simplify the development and the communication between
user and developer.

Thus, thelocal system metaphordefines names and se-
mantics of the basic entities used during the development
of the system, e.g., diagnoses (solutions), questions (input),
and cases (solved problems). Theglobal system metaphor
describes the overall idea of the system to be implemented.
Typical classes are theconsultation system(focussing on the
inference of solutions), thedocumentation system(focussing
on the standardized and correct acquisition of input data, and
theembedded system(focussing on the technical integration
of the system into an existing machine).
The Planning Game. The planning game is the starting
point of the development cycle: During the planning game
the developer and the user decides about the scope and the
priority of future development, i.e., extensions or modifica-
tions of the current system. For each extension/modification
a plan is defined, which is documented bystory cards. Be-
sides the desired functionality the costs and priority of each
plan are estimated. Based on the estimated values of these
factors the developer and the user define the next release by
selecting story cards. They define the scope of the release by
ordering the collected cards and defining a release deadline
according to the risk estimations made before. It is worth
noticing, that these factors provide a benchmark for feed-
back in order to enable adaptation of plan estimation in the
future.
The planning game provides a flexible method for guiding
the development process of knowledge systems. On one
side, plans are documented in story cards and deliver a struc-
tured sequence of the development process, in which the
user as well as the developer are integrated. On the other
side, during the definition of stories the user and the devel-
oper specify the expected behavior of the planned knowl-
edge extension, and thus prepare useful validation knowl-
edge for the subsequent implementation phase. Further-
more, by providing methods for estimating and document-
ing implementation costs (derived from the implementation
velocity), an accurate feedback can be given to assess the
whole development process.
The Implementation. The implementation phase consid-
ers the realization of the story cards specified in the planning
game phase. In the context of the agile process model, the
implementation phase follows a test-first approach: Any im-
plementation of the functionality of a story is preceded by
the implementation of appropriate tests. Therefore, we dis-
tinguish between atest-implementation phaseand acode-
implementation phase.
In the test-implementation phase the developer defines test
knowledge describing the expected behavior of the new
story to be implemented. The kind of test knowledge
depends on the representational language of the code-
implementation. It is easy to see that, e.g., the test knowl-
edge for a rule-based knowledge representation can differ
from the test knowledge of a model-based representation.

Test knowledge needs to be automatically executable, i.e.,
the results of the test can be evaluated automatically by the
system. As a main idea of the process model, the continuous
application of the cyclic process yields a suite of tests, which
can be executed as a whole. We discuss the importance of
automated tests and test suites in the following sections in
more detail.
The code-implementation phase considers the actual real-
ization of the story, e.g., by acquiring and formulating new
knowledge, or by restructuring existing knowledge. In the
context of this paper we omit a detailed description of this
sub-phase.
The Integration. If the newly implemented functionality
passes the corresponding tests and the test suite, respec-
tively, then this knowledge is committed to the knowledge
base. Since the integration is done continuously, we always
can access a running system enclosing the currently imple-
mented knowledge. For a reasonable integration additional
tests need to be available, which are too time consuming to
be included into the working test suite, but which are applied
during integration to check more aspects of the functional
behavior of the knowledge system. We call these testsinte-
gration tests. Integration tests often contain a larger num-
ber of previously solved cases, which can be run against the
knowledge system. These previously solved cases typically
contain a set of question-answer pairs and a set of expected
diagnoses for these pairs, but sometimes also knowledge
about dialog behavior is available. Running thousands of
cases can take several minutes or hours. Therefore, it is not
practical to include them into the working test suite, since
the suite usually is applied many times during the imple-
mentation of a story. Nevertheless, before the integration of
a new version these integration tests are an essential indica-
tor for the correct behavior of the knowledge system.

Automated Tests

One of the key properties of the agile process model is the
application of automated tests. For an automated applica-
tion of tests the expected result of a test needs to be known
beforehand. The most prominent example for automated
tests is the use of empirical testing, i.e., running previously
solved test cases. But there exist further validation tech-
niques, which can be simply adopted for automation. There
exist tests that could be executed without any test knowl-
edge, e.g., anomaly testing. However, some tests necessar-
ily require test knowledge, which has to be defined by the
expert, e.g., empirical testing requires the presence of ap-
propriate test cases.

Significance of Tests

At first sight the construction of tests is an additional and
huge effort during the implementation phase. Nevertheless,
implementing tests besides the actual functionality is good
for the following reasons:
• Validation of the code:Tests are primarily defined to vali-

date the subsequent implementation. If the system passes
the tests, then the developer and the user feel confident,

that the newly implemented functionality has the expected
behavior.

• Removing communication errors:Tests are often imple-
mented as examples of typical system runs. Defining such
examples in cooperation with the user (which has to know
the typical system behavior) will clarify story definitions.
It is worth noticing, that often ambiguous definitions are
timely exposed due to the test-implementation phase.

• Detecting side effects:Since all tests are collected in a
common test suite, all available tests will be executed be-
fore completing the implementation of a story. Thus, side
effects can easily be discovered, i.e., a new functionality
has accidentally changed the behavior of a previously im-
plemented functionality.

For this reason, we identify testing as one of the key prac-
tices of the agile process model. In the following, we clas-
sify tests methods with respect to their validated target and
we describe the application of automated tests.

Classification of Tests

In general, we can classify test methods according to the
properties of the knowledge that should be validated. Thus,
we identify methods for validating thecorrectnessof the
knowledge system, for findinganomaliescontained in the
system, for testing therobustnessof the system, and for test-
ing the understandabilityof the implemented knowledge.
Methods for these types are briefly discussed in the follow-
ing.
Correctness. In the past, testing has been focussed on val-
idating the correctness of a system. For example, empirical
testing is the most popular method for correctness testing.
Here, the implemented knowledge system runs previously
solved test cases and infers solutions for each case. The in-
ferred solutions are compared with the stored solutions of
the case and differences are presented to the user. If a sound
dialog behavior of the system is also of interest, thense-
quentialized test casescan be used, i.e., ordinary test cases
augmented with the correct sequence of asked questions.
Anomalies. The detection of anomalies is also an impor-
tant issue in validation research. An anomaly is defined as a
certain part of the knowledge base, which a priori is not in-
correct butcancause the system to behave irregularly. Ex-
amples for anomalies are redundant, cyclic, or ambivalent
knowledge. For rule-based systems (Preece, Shinghal, &
Batarekh 1992) have presented a classification of anomalies
and methods for detecting them. In principle, the classifica-
tion of anomalies can be seamlessly transferred to other rep-
resentations, e.g., case-based reasoning and Bayesian net-
works.
Robustness. If the knowledge system is intended to be used
in stressful environments, then the robustness of the system
is an important issue to consider. Methods for testing the
robustness have been presented by (Groot, van Harmelen, &
ten Teije 2000). The robustness of a rule-based system is
measured by degrading the quality of system input, i.e., ap-
plying noise to test cases, and by reducing the quality of the
implemented structural knowledge, i.e., removing or slightly

modifying implemented rules.
Understandability. The understandability of the imple-
mented knowledge was only studied a little in the past. How-
ever, for the agile development of knowledge systems, the
understandability of the working knowledge base is very
important. Understandability of knowledge can be approxi-
mately measured by metrics, that take the (relative) size and
complexity of knowledge into account. For example, the
complexity of a rule base can be determined by the following
factors: The overall number of rules, the average complexity
of rules with respect to their conditions, the average number
of rules per diagnosis, the average number of findings per
diagnosis, that are applied in the corresponding rules. An
extensive framework for determining rule base complexities
are presented in (Atzmueller, Baumeister, & Puppe 2004).

For some of these methods additional test knowledge is
required, e.g., empirical testing and robustness testing re-
quire appropriate test cases. Other methods can be exe-
cuted even without any supplementary test knowledge, e.g.,
anomaly testing. It is worth noticing, that test knowledge is
mostly acquired manually by the domain specialists during
the implementation phase.

Automated Application of Tests

For the agile development of knowledge systems test meth-
ods need to be adapted to be executed automatically. Thus,
the expected result of the particular tests need to be known
beforehand. If any of the tests fail, then an error is reported.
Otherwise, the successful pass of the tests is reported with a
short success message.

In its simplest form, empirical testing can be automated
without any adaptation, since previously solved cases are
used for which the correct solution is already known. How-
ever, if the cases were gathered by a real life application,
then we cannot expect all cases to be solved correctly. Then,
an expectation value is required, which specifies the mini-
mum percentage of cases to be solved correctly.

For finding anomalies the developer has to decide about
the kind of anomalies, for which an error should be reported,
e.g., ambivalency and circularity may indicate serious defi-
ciencies of the knowledge base.

An expectation value also needs to be specified, if the ro-
bustness of a system should be tested. Thus, a threshold
valueξ has to be set, which defines the maximum noisiness
for which the knowledge system has to behave correctly. For
example, if thresholdξ = 0.1, then the knowledge system
should derive the correct solution for each case even if at
least 10% of the original input data is noisy.

Methods for testing the understandability of the imple-
mented knowledge heavily depend on expectation values.
For example, diagnoses with exceptionally large derivation
rules can point to parts in the knowledge base, that may re-
quire restructuring in the future. A smaller size of derivation
knowledge for single diagnoses mostly increases the under-
standability of the rule base. For this reason, an expectation
value needs to be defined, which specifies the upper bound
of the term ”exceptionally large”.

Restructuring Methods
The agile process model proposes the evolutionary develop-
ment of knowledge systems. Thus, a system grows by incre-
mental extensions of new knowledge or by structured mod-
ifications of already implemented knowledge. We call such
modifications of knowledgerestructuring methods, and they
are commonly used for refining the design of the knowledge
base, which for example can be measured by understand-
ability metrics. Since an evolutionary development process
implies the application of modifications from time to time,
we identify restructuring methods as the second key practice
of the agile process model.

Restructuring methods for knowledge bases were inspired
by refactoring methods known in software engineering re-
search, e.g., (Fowler 1999). A restructuring method is de-
scribed by five parts: A meaningful and uniquename, a
summarygiving a brief description of the method, amoti-
vation for using the method, a list ofconsequencesreport-
ing conflicts and restrictions of the method, and themechan-
ics, an algorithmic description of the accomplishment of the
method.

Usually, a restructuring method is initiated by the decision
of the developer. Common restructurings are the modifica-
tion of the question type, e.g., a multiple-choice question
included in the knowledge base should be changed to a set
of semantically equal yes/no questions. We call this method
TRANSFORMMC2YN. For example, in a medical domain
the multiple choice question”examination doppler” with
possible values{stenosis, insufficiency} can be translated
into the two yes/no questions depicted in Figure 2.

q1 : examination doppler
 - stenosis
 - insufficiency

q1_1 : examination doppler=stenosis
 - yes
 - no

q1_2 : examination doppler=insufficiency
 - yes
 - no

Figure 2: Restructuring of a multiple-choice question.

It is easy to see, that such modifications imply a subse-
quent change of already implemented knowledge, e.g., for
TRANSFORMMC2YN we need to consider the change of
all rules containing the original multiple-choice question.
Another important issue to be considered is the coherent
adaptation of test knowledge. For example, test cases need
to be adapted according to the transformation, i.e., by ex-
changing the multiple-choice values with the corresponding
yes/no answers.

Restructuring methods differ from ordinary knowledge
modifications by specifying a structured procedure for im-
plementing the particular modification. Thus, for each re-
structuring the mechanics and consequences of this modifi-
cation are identified and described, e.g., the required adap-
tation of rules or test knowledge. An important implication
can be drawn from this property: If the explicit procedure is
defined for each restructuring, then the execution of such a

method can be supported by interactive tools, that perform
the required adaptations. This automatization of knowledge
modifications enable developers to manage even complex
changes of a knowledge base, that were very difficult to per-
form manually in the past. For example, the restructuring
described above can imply the change of hundreds of rules
and thousands of test cases, if applied to a real world knowl-
edge base.

However, performing a restructuring can cause a knowl-
edge base to become invalid. For example, a restructuring
method decreasing the value range of an one-choice question
can produce contradictory rules, if two rules have the same
(transformed) one-choice answer in their rule conditions but
contradictory rule actions. Therefore, any execution of a re-
structuring method is preceded by afeasibility test, which
determines if the method will produce conflicts when exe-
cuted. If this feasibility test fails, then the developer either
uses default values to resolve the conflict or has to manually
modify the knowledge base in order to remove the detected
conflicts. Basically, the execution of a restructuring method
passes the following tasks:

1 Testing the actual state:Before a restructuring method is
executed the test suite is applied. A restructuring should
only be considered, if the knowledge base is in a valid
state.

2 Feasibility test:Checks, if the restructuring causes unre-
solvable conflicts, if executed on the existing knowledge
base.

3 Method application:For all included knowledge (e.g., on-
tological objects, rules, models, cases) the following sub-
tasks are performed:
3.1 Conflict resolution: If the execution of the method

causes conflicts, which are not resolvable by default
values, then the conflicts are solved with interaction of
the user. Otherwise, default values are used for conflict
resolution.

3.2 Method execution:If no conflicts are remaining, then
the method is executed according to the specified re-
structuring mechanics.

4 Testing the resulting state:After the restructuring method
has been applied, the knowledge base again is tested using
the test suite. A restructuring method only is successful,
if the restructured knowledge base is in a valid state.

A collection of18 typical restructurings, faced in real-world
knowledge system development, is extensively described
in (Baumeister 2004). In summary, we apply restructur-
ing methods to improve knowledge base design. Typical
restructurings are the modification of question types or the
extraction of rule conditions. Restructuring methods differ
from ordinary knowledge modifications by their explicitly
described procedure. Thus, the methods can be automated
and tool support can be offered.

Experiences
The presented agile process model was successfully ap-
plied in the ECHODOC1 project (Lorenzet al. 2003), a

1former QUALI TEE

medical documentation and consultation system supporting
the anaesthesiologist when performing a transesophageal
echocardiography examination (TEE). The system is guid-
ing the physician during the TEE examination, i.e., present-
ing appropriate questions according to the current examina-
tion phase, and suggesting diagnoses derived from the ex-
amination process.

Figure 3: The knowledge modeling environment
d3web.KnowME (1) with editors for defining rules
(2), executing tests (3), and restructuring methods (4).

Currently, the knowledge base contains 252 questions
grouped into 113 question sets, and 77 diagnoses. The rule
base contains 254 rules implementing strategic knowledge
defining the dialog behavior and structural knowledge for
deriving solutions.

The domain specialists implemented the knowl-
edge base using the knowledge modeling environment
d3web.KnowME, which offers visual editors for the de-
velopment of diagnostic knowledge systems. Furthermore,
integrated editors for defining and executing automated tests
and restructuring methods are included. Figure 3 depicts
the main window of d3web.KnowME together with editors
for editing rules, performing restructurings, and executing
automated tests. Currently, the workbench provides editors
for seven different test approaches (e.g., empirical testing
for structural knowledge, sequentialized cases for testing
the dialog behavior), and supports the automated execution
of restructuring methods, that consider type transformations
and hierarchical modifications.

First evaluations show, that the phases of the agile process
model appeared to be very useful. Since the domain experts
were only working part-time on the project, the use of sto-
ries in conjunction with the planning game was very advan-
tageous. Due to the evolutionary nature of the development

project the application of tests and restructuring methods ap-
peared to be very significant. In most cases, modifications
of the already implemented knowledge were performed suc-
cessfully by using the restructuring methods; the methods
commonly considered the change of question types or the
rearrangement of the question hierarchy. It is worth notic-
ing, that the rearrangement of the question hierarchy often
implied the adaptation of the corresponding test cases rep-
resenting the desired dialog behavior. Unfortunately, the of-
fered restructuring methods only consider the corresponding
inferential knowledge, but not the attached test knowledge,
which has to be modified manually. However, it is planned
to provide refined methods in the future providing an im-
proved, automated behavior.

In summary, the domain specialists were more encour-
aged to perform (even bigger) changes on the knowledge
base, because they were supported by appropriate restructur-
ing methods, which are executing reproduceable changes on
the knowledge. Additionally, test methods always ensured a
valid state of the knowledge system, i.e., an expected behav-
ior defined by the tests. A preliminary study of the practical
application of ECHODOC has been undertaken, and a real-
life evaluation of the system at the University of Wuerzburg
Hospitals is currently planned and scheduled.

Conclusion

In this paper, we introduced an agile process model for de-
veloping (diagnostic) knowledge systems. We motivated
that testing and restructuring are the key practices for a
successful application of the evolutionary development of
knowledge systems. Thus, we described the significance of
tests for the development process in conjunction with im-
portant properties of test knowledge, e.g., their automated
application. Further, we defined a scheme for classifying
the different types of test methods. As the second key prac-
tice we described restructuring methods as a structured and
algorithmic approach for modifying an existing knowledge
base. Due to their explicit procedural definition restructur-
ing methods can be automated, and tool support becomes
possible.

The presented process model was evaluated on a running
project developing a documentation and consultation system
in the medical domain. During the development the sig-
nificance of automated tests and restructuring methods was
shown. First experiences are very promising, though there is
still room for improvement, e.g., not all restructuring meth-
ods offer a propagation to the corresponding test knowledge.
Finally, we think that also the inclusion of methods for auto-
matic test case generation will be a very promising direction
for future work.

References

Atzmueller, M.; Baumeister, J.; and Puppe, F. 2004. Qual-
ity Measures for Semi-Automatic Learning of Simple Di-
agnostic Rule Bases. InProceedings of the 15th Inter-
national Conference on Applications of Declarative Pro-
gramming and Knowledge Management (INAP 2004).

Baumeister, J. 2004.Agile Development of Diagnostic
Knowledge Systems (submitted). Ph.D. Dissertation, Uni-
versity Würzburg, Germany.
Beck, K. 2000. Extreme Programming Explained: Em-
brace Change. Addison-Wesley.
Boswell, R., and Craw, S. 1999.Organising Knowledge
Refinement Operators, In: Validation and Verification of
Knowledge Based Systems. Oslo, Norway: Kluwer. 149–
161.
Coenen, F., and Bench-Capon, T. 1993.Maintenance of
Knowledge-Based Systems. Academic Press.
Fowler, M. 1999. Refactoring. Improving the Design of
Existing Code. Addison-Wesley.
Groot, P.; van Harmelen, F.; and ten Teije, A. 2000. Tor-
ture Tests: A Quantitative Analysis for the Robustness of
Knowledge-Based Systems. InKnowledge Acquisition,
Modeling and Management, LNAI 1319, 403–418. Berlin:
Springer Verlag.
Knauf, R.; Philippow, I.; Gonzalez, A. J.; Jantke, K. P.; and
Salecker, D. 2002. System Refinement in Practice – Us-
ing a Formal Method to Modify Real-Life Knowledge. In
Proceedings of 15th International Conference - Florida Ar-
tificial Intelligence Research Society (FLAIRS-2002), 216–
220.
Knauf, R. 2000.Validating Rule-Based Systems: A Com-
plete Methodology. Aachen, Germany: Shaker.
Lorenz, K.-W.; Baumeister, J.; Greim, C.; Roewer, N.; and
Puppe, F. 2003. QualiTEE - An Intelligent Guidance
and Diagnosis System for the Documentation of Trans-
esophageal Echocardiography Examinations. InProceed-
ings of the 14th Annual Meeting of the European Society
for Computing and Technology in Anaesthesia and Inten-
sive Care (ESCTAIC).
Menzies, T. 1999. Knowledge Maintenance: The State of
the Art. The Knowledge Engineering Review14(1):1–46.
Opdyke, W. F. 1992.Refactoring Object-Oriented Frame-
works. Ph.D. Dissertation, University of Illinois, Urbana-
Champaign, IL, USA.
Preece, A.; Shinghal, R.; and Batarekh, A. 1992. Verify-
ing Expert Systems. A Logical Framework and a Practical
Tool. Expert Systems with Applications5(3/4):421–436.
Preece, A. 1998. Building the Right System Right. In
Proceedings of KAW’98 Eleventh Workshop on Knowledge
Acquisition, Modeling and Management.
Schreiber, G.; Akkermans, H.; Anjewierden, A.; de Hoog,
R.; Shadbolt, N.; de Velde, W. V.; and Wielinga, B.
2001. Knowledge Engineering and Management - The
CommonKADS Methodology. MIT Press, 2 edition.

