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Abstract 

 
This paper presents a methodology for testing general 
non-monotonic knowledge bases for logical and 
semantic inconsistencies. It extends the CTMS-based 
verification framework introduced in our previous work 
with an additional integrity test. This test aims to ensure 
that a logically consistent non-monotonic knowledge 
base is also free of semantic inconsistencies, resulted 
from violated integrity constraints. Generally, semantic 
inconsistencies are detected during dynamic validation 
of the KBS. We argue, however, that some types of 
semantic inconsistencies can be explicated during the 
formal V&V analysis, and we describe a logical 
procedure that carries out this validation task.  

Introduction 
 
In the last 10 years, numerous techniques and tools for 
verification and validation (V&V) of both traditional rule-
based systems, and more complex KBSs utilizing hybrid 
representations were developed. For an extended summary 
and references on the former, see the report on 
EUROVAV’99 (Coenen et al. 2000) and (Wei-Tek, 
Vishnuvajjala, and Zhang 1999), while examples of the 
later are (Levy and Rousset 1996) and (Shiu, Liu, and 
Yeung, 1996). Most of these V&V frameworks, however, 
assume that a KBS employs a monotonic inference engine 
and thus the deductive closure of its knowledge base (the 
subject of the V&V analysis) is uniquely defined. This is 
not so if a KBS employs non-monotonic inference. The 
V&V task, in this case, is complicated due to the fact that 
there  may   be  multiple,  sometimes   huge,   number    of 
______________ 
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extensions resulting from the way the non-monotonic 
inference works. Testing each extension as a separate 
entity, as suggested   in   earlier  work   (Autoniou  1995), 
(Zlatareva   1997)  is  not  sufficient   to   ensure   the   
overall integrity of the knowledge base. We show in this 
paper that there may be inconsistencies among rules, 
which are not manifested as structural errors in any given 
extension, but may lead to incorrect conclusions. 
Typically, such inconsistencies are caused by undetected 
errors in underlying domain specifications, and their 
detection and resolution is part of dynamic validation of 
the KBS. 
 
The existence of multiple extensions is a core feature of 
non-monotonic theories. It is expected, however, multiple 
extensions to be originated by incomplete domain 
specifications, rather than by inconsistent specifications. 
To ensure that a knowledge base is free of such 
inconsistencies, we propose an additional integrity test, 
which complements the set of verification tests for non-
monotonic knowledge bases presented in (Zlatareva 1997). 
This test identifies semantic inconsistencies among default 
rules of a very general type by identifying contradictory 
conclusions supported by the same monotonic input data 
set. We present a formal procedure that carries out this test. 
The idea is the following. The original non-monotonic 
theory is converted into an equivalent set of monotonic 
sub-theories, which are more amenable to formal analysis. 
Each monotonic sub-theory is independently tested for 
logical inconsistencies as suggested in (Zlatareva and 
Preece 1994). After monotonic sub-theories are proved 
logically consistent, their grounded stable extensions are 
cross-examined for contradictory conclusions originated 
by the same input data set. If such contradictory 
conclusions are found, then rules involved in their 
derivation are semantically inconsistent. Clearly, semantic 
inconsistencies of any type can be confirmed and resolved 



only by a domain expert, but we argue that explicating 
them as part of the formal V&V process helps improve the 
efficiency of dynamic validation, which is still considered 
the “bottleneck” in KBS quality assurance.  
 
The paper is organized as follows. First, we discuss some 
issues in verification and validation of non-monotonic 
KBSs that motivated the research presented in this paper. 
Next, we outline the proposed integrity test, and define the 
type of knowledge bases that we target. We then introduce 
a conversion procedure that allows a non-monotonic 
theory to be converted to a set of semantically equivalent 
monotonic theories, and show how the proposed integrity 
test is carried out. An extended example is used throughout 
the paper to illustrate the presentation.   
 
 

Issues in V&V of non-monotonic KBS 
 
Verification and validation of non-monotonic theories was 
sparingly addressed in the V&V literature, although related 
topics, such as belief revision and knowledge refinement, 
are widely studies and discussed by AI theoreticians and 
logicians (see Proceedings of the 8th International 
Workshop on Non-Monotonic Reasoning for references).  
This is partly due to the fact that non-monotonic KBSs are 
still at early development stages, and partly due to the wide 
spread belief that these systems are incomplete and 
inconsistent by nature, which is why they cannot be 
satisfactory validated. On the other hand, the behavior of 
non-monotonic systems is far more complex than that of 
monotonic systems. This steams from the fact that non-
monotonic inference is flexible enough to continue in the 
presence of missing data, which considerably reduces the 
size of the knowledge base, but introduces the well known 
multiple extension problem. The complexity of the V&V 
process jumps according to the number of extensions. Each 
extension now must be tested to ensure its structural 
correctness and validity, and also the theory as a whole 
must be tested to ensure that there are no inconsistencies 
among extensions resulted from violated integrity 
(semantic) constraints.  
 
Testing extensions for structural anomalies and errors 
(such as logical inconsistencies, circularities, redundancies, 
etc.) is not hard because extensions are, in fact, monotonic 
theories. Any verification technique for monotonic KBSs 
can be applied to them as well.  The validation task, on the 
other hand, is to ensure that every extension contains all 
and only correct conclusions. To fully solve this task we 
need test cases with known solutions.  As it is well known, 
this is a high complexity task even for monotonic KBSs, 
where we deal with a single extension. Assume, however, 
that we limit the validation task to only identifying 
extensions, which possibly contain invalid conclusions. 
This can be done by cross-examining extensions in search 
for contradictory formulas implied by the same input data 

set or its monotonic supersets. If such contradictory 
formulas are found, then there are semantic inconsistencies 
among rules involved in their derivation. To identify the 
“wrong” rule (or rules), we can use test cases already 
contained in the grounded versions of the extensions 
involved. Grounded stable extensions are operational 
theories, which are generated by computing the transitive 
closure of the formulas comprising stable extensions 
(deductive closures) of the original theory.  In a grounded 
stable extension, each conclusion is defined in terms of the 
underlying input data set, which, in turn, defines a test case 
for that conclusion. To validate extensions, we can 
compare test cases associated with suspicious conclusions 
to real-world test cases. This simple idea is easy to 
implement for monotonic knowledge bases; however, its 
implementation for non-monotonic knowledge bases 
turned out to be not trivial. One solution is discussed next. 

Definition of the validation task: a case study 
 
Let a knowledge base consists of rules of the following 
type: 
 
Ri: (premise_1, …,  premise_n) (assumption_1,…, 
           assumption_m)  conclusion_i. 
 
Here (premise_1,…,premise_n) is the set of monotonic 
supporters for conclusion_i,  called for short In-list, 
(terminology adapted from (Doyle, 1979)), and 
(assumption_1,…,assumption_m) is the set of non-
monotonic supporters for conclusion_i, called for short 
Out-list. Conclusion_i holds if and only if all of its 
monotonic supporters hold, and none of its non-monotonic 
supporters holds. Conclusions may serve as both 
monotonic and non-monotonic supporters for other 
conclusions.  
 
Rules, such as Ri, are very general semi-normal defaults. 
Normal defaults and monotonic rules, respectively, can be 
expressed in this form as follows: 
 
Rj: (premise_1,..,premise_n) (¬conclusion_i)  
               conclusion_i 
 
Rk: (premise_1,...,premise_n) ( )  conclusion_i 
 
Consider the following example theory, which is used 
throughout the paper to  illustrate the proposed technique: 
 
R1: (A1, A2) ( )  C1 
R2: (C1, A3) ( )  C2 
R3: (A4, A5) (A8, A9)  C2 
R4: (C2, A6) (C1)  C3 
R5: (C3, A7) ( )  C4 
R6: (C4, C2) ( )  C5 
R7: (C5, A8) ( )  C6 



R8: (C6, A9) ( )  C7 
R9: (A7) (C3)  C4 
 
For the purposes of the V&V analysis, we treat all input 
data (A1 through A9) as assumptions. Conclusions are 
denoted as C1, C2, etc.   
 
Assumptions may or may not have values. For example, 
A8 and A9 may be true, false, or unknown. If they are 
unknown (or false), R3 will fire if its monotonic supporters 
hold. In this sense, A8 and A9 are different from A4 and 
A5, which must be true for R3 to fire. 
 
In general, there may be a huge number of specific 
assignments of values to assumptions, where each 
assignment set defines a real situation in the problem 
domain (test case). In verification analysis, we are not 
interested in any particular assignment; rather, we study 
interactions between rules assuming that all input data is 
simultaneously passed to the system. This explicates all 
potential anomalies (real and false) without running test 
cases.  
 
When we deal with a non-monotonic theory, a difficulty 
arises from the existence of unknown data (assumptions). 
These data cannot be given values at the start of the 
verification process, because this would change the 
meaning of the rules containing them. This makes it 
impossible to compute grounded versions of non-
monotonic theory extensions, which are the ones examined 
for structural anomalies. To get around this difficulty, we 
suggest original non-monotonic theory to be converted into 
a set of monotonic sub-theories, stable extensions of which 
are semantically equivalent to extensions of the original 
theory. What we gain from this conversion is that now we 
deal with monotonic extensions, grounded versions of 
which are easy to compute. Moreover, the verification 
framework introduced in (Zlatareva and Preece 1994) can 
be applied directly to test these theories for a variety of 
anomalies and errors, not just logical inconsistencies.   
 
Assuming that each one of these monotonic theories was 
tested and proved to be structurally correct, the next step 
towards validating the original non-monotonic theory is to 
ensure that the union of derivative monotonic theories do 
not contain contradictory conclusions underlined by the 
same input data set. If this is the case, then the original 
non-monotonic theory contains inconsistencies among 
rules that result from violated integrity constraints, which 
may lead to functional errors (wrong conclusions reported 
by the KBS). 
 
In summary, the following three steps outline the V&V 
process that we have described.  
 

1. Convert the original non-monotonic theory into 
an equivalent set of monotonic sub-theories, such 

that stable extensions of monotonic sub-theories 
are semantically equivalent to possible extensions 
of the original theory.  

 
2. Test each monotonic extension for logical 

inconsistencies and other structural anomalies and 
errors as described in (Zlatareva and Preece 
1994).  

 
3. Once the internal consistency of each extension is 

ensured, cross-examine grounded stable 
extensions of monotonic sub-theories for 
contradictory conclusions extending the same 
input data set, to test for violated integrity 
constraints. 

 
The rest of this paper deals with steps 1 and 3 of the 
outlined V&V process. Next, we show how the conversion 
of a non-monotonic theory into an equivalent set of 
monotonic sub-theories is carried out. 
 
 

Conversion of a non-monotonic knowledge 
base into an equivalent set of monotonic 

theories 
 
The purpose of converting a non-monotonic theory to a set 
of monotonic theories is that the later are more amenable 
to formal V&V analysis than the original theory.  The 
following definition states the conditions under which a 
non-monotonic theory and a set of monotonic theories are 
considered semantically equivalent. 
 
Definition. A non-monotonic theory Thnm is semantically 
equivalent to a set of monotonic theories Thm1, Thm2, …, 
Thmi iff: 
 

a) The number of extensions of Thnm is exactly equal 
the number of monotonic theories in the set. 

 
b) For every monotonic theory, there exists a non-

monotonic theory extension such that the stable 
extension of the monotonic theory contains all of 
the formulas from the non-monotonic theory 
extension, i.e. EXTThnm ⊆ EXTThmi. 

 
The suggested transformation is carried out in two steps: 
 

1. Each non-monotonic rule is converted into a set 
of monotonic ones.  

 
2. Consistent subsets of assumptions that originate 

possible extensions of the non-monotonic theory 
are identified. The monotonic theory, resulted 
from the first step, is divided into a number of 
theories each containing only those rules of the 



initial theory that are activated by identified 
assumption subsets. 

 
Converting non-monotonic rules into monotonic ones 
turned out to be surprisingly subtle. The semantics of 
default rules must be carefully accounted for, which is why 
the following three cases are considered separately. 
 
Case 1. The original rule has an empty Out-list and its 
conclusion does not belong to the Out-list of any other 
conclusion. An example of such rule is R2 (see example 
theory above). These rules are the easiest to convert, 
because they are, in fact, monotonic rules. R2 can be 
recorded as: 
 
R2*: C1 ∧ A3  C2 
 
Case 2.  The original rule has an empty Out-list, but its 
conclusion serves as a non-monotonic supporter for 
another conclusion. R1 is an example of such rule. Its 
conclusion, C1, is a non-monotonic supporter for C3 (the 
conclusion of R4). Consistent with the semantics of default 
rules, the stronger (monotonic) version of R4 will include 
¬C1 as a premise. Therefore, there must be an additional 
rule (or rules) stating when ¬C1 holds. This results in the 
following set of monotonic rules that R1 translates to: 
 
R1*: A1 ∧ A2  C1 
R1A*: ¬A1  ¬C1 
R1B*: ¬A2  ¬C1 
 
Case 3: The original rule has a non-empty Out-list. 
Example of such rule is R3. It will not fire if any of its 
non-monotonic supporters holds. This translates into 
following implications: 
 
R3A*: A8  ¬C2 
R3B*: A9  ¬C2 
 
R3, itself, translates into: 
 
R3*: A4 ∧ A5 ∧ ¬A8 ∧ ¬A9  C2 
 
Note that explicitly deriving ¬C2 affects all rules having 
C2 as a monotonic supporter. For each such rule, we must 
add an implication of the following type: 
 
Rj*: ¬C2  ¬conclusion_j 
 
Here is the final result of the conversion process for our 
example theory: 
 
R1*: A1 ∧ A2  C1 
R1A*: ¬A1  ¬C1 
R1B*: ¬A2  ¬C1 

R2*: C1 ∧ A3  C2 
R3*: A4 ∧ A5 ∧ ¬A8 ∧ ¬A9  C2 
R3A*: A8  ¬C2 
R3B*: A9  ¬C2 
R4*: C2 ∧ A6 ∧ ¬C1  C3 
R4A*: C1  ¬C3 
R4B*: ¬C2  ¬C3 
R5*: C3 ∧ A7  C4 
R6*: C4 ∧ C2  C5 
R7*: C5 ∧ A8  C6 
R8*: C6 ∧ A9  C7 
R9*: A7 ∧ ¬C3  C4 
R9A*: C3  ¬C4 
 
Next step is to identify monotonic sub-theories, whose 
stable extensions are semantically equivalent to non-
monotonic theory extensions. These are comprised by the 
rules fired by consistent subsets of assumptions originating 
possible extensions of the non-monotonic theory. To 
compute these subsets of assumptions, we must:  
 

1. Identify all violated logical constraints in the 
“extended” input data set, which accounts for all 
assumptions explicitly accounted for in the 
resulting monotonic theory. 

 
2. Divide the “extended” input data set into subsets 

consistent with respect to violated logical 
constraints. 

 
For our example theory, the extended input data set is the 
following one: 
 
{A1, ¬A1, A2, ¬A2, A3, A4, A5, A6, A7, A8, ¬A8, A9, 
¬A9} 
 
There are four violated logical constraints in this set:  
 
(A1, ¬A1), (A2, ¬A2), (A8, ¬A8), (A9, ¬A9) 
 
Therefore, the number of extensions of the original non-
monotonic theory is 2^4. For each one of them a 
semantically equivalent monotonic theory containing a 
subset of rules of the converted theory, is defined next. To 
illustrate how this works, consider the following input 
subset originating one of the non-monotonic theory 
extensions: 
 
{A1, A2, A3, A4, A5, A6, A7, A8, ¬A9} 
 
Simple forward chaining on the resulting monotonic theory 
computes the extension originated by this input set: 
 
{A1, A2, A3, A7, A8, ¬A9, C1, C2, C4, C5, C6} 
 



Note that A4, A5 and A6 can be removed from the input 
data set without causing any changes in conclusions 
inferred. Therefore, the resulting monotonic theory is the 
following one:  
 
R1*: A1 ∧ A2  C1 
R2*: C1 ∧ A3  C2 
R3A*: A8  ¬C2 
R4A*: C1  ¬C3 
R4B*: ¬C2  ¬C3 
R6*: C4 ∧ C2  C5 
R7*: C5 ∧ A8  C6 
R9*: A7 ∧ ¬C3  C4 
 
Testing this theory for anomalies and errors involves 
computing its stable extension (deductive closure). For 
this, we use the CTMS-based verification technique 
described in (Zlatareva and Preece 1994). Stable 
extensions contain all formulas that follow from a given 
input data set. CTMS-based verification technique 
identifies all potential inconsistencies among formulas in a 
given extension; however, more processing is needed to 
decide whether an inconsistency is “real” or “false”. 
Tracing backwards from conclusions to the input data sets 
results in the so-called grounded stable extension (GSE), 
where each formula is described in terms of assumptions 
and rules contributing to its derivation.  
 
The following is the GSE of the example monotonic 
theory:  
 
GSE = {C1: (A1, A2, R1*)( ),  
C2: (A1, A2, A3, R1*, R2*)( ), ¬C2: (A8, R3A*) ( ),  
¬C3: (A1, A2, R4A*) ( ), ¬C3: (A8, R4B*) ( ), 
C4: (A1, A2, A7, R9*, R4A*),  
C4: (A7, A8, R9*, R4B*),  
C5: (A1, A2, A3, A7, R9*, R4A*, R6*, R1*, R2*),  
C5: (A1,A2,A3,A7,A8, R9*, R4B*, R6*, R1*, R2*), 
C6: (A1,A2,A3,A7, R8,R9*, R4A*, R6*, R1*, R2*),  
C6: (A1,A2,A3,A7,A8, R9*, R4B*, R6*, R1*, R2*)} 
 
Note that detected contradiction (C2, ¬C2) signals an error 
only if there exists a real world test case involving A1, A2, 
A3, and A8. By analyzing the support information for 
contradictory formulas in GSEs, we can identify real 
logical and semantic inconsistencies in the underlying 
theory as described next. 

Testing GSEs for semantic inconsistencies 
 
To ensure that the original non-monotonic theory is free of 
inconsistencies (both, logical and semantic), we must: 
 

1. Show that each GSE of the resulting monotonic 
theories is consistent. 

 
2. Cross-examine GSEs for contradictory 

conclusions originated by the same input. If such 
contradictory conclusions are detected, then there 
are inconsistencies in the original theory, resulted 
from violated integrity constraints.  

 
We show how these tests are carried out on examples 
below. 
 
The GSE originated by input set {A1, A2, A3, A4, A5, A6, 
A7, A8, A9} includes the following contradictory 
formulas: 
 
C2: (A1, A2, A3, R1*, R2*)( ), 
¬C2: (A8, R3A*) ( ), 
¬C2: (A9, R3B*) ( ). 
 
Although the GSE contains both, C2 and ¬C2, this is only 
a potential contradiction, which may occur if A1, A2, A3, 
and either A8 or A9 are members of some real-world test 
case. That is, if contradictory conclusions are originated by 
disjoint input data sets, then real-world test cases are 
needed to decide whether the detected contradiction may 
occur in a real domain setting.  
 
The GSE originated by input set {A1, ¬A2, A3, A4, A5, 
A6, A7, ¬A8, ¬A9} contains the following contradictory 
formulas: 
 
C4: (¬A2, A4, A5, A6, A7, ¬A8, ¬A9, R1B*, R3*, R4*, 
R5*), 
¬C4: (¬A2, A4, A5, A6, ¬A8, ¬A9, R1B*, R3*, R4*, 
R9A*). 
 
Here the data set of ¬C4 is a sub-set of the data set of C4. 
Therefore, we have a real inconsistency that will occur in 
any super-set of {¬A2, A4, A5, A6, ¬A8, ¬A9}. It is easy 
to see where this inconsistency is coming from. GSEs 
maintain records of both assumptions and rules involved in 
each derivation. Comparing the rule sets of the 
contradictory formulas allows us to identify inconsistent 
rules. In our example, the rules-culprits are R5* and R9A*, 
which are derivatives of R5 and R9. The former rule 
suggests that conclusion C4 holds if A7 holds and C3 
holds, while the later rule suggests that C4 holds if A7 
holds, but C3 does not hold. Clearly, there is a semantic 
inconsistency between these two rules. Resolution of such 
inconsistencies is a prerogative of a human expert 
(contrary to logical inconsistencies, which are amenable to 
automated refinement). 
 
Consider R2 and R4 from the original theory, and compare 
them to R5 and R9. It may seem that R2 and R4 are 



inconsistent for a similar reason: C2 holds if C1 holds, 
while C3 holds if C2 holds and C1 does not hold. This 
inconsistency only seems to appear possible, but there is 
no GSE where both C2 and C3 (a corresponding semantic 
constraint must be defined as part of the domain 
specification) are originated by the same input set. 

Conclusion 
 
In this paper, we have discussed a methodology for testing 
general non-monotonic knowledge bases for logical and 
semantic inconsistencies. The CTMS-based verification 
framework presented in (Zlatareva 1997) was extended 
with an additional integrity test, which aims to ensure that 
a logically consistent knowledge base is also free of 
semantic inconsistencies. Clearly, semantic inconsistencies 
can be confirmed and resolved only by a domain expert 
during KBS dynamic validation. We have argued, 
however, that explicating semantic problems that resulted 
from violated integrity constraints, can be done as part of 
the formal V&V analysis, and we have presented a 
procedure to carry out this task. We have tested the 
proposed procedure on a small knowledge base (about 100 
rules implemented in LISP), and we believe that it can be 
of practical interest for real-world applications. More work 
remains to be done to see to what extend traditional 
dynamic validation can be substituted by formal validation 
procedures such as the one presented here.  
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