

SECLIPS: A Structured English Interface for
an Expert System Shell

Frank Hadlock
Computer Science Department

Tennessee Technological University
Cookeville, TN 38501
Ph. 01-931-372-3687
fhadlock@tntech.edu

ABSTRACT

This paper describes the SECLIPS system, which
provides a restricted English grammar and vocabulary
designed to express the facts and rules of a rules-based
knowledge base. SECLIPS is an extension of ECLIPS
and allows the user to extend a core vocabulary to express
a knowledge base of facts and rules for a particular
problem domain. SECLIPS employs an LL(1) based
translator with the grammar for the restricted English
SECLIPS language to perform a translation to the CLIPS
expert system language. SECLIPS extends ECLIPS by
supporting negative predicates and modifiers, plural
verbs, and list structures. SECLIPS provides a
mechanism by which knowledge can be expressed in a
readable format and translated into a CLIPS format with a
readily apparent correspondence between the SECLIPS
input and the CLIPS output.

1. INTRODUCTION
CLIPS is a forward chaining expert system patterned

after OPS5. Developed by NASA in 1985, it is available
as public domain software. Since the CLIPS inference
engine uses the RETE algorithm for pattern matching and
rule firing, CLIPS is very efficient. The main obstacle to
the use of CLIPS by nonprogrammers is its LISP-like
syntax. Fact templates, fact instances, and rules employ
patterns that are delimited by parentheses. Nested
constructs with missing or extra parentheses are a common
source of error. Controlled English was introduced by
Fuchs to enable designers to specify software in a readable
representation, which could be translated to Prolog for
requirements based testing [2], [4] SECLIPS was formerly
named ECLIPS and renamed to avoid confusion with the
Eclipse IDE. SECLIPS is an adaptation of Controlled
English, designed to provide a user-friendly front end for
developing knowledge-based systems. Since expert
systems have a wide range of applications, a tool for
expressing knowledge in the domain of application should
prove very useful. Besides expert systems, rule based
knowledge is recognized as being of central importance in
business. From an information system perspective, a
business rule is “...is a statement that defines or constrains
some aspect of the business. It is intended to assert

Copyright © 2004. American Association for Artificial Intelligence
(www.aaai.org).All rights reserved.

business structure, or to control or influence the behavior
of the business.” from the Business Rules Group [1]. From
the “Business Rules Manifesto” (also [1]), “Rules should
be expressed declaratively for the business audience, in
natural-language sentences. If something cannot be
expressed, then it is not a rule.”

 This emphasizes the significance of SECLIPS since
it provides a linkage between an easily understood
representation of domain knowledge, and an executable
representation (CLIPS). Together they provide a user-
friendly basis for building knowledge-based systems.

2. CLIPS vs. SECLIPS
2.1 CLIPS

CLIPS employs fact templates along with initial fact
instances of these templates. If course requirements are to
be asserted for an academic program, a CLIPs fact
template might be “(deftemplate is-requirement (slot
course) (slot program))” while a fact instance might be
“(deffacts requirement-facts (is-requirement (course
CSC202) (program CSC)))”. Rules employ patterns in
both their antecedents and consequents that are patterned
after the templates. If the patterns in an antecedent match
facts in the current fact list, new facts are asserted or old
facts retracted according to the patterns in the consequent
when the rule is fired. An example of a CLIPS rule is
“(defrule must-take (is-major (student ?X) (program ?Y))
(is-requirement (course ?Z) (program ?Y)) => (assert
(must-take (student ?X) (course ?Z))))” The rule asserts
that a student ?X who is a major in program ?Y for which
course ?Z is a requirement must take course ?Z. Note that
variables are introduced by ?’s. Patterns in the antecedent
are compared with a fact list, with variables being bound to
fields in the facts. If the antecedent is satisfied, the rule is
put in a list of rules ready to fire. If this rule is fired, the
fact that student ?X must take course Z? would be added to
the fact list. Note that fact templates, fact instances, rules
and patterns are delimited by parentheses that make CLIPS
difficult to read or write. For a detailed description of
CLIPS, see “Expert Systems – Principles and Programs”
(3).
2.2 SECLIPS

To make CLIPS more readable, it is natural to
combine a predicate adjective name with an intransitive

verb such as “is” or “has” for the fact name for facts
concerning a state, along with nouns for the slot names.
Examples are “is-major” for “ . . Student is a major .. “ and
“has-fever” for “ . . patient has a fever . . “. For event
facts, it seems natural to combine the transitive verb with
the object for the fact names. The subject and
prepositional phrase heads would be used for the slots. An
example is “passes-course” for the fact name for “ . .
passes course . .”. Examples of SECLIPS source fact
templates, fact instances, and rules are shown below with
the corresponding CLIPS target constructs. If these
conventions are followed in writing a CLIPS program, then
it becomes reasonable to assume a restricted English front
end from which CLIPS programs can be generated.
SECLIPS is an extension of ECLIPS which was introduced
as a restricted English front end. Like Controlled English,
SECLIPS contains a core vocabulary and is governed by a
restricted syntax.
2.3 CLIPS → SECLIPS Correspondence
The following examples provide an overview of the
correspondence between SECLIPS source constructs and
CLIPS targets.

Fact Templates. A SECLIPS fact template is formed

with a declarative sentence beginning with the key word
“Define” and a single clause with a transitive verb from the
domain dictionary or intransitive verb “is” or “has” from
the core dictionary. The template is limited as to noun or
prepositional phrases as discussed later. Templates are
central to the translation process and model an event or
relation with fixed verb component and variable objects.
Slot markers A, B, . . M (first half of alphabet) are used to
indicate locations where references to specific domain
objects can be substituted. Slot markers must occur in the
phrase head position.

Example 1: “Define course A is a requirement for
program B.” for which the CLIPS target generated by the
SECLIPS translator is “(deftemplate is-requirement (slot
course) (slot program))”.

To make the correspondence between SECLIPS
source and CLIPS target readily apparent, and to make the
generated CLIPS more readable, the translator uses the
verb along with the direct or indirect object as template
name. Slot names are derived from the corresponding
subject, object and prepositional phrase heads.

Fact Instances. A SECLIPS fact instance is formed

by a declarative sentences where the subject or object may
be a list. The fact instance must correspond to a previously
defined template as far as the verb and noun phrase
structure. Noun and prepositional phrase heads are
specific domain object references. .

Example 2: “Data Structures is a requirement for
program CSC.” is a fact instance corresponding to the
template of Example 1. The CLIPS target generated by the

SECLIPS translator is “(deffacts is-requirement-facts
(is_requirement (course Data_Structures) (program
CSC)))”.

As can be seen from the example, the SECLIPS
translator has a fact instance name “is-requirement”, using
the same rules as were used for fact template names. The
corresponding template is located in order to retrieve the
slot names.

Rules A SECLIPS rule is formed by a conditional

sentence using the words if, then, else, assert and retract
which are part of the SECLIPS core vocabulary. Clauses
in the antecedent and consequent must correspond to fact
templates. They are conjoined by and and or in the
antecedent and by and in the consequent; these
conjunctions are part of the core vocabulary. Variables are
indicated by capital letters N, . . Z (second half of
alphabet) Additional core words assert and retract
correspond to CLIPS key words which assert new facts or
retract old ones depending on the truth of the antecedent.

Example 3: “If student X is a major in program Y
and course Z is a requirement for program Y then assert
student X must take course Z. . The CLIPS target
generated by the SECLIPS translator is

(defrule major-requirement-take
(is-major (student ?X) (program ?Y))
(is-requirement (course ?Z) (program ?Y))
 => (assert (must-take (student ?X) (course

?Z))))”.

The rule states that if a course is required by a
program and a student is pursuing the course of study
prescribed by the program, then the student must take the
course. The conditional element (is-requirement (course
?Z) (program ?Y)) is an example of the simplest kind of
conditional element, referred to as a pattern, which is
designed to match the fields of a fact instance of the
required_course template. A ? introduces a variable. In
order for the patterns in this rule to match facts in the
current fact list, the variables ?X, ?Y and ?Z must be
bound to fields in the matching facts. The consequent
action asserts a new fact as an instance of the must_take
template, with fields given by the values of ?X and ?Z
variables. Another type of consequent action element is
the retract action.

Example 4: (Example of the use of retract)
“If student X must take course Y and student X

passes course Y then retract student X must take course
Y”. The CLIPS target generated by the SECLIPS
translator is

(defrule take_passes
 ?mt ← (must_take (student ?X) (course ?Y))
 (pass_course (student ?X) (course ?Y))
 =>
 (retract ?mt)).

When fired, the ?mt variable is bound to the address
of the fact matching the must_take pattern, causing the fact
to be retracted or removed from the current fact list.
These are some of the basic features of CLIPS and
constitute the target language for the former version of
SECLIPS. CLIPS features a number of predicates and
functions, as well as features for program control. These
are not included in the SECLIPS target and the reader is
referred to [3] for a full discussion of CLIPS.

2.4 SECLIPS Source Language

SECLIPS is an adaptation of Structured English and
Controlled English to provide a readable representation for
a knowledge base or for software specification. Both
vocabulary and grammar are designed to support
translation to CLIPS but would serve as a basis for other
target languages.

SECLIPS Vocabulary: At the language level,
SECLIPS is comprised of a core vocabulary, intended to be
common to all application domains, business or medical.
Like Attempto Control English (ACE), the SECLIPS core
vocabulary contains determiners, quantifiers, prepositions,
and logical connectives such as and, or, not, if and then,
words define, assert and retract, along with intransitive
verbs is and has [5]. However, SECLIPS assumes other
domain words (verbs, adverbs, nouns, and adjectives) will
be added to the dictionary for a particular application.
Any word not found in the dictionary is assumed by
SECLIPS to be a noun. The core words if and then are
reserved for use in the SECLIPS source sentences which
map into CLIPS rules. The core word define is used to
introduce a fact template sentence. Words assert and
retract are used to introduce actions in the consequent of a
rule. The SECLIPS core vocabulary has been extended to
include plural intransitive verbs such as are and have, as
well as multifield slot markers.

SECLIPS Grammar: An attributed phrase structure
grammar for SECLIPS has evolved from the ECLIPS
grammar [4]. The grammar supports the definition of a
SECLIPS sentence list comprised of fact template
sentences, fact instance sentences, and conditional
sentences. These are translated respectively into CLIPS
fact templates, fact instances, and rules.

The SECLIPS grammar is LL(1) with a semantic
action (italicized) associated with rules for which the left
hand side nonterminal corresponds to CLIPS target code
not generated automatically during the topdown parse.

The SECLIPS grammar has been extended to support
plural subjects and objects by adding a noun phrase list
nonterminal <NPList> as follows.
<NPhrase> → <Det><Adj><NHead><NPList>
<NPList>→ , <NPhrase>
<NPList> → c<NPhrase>
<NPList> → λ

Here <Det> generates a determiner or nothing and <Adj>
generates a possibly empty string of adjectives, while
<NHead> generates a domain noun or slot marker or
variable. <NPList> then generates a comma followed by a
noun phrase, or an “and” followed by a noun phrase, or
nothing.
 The SECLIPS grammar has also been extended to
enable negative assertions by modifying the verb rules [4]
as shown below:
<VPhrase> → <Aux><Neg><VHead>
<Aux> → x
<Aux> → λ
<Neg> → q
<Neg> → λ
<VHead> → v
<VHead> → λ
This enables a verb phrase to consist of an optional
auxilliary verb <Aux> followed by a optional negative
assertion <Neg> followed by a verb head <VHead>. This
construction enables the SECLIPS grammar to retain its
LL(1) property while gaining the added functionality.
Words such as “is” and “has” and “does” are given “x” as
lexical token in the SECLIPS dictionary unless followed
by “not” in which case they are given “q” as lexical token.
As a consequence, the lexical analyzer must check for two
word phrases before looking for single words.

2.5 SECLIPS Translator

The first stage of the translator performs lexical
analysis to reduce the SECLIPS source to a token stream,
retaining or transforming the original content words for use
in a readable CLIPS target representation. The second
stage performs a top down LL(1) parse, building a
derivation tree for an SECLIPS paragraph. The third stage
of the translator processes the derivation tree in bottom up
fashion, synthesizing attributes from the initial token text
via the associated semantic actions and transforming it into
CLIPS representation.

Fact templates are needed to generate fact instances
as well as conditional elements in rule antecedents. To
ensure that the templates are available when needed during
the translation process, the lexical analyzer bin sorts
sentences by the first word of the sentence: the key word
“define” identifies template sentences while the key word
“if” identifies rule sentences. By default remaining
sentences are assumed to be fact instance sentences.
Template sentences are placed at the end in order that in
the bottom-up processing of the derivation tree, they are
processed first. During lexical analysis, placeholders
A,B,C,D,E,F are discarded by the analyser since the slot
name will be formed by the nominal compound preceding
the placeholder. Each parse tree node has an associated
target CLIPS code attribute. Terminal nodes are assigned
the source word as attribute value. Nonterminal node
values are assigned values synthesized from the values of

descendant nodes by the semantic action associated with
the production used to expand the nonterminal. One of the
semantic actions, Phrase, discards prepositions and
determiners and forms a hyphenated string of adjectives
and nouns. Another semantic action, MakeTemplate, is
described below in terms of an example parse. The
SECLIPS source is “Define course A is a requirement for
program B.” and the CLIPS target is ”(deftemplate
is_requirement (slot course) (slot program))” The source
is parsed as ((define) (course A)Noun_Phrs (is)Verb_Phrs (a
requirement)Noun_Phrs (for program B)Prep_Phrs). The
semantic action MakeTemplate is invoked to build the
CLIPS representation of a ‹Sentence› consisting of the
“define” key word and followed by ‹Frame›. Templates
are saved in a Templates list with each template consisting
of a name along with two to three slots depending on the
number of clause phrases and verb type. To create a new
template, MakeTemplate invokes MakeFrame which
accesses the descendant nodes, ‹Frame› → <Noun_Phrs>
<Verb_Phrs> <Noun_Phrs> <Prep_Phrs>. and forms a
template name as described, along with the number of
slots. The same process is followed in processing a fact
instance sentence, or the patterns in a rule sentence to form
a corresponding template name. The template list, created
from the Deftemplate source sentences, is searched by
template name to find a template corresponding to the fact
instance. The deffacts construct is then generated from a
SECLIPS fact instance sentence and the corresponding
template by filling the template slots with the
corresponding fact instance constants. Defrule constructs
are constructed as follows. Each clause in the antecedent
and consequent of a SECLIPS conditional sentence is
processed to create a template name. The clause and the
template are then processed to generate a pattern element
of the defrule construct by filling the template slots with
the variables from the sentence antecedent or consequent
clause. Processing of the derivation tree is bottom up and a
list of template names of facts to be retracted is formed.
As a conditional pattern element is formed, the list of
template names of facts to be retracted is processed. If the
corresponding fact is to be retracted, To illustrate, consider
the SECLIPS conditional statement, “If student X must
take course Y and student X passes course Y then retract
student X must take course Y.”.

The must_take and passes_course templates are
formed for the antecedent clauses and the must_take for
the consequent clause. Since must_take is to be retracted
in the consequent, an assignment of a fact address to the
variable ?mt is generated. The CLIPS target is:

 (defrule satisfy_requirement
 ?mt ← (must_take (student ?X) (course ?Y))
 (pass_course (student ?X) (course ?Y)) =>
 (retract ?mt) (passed (student ?X) (course ?Y))

The translator is implemented through procedural
attachment. Rules in the grammar have the potential of

having a procedure attached that synthesizes the CLIPS
output to be associated with the left hand side nonterminal.
An example is the MakeTemplate procedure attached to the
template sentence rule. Translation proceeds in bottom up
fashion, since the CLIPS output is assembled partially
from the SECLIPS source words associated with terminal
nodes of the parse tree. Templates are constructed first
(parsed last) and a list maintained. The key to high level
translation is:

� process a fact instance, rule pattern element or
action

� formulate a template name from the verb (+
predicate adjective if verb is relational “is”, “has”, etc.)

� retrieve the unique template with this name
from the template list

� populate the slots of the template to
corresponding CLIPS construct.

This points a fundamental assumption (and
limitation) that the SECLIPS input is structured so that
transitive verbs and intransitive verb/predicate adjective
combinations are used so that they correspond to unique
events or states.

3. Extensions of SECLIPS

The current version of SECLIPS does not include
Controlled English core vocabulary or grammatical
constructs corresponding to CLIPS predicate,
mathematical, and procedural functions which would
greatly enhance the usefulness of SECLIPS. An extension
to SECLIPS would be to introduce core vocabulary words
to support commonly used functions.

The extensions that have been implemented are those
to support negative assertions and to allow plural verbs.
The negative assertion extension is critical to the use of
SECLIPS in developing expert systems. The plural verbs
extension greatly enhances SECLIPS as far as compressing
the number of assertions needed in the SECLIPS source.

Negative Assertions (‘not’ predicate)
A rule which asserts which required courses a student

must take realistically would include in its antecedent an
assertion that the student had not already taken the required
course. In a medical domain, diagnostic rules discriminate
between different diagnoses by asserting not only that the
patient has certain symptoms, but that he not have other
symptoms. A CLIPS rule for deciding which courses a
student must take is:

Example 5: “If student X is a major in program Y
and course Z is a requirement for program Y and student X
has not taken course Z then assert student X must take
course Z.”. The CLIPS target generated by the SECLIPS
translator is

(defrule major-requirement-take
(is-major (student ?X) (program ?Y))
(is-requirement (course ?Z) (program ?Y))
(not (taken-course (student ?X) (course ?Z))

 => (assert (must-take (student ?X) (course
?Z))))”.

CLIPS operates under the closed world assumption that if
there is not a fact in the database, the “not” predicate is
evaluated as true. In this case, if there is not a fact that
asserts that the student has taken the course, the (not
(taken-course (student ?X) (course ?Y))) pattern will be
true for that student and course. The SECLIPS source
language and grammar has been extended to support the
“not” predicate. The SECLIPS source for this rule is “If
student A is a major in program B and course C is required
for program B and student A has not taken course C then
student A must take course C.”

Plural Verbs and Object Lists.
In order to compress the expression of “parallel” or

similar knowledge, the plural are is added to the core
vocabulary of SECLIPS as well as “,” as a list delimiter.
The conjunction and now also plays a role as list
terminator. CLIPS supports multifield slots which can
have zero or more fillers in a slot. They are introduced in a
CLIPS fact template using the key word multislot instead
of slot as in “(multislot courses) “.

Example 6: “(deftemplate are-requirements

(multislot courses) (slot program))”. The SECLIPS fact
template is “Define the courses A~ are requirements for
program B.” The multislot markers are A~,B~, . . M~ .
Note the tilda following each multislot marker. A
corresponding fact instance is

Example 7: “(deffacts requirement-facts (are-

requirements (courses CSC2010 CSC2020 MA1810)
(program CSC))). The SECLIPS fact instance is
“CSC2010, CSC2020 and MA1810 are requirements for
program CSC. To support matching of several fields in a
multifield slot, CLIPS uses multifield variables such as
$?X. The “$” designates $?X as multifield as opposed to
?X which is single field. To pick an item out of a list, the
combination of multifield, single field, multifield is used.
Since multifield variables can match zero or more items,
the single field variable can be bound to any item/field in
the list/multifield.. This construction is used in the
following rule:

Example 8: (defrule major-requirement-take

(is-major (student ?X) (program
?Y))

(are-requirements (courses $R1
?Z $R2) (program ?Y))

(not (taken-course (student ?X)
(course ?Z))

 => (assert (must-take
(student ?X) (course ?Z))))”.

The SECLIPS source rule is
“If student X is a major in program Y and course Z is

a requirement for program Y and student X has not taken
course Z then assert student X must take course Z” If the
SECLIPS translator does not find an “is-requirement”
template, it looks for an “are-requirements” template in
order to generate a pattern.

4. Conclusions

Because English (or any natural language) is
ambiguous, and has an extensive vocabulary, various
efforts have been initiated to restrict or control English,
including Attempto Controlled English [2], Simple English
Wikipedia [7], Common Logic Controlled English [6],
ECLIPS [4] and SECLIPS. SECLIPS and its predecessor
ECLIPS provide a user friendly, natural language like
interface for facts and rules for an expert system
implemented in CLIPS which, while LISP like in it’s
syntax, is an efficient and publicly available expert system
shell.

References
1. Business Rules Group,

http://www.businessrulesgroup.org/brghome.htm
2. Attempto Controlled English (ACE), designed by

Norbert Fuchs - Department of Computer Science,
University of Zurich

3. Expert Systems – Principles and Programming,
Giarratano and Riley, PWS, 1998

4. ECLIPS, Hadlock, Proceedings of 41st SEACM,
2003

5. Sowa,http://users.bestweb.net/~sowa/misc/ace.htm
6. Sowa, Common Logic Controlled English,
http://www.jfsowa.com/logic/clce.htm
7. Simple English Wikipedia,

http://simple.wikipedia.org/wiki.cgi?HomePage

http://users.bestweb.net/

	ABSTRACT
	INTRODUCTION
	CLIPS vs. SECLIPS
	CLIPS
	SECLIPS
	CLIPS ? SECLIPS Correspondence
	The following examples provide an overview of the correspondence between SECLIPS source constructs and CLIPS targets.
	SECLIPS Source Language
	SECLIPS Translator

	Extensions of SECLIPS
	Conclusions

