
MultiDE: A Simple, Powerful Differential Evolution Algorithm for
Finding Multiple Global Optima

Zachary V. Hendershot and Frank W. Moore

Miami University Computer Science and Systems Analysis Department

 230 Kreger Hall, Oxford, OH 45056
 {henderzv, moorefw}@muohio.edu

Abstract

This paper presents multiDE, an extension of Price and Storn’s
differential evolution (DE) algorithm that consistently
outperforms state-of-the-art search techniques for identifying
multiple global optima in multidimensional, discontinuous
solution spaces. MultiDE automatically determines appropriate
values for control parameters, and periodically updates those
values at run-time. MultiDE requires little expert knowledge of
the solution space, and is capable of searching both
discontinuous and differentiable solution spaces. Innovative use
of multiple subpopulations, minimum spanning distances,
subpopulation expiration, and precision control contributes to
multiDE’s speed and effectiveness. Results from several
benchmark problems reveal MultiDE’s extraordinary power.

Introduction
DE (Price and Storn 1997) is a powerful and efficient
technique for optimizing nonlinear and non-differentiable
continuous space functions. Its simple yet powerful
algorithm is illustrated by Fig. 1. DE was designed as a
replacement for traditional methods of solving differential
equations, such as simulated annealing (Jones and Forbes
1995) and the well-known simplex algorithm (Nelder and
Mead 1965). DE has distinguished itself as a fast and
easy-to-use numerical optimization tool.

DE begins by generating a random population of
candidate solutions in the form of numerical vectors. The
first of these vectors is selected as the target vector. Next,
DE builds a trial vector by executing the following
sequence of steps:
1. Randomly select two vectors from the current

generation.
2. Use these two vectors to compute a difference vector.
3. Multiply the difference vector by weighting factor F

(see Fig. 1). It has been found that generally as the
number of population members used by DE
increases, the value of F should be decreased in order
to aid in the convergence process (Storn 1996).

4. Form the new trial vector by adding the weighted
difference vector to a third vector randomly selected
from the current population.

The trial vector replaces the target vector in the next
generation if and only if the trial vector represents a better
solution, as indicated by its measured cost value. DE
repeats this process for each of the remaining vectors in
the current generation. DE then replaces the current
generation with the next generation, and continues the
evolutionary process over many generations.

DE’s shortcomings become apparent when a
researcher begins experimenting with problems that have

Fig. 1. The Traditional Differential Evolution Algorithm

Copyright © 2004 American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

large, complex solution spaces. Filter design, population dynamics, and other applications of differential equations
are examples of problems that extend traditional
assumptions concerning the formation of solutions. In
such domains, it may be critical to enhance the problem-
solving abilities of scientists and engineers by identifying
as many globally optimal solutions as possible.

The New Approach
MultiDE incorporates several enhancements of the
original DE framework, resulting in a fast and efficient
method of convergence to multiple global optima.
Researchers already familiar with DE can migrate to
multiDE with minimal effort, and may begin exploiting
multiDE’s power to determine multiple global optima in
complex search spaces.

First, multiDE assigns each candidate solution to one
of several simultaneously evolving subpopulations. Each
subpopulation consists of a user-specified number of
vectors. Subpopulations evolve independently from one
another, i.e., all three of the vectors used to create each
trial vector are randomly selected from the subpopulation
containing the corresponding target vector. MultiDE
periodically transfers each current global optimum to a
separate subpopulation known as “population 0”,
increases the number of subpopulations, creates a new set
of candidate solutions for each subpopulation, and begins
the evolutionary process anew. This technique
significantly reduces the likelihood of premature
convergence to a subset of global optima.

Second, multiDE uses a variable to specify the
precision required for the current optimization problem.
MultiDE considers real-valued solutions that differ by
less than this variable’s value to be equal. During
evolution, each new trial vector is compared to each
member of population 0; if the difference between a trial
vector and any member of population 0 is less than the
specified precision value, then multiDE considers the trial
vector to have rediscovered a known globally optimal
solution, and the trial vector is dropped from further
calculations. This process accelerates the rate at which
multiDE converges to new global optima. Reductions in
the magnitude of the precision value force multiDE to
recognize increasingly smaller differences between
candidate solutions.

Third, multiDE dynamically adjusts the minimum
spanning distance (MSD) between members of different
subpopulations. MSD (Rumpler and Moore 2001) is
initially calculated to be a factor of the user-specified
maximum number of generations. When a new trial
vector is created, multiDE computes its Euclidean
distance from each of the target vectors in every other
subpopulation of the current generation. If this distance is
less than the MSD from at least one target vector,
multiDE simply moves the trial vector a distance MSD in
the opposite direction. This process is repeated until the

trial vector is at least the MSD from every member of
every other subpopulation. By preventing members of
multiple subpopulations from gravitating to the same area
of attraction, this technique encourages a more thorough
search of the solution space, and thus increases the
likelihood of finding larger numbers of global optima.
Over many generations, multiDE slowly decreases the
MSD until its value is less than or equal to the value of
the precision variable described above. Each time the
number of subpopulations is increased, multiDE resets the
MSD to its initial value, and the process is repeated.

Fourth, multiDE introduces subpopulation expiration
to accelerate the rate of convergence. MultiDE eliminates
subpopulations from the currently evolving generation
when they fail to discover new global optima after a
specified maximum amount of computation. This
technique results in a sizable linear increase in
convergence speed. Shorter expiring times are most
beneficial to researchers who want to quickly identify
several solutions, but can forgo the opportunity of finding
all possible solutions. A more comprehensive search can
be made simply by increasing the expiring subpopulation
variable to a much larger value.

MultiDE Solves Classic Optimization
Problems
MultiDE’s power can best be demonstrated by showing
the speed and flexibility with which it solves several well-
known multidimensional optimization functions. A “run”,
as tabulated below, was considered to be a complete
execution of the multiDE algorithm with all parameters
set and the function to be optimized loaded into the
algorithm. Five test runs were made with each function.
Each test run used a different random seed. A typical run
used 60 vectors per subpopulation. Total computation
time was recorded by executing multiDE via the Linux
“time” command on a 3.06 GHz Intel Pentium 4 computer
running Linux kernel 2.4.22.

The strategies listed below are designated using the
standard format that Price and Storn set forth within the
source code of their DE algorithm. For example, in
DE/best/1/exp, the first value, “DE”, indicates that a
differential evolution technique has been used. The
second parameter specifies the vector to be perturbed
during the evolution process: “best” designates the best
current population member, while “rand” designates a
random population member. The third parameter
represents the number of difference vectors to take from
the perturbed vector to create a new trial vector. The
fourth parameter specifies the crossover method to be
used: “exp” designates an exponential method, while
“bin” designates a binomial method.

The first equation analyzed was Branin's function
(Branin 1972). This continuous function (Fig. 2) has six

global optima within the specified range. DE/rand/1/exp
was used as the strategy for optimizing this function.
Initial test runs set the expiring subpopulation variable
equal to the maximum number of generations. This value
resulted in rapid convergence at the expense of a less
comprehensive report of possible optimal solutions: the
results from five test runs (Fig. 3) indicate that, on
average, multiDE found 5.2 unique solutions in an
average run time of 7.22 seconds. As few as six
subpopulations were used, resulting in an average of
394,385 function evaluations.

Next, the value of the expiring subpopulation
variable was increased by a factor of 10, and all five test
runs were repeated under otherwise identical conditions.
In each run, multiDE located all six global optima (Fig.
4). These results underscore a general rule: to increase the
percentage of global optima found, the value of the
expiring subpopulation variable must be proportional to
the complexity of the solution space and number of
solutions desired.
The second equation tested was Shubert's function (Fig.
5). This function has nine global optima within the
specified range. Shubert’s function lends itself to
differential evolutionary optimization because, although
its solution space is continuous and differentiable, it also
offers sizable slopes that tend to drive adaptive techniques
away from the global optima. A DE/rand-to-best/1/exp

strategy was used to optimize this function. To increase
the likelihood of converging on all possible solutions, the
expiring subpopulation variable was increased by a factor
of ten. The results of these tests (Fig. 6) illustrate
multiDE’s ability to rapidly converge to multiple optima.
All five test runs determined all nine global optima
solutions in an average execution time of only 5.47
seconds.

The third equation used to test multiDE was
Rosenbrock's saddle (Rosenbrock 1960), shown in Fig. 7.
This equation is an exception in this test suite: it has only
one optimal solution. The reasons for its inclusion are to
allow comparisons with more conventional optimizers,
and to show that multiDE is flexible enough to solve
problems having a single global optimum.
Using parameters similar to those used in previous tests
and assuming that n = 2, multiDE quickly found the
global optimum, in spite of the sizable overhead of
multiDE’s multi-pass algorithm. Note that after finding
the single solution, multiDE continued executing many
more iterations in an attempt to find additional solutions
by increasing the number of subpopulations. Waiting for
these additional subpopulations to complete introduced a
function evaluation penalty that increased the total
number of function evaluations (Fig. 8).

An interesting phenomenon arises when multiDE is
applied to the relatively simple equation illustrated in Fig.

15,5

10)cos()
8
11(10)6)5()

4
5(()(

21

2
1

2
122

≤≤−

+−+−+−=

xxToSubject

xxxxxfMinimize iπππ

Fig. 2. Branin’s Function

Run #
of Unique

Solutions Found
Maximum # of

Subpopulations NFE Time Strategy
1 5 8 782710 11.342 DE/rand/1/exp
2 5 6 233580 6.57 DE/rand/1/exp
3 5 6 227943 4.666 DE/rand/1/exp
4 5 7 501366 9.984 DE/rand/1/exp
5 6 6 226325 3.587 DE/rand/1/exp

Average 5.2 6.6 394384.8 7.2298
Fig. 3. Branin’s Function Test Results: Shorter Subpopulation Expiration Times

Run #
of Unique

Solutions Found
Maximum # of

Subpopulations NFE Time Strategy
1 6 9 543094 41.190 DE/rand/1/exp
2 6 10 403493 36.243 DE/rand/1/exp
3 6 9 603912 42.302 DE/rand/1/exp
4 6 9 430934 37.584 DE/rand/1/exp
5 6 10 574833 44.238 DE/rand/1/exp

Average 6.0 9.4 511253.2 40.3114
Fig. 4. Branin’s Function Test Results: Longer Subpopulation Expiration Times

9. This equation has a total of sixteen global optima.
When run with the same parameters specified for
Shubert’s function, multiDE quickly found up to ten
unique solutions, but after multiple iterations failed to
find the remaining solutions. Fig. 10 shows these results
over five independent test runs.

To allow multiDE to solve problems having a larger
number of global optima, the expiring subpopulation
variable must be increased. After the expiring variable
was increased by a factor of ten, multiDE used 22
subpopulations and 9,412,512 function evaluations to
converge on all sixteen solutions in a single run in 15.72
seconds (Fig. 11).

MultiDE Outperforms Classic Optimization
Algorithms

Efstratiadis (Efstratiadis 2001) defines effectiveness as
follows:

[Effectiveness] indicated the probability of finding a
global optimum starting from any random initial
solution (or population of solutions)... A measure of
the effectiveness of an algorithm in a specified
problem is the number of successes out of a
predefined number of independent runs.

To demonstrate its effectiveness, multiDE was compared
to the following classic algorithms: a multistart simplex
technique (Torn and Zhilinskas 1989); a genetic
algorithm-based method (Goldberg 1989); a shuffled
complex evolution method (Duan, Gupta, and Sorooshian
1993); and a powerful annealing-simplex algorithm
(Efstratiadis 2001) inspired by simulated annealing. Each
algorithm was tested using Griewank’s function and

()()() ()()()
2,11010

1cos1cos)(5

1 2
5

1 1

=≤≤−

++++= ∑∑ ==

iforxToSubject

jxjjjxjjxfMinimize

i

jj

Fig. 5. Shubert’s Function

Run #
of Unique

Solutions Found
Maximum # of

Subpopulations NFE Time Strategy
1 9 7 304930 4.546 DE/rand-to-best/1/exp
2 9 9 489445 6.549 DE/rand-to-best/1/exp
3 9 7 387545 5.528 DE/rand-to-best/1/exp
4 9 8 419430 5.762 DE/rand-to-best/1/exp
5 9 7 334309 4.984 DE/rand-to-best/1/exp

Average 9.0 7.6 387131.8 5.4738
Fig. 6. Shubert’s Function Test Results

() ()
.,....,11010

1100)(2
12

22/

1
2

122

niforxToSubject

xxxxfMinimize

i

i
n

i ii

=≤≤−

−+−= −= −∑

Fig. 7. Rosenbrock’s Saddle

Run #
of Unique

Solutions Found
Maximum # of

Subpopulations NFE Time Strategy
1 1 7 449231 1.221 DE/rand-to-best/1/exp
2 1 7 449231 1.22 DE/rand-to-best/1/exp
3 1 7 449231 1.214 DE/rand-to-best/1/exp
4 1 7 453803 1.231 DE/rand-to-best/1/exp
5 1 7 465712 1.237 DE/rand-to-best/1/exp

Average 1 7 453441.6 1.2246

Fig. 8. Rosenbrock’s Saddle Test Results

20,20
)16()12()8()4()12()9()6()3()(

≤≤−

−∗−∗−∗−+−∗−∗−∗−=

yxToSubject
yyyyxxxxxfMinimize

Fig. 9. Simple Test Function with 16 Global Optima

Michalewicz's function. The calculated effectiveness of
each function is defined as the percentage of global
optima found.

Griewank's function (Fig. 12), as tested, has a ten-
dimensional solution space of sufficient complexity to
warrant extended convergence times and an increased
number of function evaluations. This function is reported
to have over 1000 optima in the range of interest
(Efstratiadis 2001), and therefore presents an interesting
benchmark for multiple global optima algorithms.
Despite the multi-dimensional, non-convex nature of this
function, the effectiveness of most of the algorithms in
our test suite approached 100 (Fig. 14). MultiDE required
only 7.35 seconds to find 100% of the solutions.
Michalewicz’s function is illustrated in Fig. 13.
Efstratiadis (Efstratiadis 2001) states that this function has
more than 100 global optima in the specified range. This
function, as tested, has a two dimensional solution space
that proved to be very difficult for traditional optimization

techniques: for the traditional four algorithms tested, the
highest observed effectiveness rating was 58 (Fig. 14). In
contrast, multiDE’s effectiveness in solving
Michalewicz's function was 96.

 The importance of this finding is that, although the
overhead of our multiple-pass evolutionary approach may
be significant for simple test problems, multiDE’s
comprehensive search capabilities allow it to quickly
converge on multiple globally optimal solutions in
solution spaces that are too complex for the traditional
optimization techniques included in this test suite. This
result highlights the most important property of multiDE:
its power to solve complex optimization problems quickly
and reliably. MultiDE automatically adapts to the
complexity of the given solution space, effectively
utilizing the power of multiple simultaneously evolving
subpopulations to find arbitrarily large numbers of global
optima with less computational cost than traditional
search techniques.

Run #
of Unique

Solutions Found
Maximum # of

Subpopulations NFE Time Strategy
1 8 15 4147023 7.052 DE/rand-to-best/1/exp
2 10 13 3011941 5.443 DE/rand-to-best/1/exp
3 9 13 2999248 5.409 DE/rand-to-best/1/exp
4 9 13 3012578 5.442 DE/rand-to-best/1/exp
5 10 16 4762764 7.631 DE/rand-to-best/1/exp

Average 9.2 14 3586710.8 6.1954
Fig. 10. Simple Multiple Optima – Results for Short Test Runs

Run #
of Unique

Solutions Found
Maximum # of

Subpopulations NFE Time Strategy
1 16 22 9412512 15.722 DE/rand-to-best/1/exp

Fig. 11. Simple Multiple Optima – Results for a Longer Test Run

600600

1cos)100(
4000

1)(
1

1

2

≤≤−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= ∑ ∏=

=

i

n

i

n

i

i
i

xToSubject
i

x
xxfMinimize

Fig. 12. Griewank’s Function (Griewank 1981)

()
π≤≤

∗−= ∑
i

i

xToSubject
xxfMinimize

0
sinsin)(20

Fig. 13. Michalewicz’s Function (Sun and Laio 2001)

Test
Function

Dimensions
(n)

Number of
Optima

Multistart
Simplex

Genetic
Algorithm SCE-UA

Annealing-
simplex multiDE

Griewank 10 >1000 100 89 100 99 100
Michalewicz 2 >100 35 31 44 58 96

Fig. 14. Test Results for Complex Functions: Effectiveness (%)

MultiDE was designed to be easy to use. Very few
adjustments to control parameter values were necessary in
order for the algorithm to reliably converge on multiple
global optima; for example, to transition from testing
Griewank's function to testing Michalewicz's function, the
only values modified in the configuration file to reliably
converge on multiple global optima were number of
variables generated and the DE evolution strategy. (It is
possible to change a larger number of variables within the
configuration file, if the researcher desires finer control
over the optimization process.) The nature of the
algorithm lends itself to less reliance on the values of
control parameters and more flexibility in convergence.

Conclusions
This paper described a new differential evolution
algorithm that represents a significant contribution to the
state-of-the-art in numerical optimization. Experimental
results demonstrated multiDE’s ability to consistently
identify multiple global optima for complex functions
(such as Michalewicz’s function) that prove to be
troublesome for such traditional optimization techniques
as the multistart simplex method, the standard binary
encoded genetic algorithm, the shuffled complex
evolution method, and the annealing-simplex method.
MultiDE allows researchers to experiment with a simple,
flexible, and powerful differential evolution solver
without a steep learning curve. MultiDE can be applied to
a broad range of challenging optimization problems.
Future research efforts will exploit multiDE’s power to
solve real-world problems with arbitrarily complex
solution spaces.

References
Branin, F. H. Jr., 1972. “Widely convergent method for
finding multiple solutions of simultaneous nonlinear
equations”, IBM J. of Research and Development 16(5):
504-522.

Duan, Q., V. Gupta, and S. Sorooshian, 1993. "A Shuffled
Complex Evolution Approach for Effective and Efficient
Global Minimization", J. of Optimization Theory and
Applications 76(3): 501-521.

Efstratiadis, A., 2001. Investigation of global optimum
seeking methods in water resources problems, M. Sc.
thesis, Department of Water Resources, Hydraulic and

Maritime Engineering, National Technical University of
Athens.

Goldberg, D., 1989. Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-Wesley.

Griewank, A., 1981. “Generalized Descent for Global
Optimization”, J. of Optimization Theory and
Applications 34: 11-39.

Jones, A. and G. Forbes, 1995. “An Adaptive Simulated
Annealing Algorithm for Global Optimization over
Continuous Variables”, J. of Global Optimization 6(1): 1-
37.

Michalewicz, Z. and T. Logan, 1994. “Evolutionary
Operator for Continuous Convex Parameter Spaces”,
Proc. 3rd Annual Conf. on Evolutionary Programming,
84-97, World Scientific Publishing.

Nelder, J. and R. Mead, 1965. “A Simplex Method for
Function Optimization”, Computer J. 20(1): 84-85.

Price, K. and R. Storn, 1997. “Differential Evolution:
Numerical Optimization Made Easy”, Dr. Dobb’s J.,
April 1997, 18-24.

Rosenbrock H., 1960. “An Automatic Method for Finding
the Greatest or Least Value of a Function”, Computer J.
3: 175-184.

Rumpler, J. and F. Moore, 2001. “Automatic Selection of
Sub-populations and Minimum Spanning Distances for
Improved Numerical Optimization”, Proc., Congress on
Evolutionary Computation 2001 1: 38-43, IEEE.

Storn, R., 1996. “Differential Evolution Design of an IIR-
Filter”, Proc. IEEE International Conf. on Evolutionary
Computation, Nagoya, Japan, 268-273, IEEE.

Sun, C-T. and Y-H. Liao, 2001. “An Educational Genetic
Algorithm Learning Tool”, IEEE Trans. on Education
44(2), IEEE.

Torn, A. and A. Zhilinskas, 1989. “Global Optimization”,
Lecture Notes in Computer Science 350, Springer-Verlag.

