
Indirect Encoding Evolutionary Learning Algorithm for the Multilayer
Morphological Perceptron

Jorge L. Ortiz, Ph.D., PE and Roberto C. Piñeiro, BS

Electrical and Computer Engineering Department
University of Puerto Rico - Mayagüez
Mayagüez, Puerto Rico, USA 00681

{jortiz, roberto.pineiro}@ece.uprm.edu

Abstract

This article describes an indirectly encoded evolutionary
learning algorithm to train morphological neural networks.
The indirect encoding method is an algorithm in which the
training of the neural network is done by finding the
solution without considering the exact connectivity of the
network. Looking for the set of weights and architecture in
a reduced search space, this simple, but powerful training
algorithm is able to evolve to a feasible solution using up to
three layers required to perform the pattern classification.
This type of representation provides the necessary
compactness required by large networks. The algorithm was
tested using Iris Fisher data and a prototype was written
using Matlab.⋅

 Introduction

Morphological Neural Networks (MNN) are a new type of
neural networks described by Ritter, Sussner, and Beavers
(Ritter and Sussner 1996), (Ritter and Sussner 1997),
(Sussner 1998), and (Ritter and Beavers 1999). These types
of neural networks replace the classical operations of
multiplication and addition by addition and maximum or
minimum operations. The maximum and minimum
operations allow performing a nonlinear operation before
the application of the activation or transfer function. MNN
utilize algebraic lattice operations structure known as semi-
ring (, , , , ')

±∞
∨ ∧ + +ℜ , different from traditional neural

networks that are based on the algebraic structure known
as ring (R,+,×). The operations ∧ and ∨ denote minimum
and maximum binary operations, respectively.
 Genetic Algorithms (Yao 1999) have proven to be
effective to search for an optimal solution in very large,
complex, and irregular search spaces such as the neural
networks architectures. This article describes a method
using genetic algorithms that can be used to train the
morphological neural networks introduced by Ritter,
Sussner and Beavers. The algorithm can be used to train up
to three layers morphological perceptron architectures
based on evolutionary computation, which are able to
classify most traditional pattern classification problems.

Copyright © 2004, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Morphological Neural Networks

Morphological neural networks are a new type of neural
network, based on lattice operations. The morphological
neuron follows the mathematical model described by
Equation 1,

()
1

n

j ij i iji
f p r x w

=

⎛ ⎞⋅ ∨ +⎜ ⎟
⎝ ⎠

 (1)

where ∨ is the maximum operator (or minimum operator
∧ can be used), xi is the i-th input value for the j-th
neuron, wij denotes the synaptic weight associated between
the i-th input and the j-th neuron, rij represents the
inhibitory or excitatory pre-synaptic value between the i-th
input and the j-th neuron, and pj represents the post-
synaptic response of the j-th neuron. Both rij and pj can
assume values of {+1, -1}.
 In addition, the morphological perceptron uses a special
hard-limit transfer function, as shown in Equation 2:

: 0,1
1 if x > 0

0 else

f

x

→

⎧
→ ⎨

⎩

 (2)

Figure 1 shows a graphical representation of a two-layer
morphological neural network.

X1

X2

r21,1

 w
1

1,1

w
1 2,1

r11,1

r12,1

r11,2

r12,2

 w 1
1,2

 w1
2,2

r22,1

w2 2,1

,P11

,P12

,P21

 w 2
1,1

Figure 1. Two layer morphological perceptron architecture.

The articles presented by Sussner (Sussner 1998),

describe the different effects produced by changing
parameters of the morphological neuron. Figure 2a shows
the effect of using positive values as the pre-synaptic
values for a two-input morphological neuron, and the
corresponding classification region obtained is shown in
Figure 2b. Figure 2c shows the effect of using negative
values as pre-synaptic values in a morphological neuron,

and the corresponding classification region is shown in
Figure 2d.

V,+
+

+X2

X1
w1

w2

 a
V,+

-

X2

X1

-

w1

w2

c

-w1

-w2

X1

X2
C1

C0

 b
-w1

-w2

X1

X2
C0

C1

 d
Figure 2. (a) A morphological neuron with positive pre-synaptic
values and (b) the corresponding region defined for the class C0.
(c) A morphological neuron with negative pre-synaptic values

and (d) the corresponding region defined for the class C0.

Training by Indirect Encoding
The proposed algorithm identifies the number of necessary
neurons needed to perform the classification, the set of
weights, and the architecture for the morphological neural
network that can be used to classify patterns. In general, a
morphological perceptron can separate only two classes. In
order to classify multiple classes, a vector that contains a
binary pattern is assigned to each class, for example:

0

1
0

C ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

,
1

0
1

C ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 and
2

1
1

C ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A neural network may be trained for each entry in the
classification vector. Building a neural network to classify
all the test patterns for the first entry in the vector
correctly, requires to assign test patterns from classes that
have the value of 0 to a temporary class Ct0, otherwise to
the class Ct1. Those temporary classes will be used during
the training process of the neural network. Figure 3a shows
the set of test patterns, and their corresponding binary
vector. Figure 3b shows how all test patterns have been
regrouped into temporary classes. A multilayer
morphological perceptron is built in such a way that it will
be able to separate the patterns from the new classes Ct0
and Ct1. The output of that network is assigned to the first
entry in the binary vector. Figure 3c shows the test patterns
must be regrouped in order to build the neural network for
the second entry in the binary vector.

⎥
⎦

⎤
⎢
⎣

⎡
0
1

⎥
⎦

⎤
⎢
⎣

⎡
1
1

⎥
⎦

⎤
⎢
⎣

⎡
1
0

C1

C2 C0 Ct1
Ct1

Ct0
⎥
⎦

⎤
⎢
⎣

⎡
1
0

⎥
⎦

⎤
⎢
⎣

⎡
1
1

⎥
⎦

⎤
⎢
⎣

⎡
0
1

Ct0
Ct1

Ct1
⎥
⎦

⎤
⎢
⎣

⎡
1
0

⎥
⎦

⎤
⎢
⎣

⎡
1
1

⎥
⎦

⎤
⎢
⎣

⎡
0
1

a b c

Figure 3. (a) Set of test patterns and their corresponding binary
vector. (b) and (c) how the patterns are regrouped in temporary

classes.

The encoding of the network parameters is done using
an indirect encoding method, instead of looking for the
number of required neurons for the classification, the set of

weights for each neuron, the number of layers and
interconnections between neurons. The problem is restated
in such a way that the solution for this new problem results
in a simpler representation. Once a solution is found a
morphological neural network is built using the indirectly
encoded information.
 The example in Figure 4 shows a 2-dimensional space
example where the classification patterns are grouped into
clusters. The boundaries for these clusters can be
approximated by succession of rectangular regions where
the corners of each of these regions can be seen as the
decision boundaries of a morphological neural network, as
is shown in Figure 4. The same concept can be extended to
a higher domain space.

Class 0

Class 1

Figure 4. The region of the class C0 is approximated by a
succession of rectangles.

 Once these regions are defined, the corners can be used
as the decision boundaries in order to build a
morphological neural network able to classify patterns
between two classes. The indirect encoding of the problem
provides a solution with enough information that can be
used to rebuild a morphological neural network. An
algorithm is implemented to define the way this
information may be decoded to build the morphological
neural network. This process includes the way this
information is fit into the chromosome, and the crossover
and mutation techniques implemented to solve the
problem.
 The neural network architectures used to create the
hypercubes have the following restrictions: the neural
network architecture must have three layers, except in the
simple case in which all the patterns can be grouped using
a single hypercube, where it will have only two layers; the
last layer will have only one neuron, which uses the
minimum operator, this neuron is connected to all the
outputs from all the neurons of the second layer; all the
neurons in the first layer use the maximum operator and
one of the two neurons for each hypercube uses +1 for all
the pre-synaptic values and the other one uses -1.
Additionally, the weights for the connection in the layers
two and three will always be 0 and the post-synaptic value
for all the neurons in the neural network will be +1. Figure
5 shows a diagram of the architecture of the neural network
as described in this training algorithm.

Encoding of the Organism
The way the problem is encoded into the chromosome
affects the performance of the algorithm. Different from
other approaches, in this research nothing regarding to the
connection weights or the relationship between the
neurons, or the neural network architecture will be encoded

into the chromosome. Since the problem is encoded
indirectly, the chromosome keeps only enough information
to identify each of the test patterns that belongs to the class
Ct0. Inside of the chromosome or genotype, there are
groups or set of patterns, each of them represents clusters
of patterns. Each set must contain at least one pattern, and
no empty groups can be used.

X1

X2

+

0
 w

1
1,1

w
1 2,1

+

+

-

-

 w 1
1,2

 w 1
2,2

+
0

,+

,+

,+

+

0

Xm

Xn

+
0

 +

+

-

-

+
0

,+

,+

,+

+

0

,+
.
.
.

.

.

.

.

.

.

Figure 5. Shows how the morphological neural network

architecture may look.

 An example is shown in Figure 6, where the class Ct0
contains ten 2-dimensional patterns, identified as P#
enclosed by a square, where # is an integer number that
represents each pattern. The patterns that do not belong to
the class Ct0 are represented with circles. It is important to
highlight that only those patterns that belong to class Ct0
are encoded into the chromosome, using an integer value
that corresponds to each pattern. When the initial
population is generated, the patterns are randomly
distributed into the chromosome in no particular order and
the groups are randomly generated. In Figure 6b, shows
how the patterns may be coded in the chromosome, in
addition to the graphic representation of the hypercube that
encloses each pattern group defined in the chromosome.

After all groups are defined, the elements of each group
are used to define the limits of the hypercube that are used
as the decision boundaries for the morphological neural
network. A hypercube is defined for each group in the
chromosome in such a way that it includes all the elements
for that particular group.

x2

x1

5

5

P7

P3P8

P10 P6P1

P2

P9

P5

P4

Class Ct0

Class Ct0

a
P10 P3 P1 P8 P9 P4 P2 P6 P7P5 b

Figure 6. An example of how the patterns may be encoded into
the chromosome of a randomly generated organism.

Recombination
The crossover used in the implementation of the algorithm
selects a set of n elements randomly from different groups
defined in the chromosome of the first parent. The selected
elements are identified and their positions are exchanged in
the first chromosome, according to order they appear in the
second parent.
The process is repeated again, but this time the exchange
of elements is done in the second parent based on the order
they appear in the first parent.
Figure 7a shows the chromosome of parent 1, with 10
patterns coded on it. Also, Figure 7b shows the hypercube
for each group defined in the chromosome. Figure 8 shows
the chromosome of the second parent as it will be used for
the crossover process.

P10 P3 P1 P8 P5 P4 P2 P6 P7P9
a

x2

x1

5

5

P7

P3P8

P10 P6P1

P2

P9

P5

P4

Ct0

Ct1

b
Figure 7. (a) Chromosome of first parent and (b) the

corresponding set of hypercubes.

P3P1P5P9 P4 P2 P3P10 P8P7 P6 a

x2

x1

5

5

P7

P3P8

P10 P6P1

P2

P9

P5

P4

Ct1

Ct0

b
Figure 8. (a) Second parent used for the crossover and

(b) the corresponding set of hypercubes.

P10 P3 P1 P8 P5 P4 P2 P6 P7P9
a

P10 P3 P1 P8 P9 P4 P2 P6 P7P5
b

Figure 9. (a) First parent before the crossover and (b) the
resulting offspring.

Assume P9 and P5 are the selected elements from the

first parent, as shown in Figure 9a. Now these elements
must be identified in the second parent and the order is
exchanged according the way they appear in the second
parent. The final result after the elements were exchanged
is shown in Figure 9b. In order to obtain the second
offspring the process is repeated, but this time the selection
and exchange of the elements is done in the second parent
according to the order they appear in the first parent.

x2

x1

5

5

P7

P3P8

P10 P6P1

P2

P9

P5

P4

Ct1

Ct0

Figure 10. Hypercubes for the resulting offspring.

Mutation
The mutation operation on a chromosome, in the proposed
algorithm, consists of two possible operations: fusion of
two groups or division of a group into two new groups. In
the fusion of two groups, two groups are randomly
selected, and then all the elements of these two groups are
combined to create a new group. Using this approach
mutation is used to introduce changes in the way groups
were created before. The other groups in the chromosome
remain untouched. Figure 11a, shows an example of how
the groups are defined before the mutation and Figure 11b
shows the resulting chromosome after mutation. This
example of mutation shows elements from different
regions grouped into one set, combining those elements
that may be grouped together into a single hypercube.
Figure 12 shows the graphical effect of the mutation in the
hypercubes.

P4 P2 P5 P7 P10P8P1P9 P3 P6
a

P4 P2 P5 P7 P10P8P1P9 P3 P6
b

Figure 11. (a) Chromosome before mutation and (b) after
mutation using group division.

 Another example of a possible mutation operation is the
redistribution of the elements of a group into two different
groups. In this case, one group must be selected and all the
elements of the group are distributed randomly between the
two new groups. Figure 13a shows an example of a
chromosome before the mutation and after the mutation,

Figure 13b, where the elements of a group has been
distributed into two different groups. This mutation
operation helps to separate those elements that should not
be in the same group. Figure 14 shows mutation effect
graphically.

Reconstruction of the Neural Network
The information encoded in the chromosome will be used
to build a morphological neural network that is evaluated
later to calculate network fitness. The boundaries of the
hypercubes must be decoded to build the neural network.
Each group defined in the chromosome creates a
hypercube large enough to enclose all the test patterns
defined in that group. For each dimension in the
hypercube, the maximum and minimum values will be
used as the weights for the neurons that will define the
hypercube. Figure 15 shows an example of a chromosome
and a 2-dimensional space and the corresponding
maximum and minimum values for the first hypercube
defined in the chromosome.

x2

x1

5

5

P7

P3P8

P10 P6P1

P2

P9

P5

P4

Ct1

Ct0

a

x2

x1

5

5

P7

P3P8

P10 P6P1

P2

P9

P5

P4

Ct0

Ct1

b
Figure 12. (a) The effect in the regions defined by the groups in

the chromosome before mutation and (b) after mutation.

P3P1P5P9 P4 P2 P6P7 P8P10 P3
a

P3P1P9 P6P7 P8P10 P3P2P4P5 b
Figure 13. (a) Chromosome before mutation and (b) after

mutation by combining two groups.

x2

x1

5

5

P7

P3P8

P10 P6P1

P2

P9

P5

P4

Ct1

Ct0

a

x2

x1

5

5

P7

P3P8

P10 P6P1

P2

P9

P5

P4

Ct1

Ct0

b
Figure 14. (a) Graphical effect of mutation in the regions defined

by the groups in the chromosome before mutation and (b) after
mutation.

 The maximum values for each dimension of the
hypercube will be used as the set of weights for one of the
neurons that will be added in the first layer, as shown in
Figure 16a. All the pre-synaptic values for this neuron will
be +1, the post-synaptic value will be +1, and the
maximum operator will be the used by the neuron. On the
other hand, the minimum values for each dimension of the
hypercube will be used as the set of weights for the second
neuron that will be added in the first layer, as shown in
Figure 16b. All the pre-synaptic values for this neuron will
be -1, the post-synaptic value will be +1, and the operator
used by the neuron will be the maximum operator. These
two neurons will be connected to a new neuron in the
second layer. All the weights for the neuron in the second
layer will be 0, the pre-synaptic values will be +1, the post-
synaptic value will be +1, and the operator used will be the
maximum operator. Figure 17 shows the resulting neural
network for the first hypercube.

P3P1P5P9 P4 P2 P3P10 P8P7 P6
a

x2

x1

5

5

P7

P3P8

P10 P6P1

P2

P9

P5

P4

max_X2_h1

min_X2_h1

m
in

_X
1_

h1

m
ax

_X
1_

h1

Class Ct1

Class Ct0

b
Figure 15. (a) An organism encoded into a chromosome and (b)

the corresponding hypercube for the first group defined in the
chromosome.

X1
-max_X1_h1

-max_X2_h1
+

+
X2

,+

 a

X1
-min_X1_h1

-min_X2_h1

-

-
X2

,+

 b
Figure 16. (a) Upper-right corner of the hypercube and (b) lower-

left corner of the hypercube.

 -max_X1_h1

 -m
ax_X2_h1

+

+ ,+X1
 -min_X1_h1

-min_X2_h1

-

-X2 ,+

0

0

+

+ ,+

Figure 17. Neural network for a single hypercube.

The boundaries of the second hypercube will be used to
build another branch of the neural network that will be
added to the final neural network. Figure 18 shows the
region defined by the second hypercube enclosing all the
elements of the second group of the chromosome, and
Figure 19 shows the neural network that corresponds to the
network that defines that particular hypercube. As can be
seen in Figure 20, the first two neural networks are
combined with an additional neuron in the third layer. All
the weights for the last neuron will be 0, and the pre-
synaptic and post-synaptic values for this neuron will be
+1. The third layer morphological neuron will use the
minimum operator.

x2

x1

5

5

P7

P3P8

P10 P6P1

P2

P9

P5

P4

max_X2_h2

min_X2_h2

m
in

_X
1_

h2

m
ax

_X
1_

h2

Class Ct1

Class Ct0

Figure 18. Region defined by the second group in the

chromosome.

 -max_X1_h2

 -m
ax_X2_h2

+

+ ,+X1
 -min_X1_h2

-min_X2_h2

-

-X2 ,+

0

0

+

+ ,+

Figure 19. Resulting neural network for the second hypercube.

 -max_X1_h2

 -max_X2_h2

+

+ ,+

X1

 -min_X1_h2

-min_X2_h2 -

-

X2

,+

0

0

+

+ ,+

 -m
ax_X1_h1

-m
ax

_X
2_

h1

+

+ ,+

 -min_X1_h1

-m
in_X2_h1

-

- ,+

0

0

+

+ ,+

0

0

+

+ ,+

Figure 20. Final neural network for the chromosome defined in

Figure 15a.

Evaluation Function
Each organism must be evaluated according to the features
it has and only those organisms that have the desired
features will survive and mate other organisms in order to
transmit their own characteristics to the future generations.
 One of the most important factors to take in
consideration must be the number of misclassified patterns.
Another objective is to reduce the network complexity by
using the minimum number of neurons needed to classify
all the patterns correctly. This can be achieved by
determining the minimum number of hypercubes necessary
to enclose all test patterns. When a hypercube is added or
removed from the chromosome, the architecture of the
neural network changes. Changes are limited to the
architectural constrains previously established. New
neurons are added or removed from the first and second
layer of the network as a hypercube is added or removed,
respectively.
 The fitness function is defined in Equation 3:

()2

1()
1

f o
k l

=
+ ⋅

 (3)

where k is the number of patterns incorrectly classified.
The value of l represents the number of neuron groups
defined in the chromosome. Each neuron group consists of
three neurons as shown in Figure 19. The fitness function
allows to minimize the number of misclassified patterns as
well as the number of hypercubes or neurons used to solve
the problem.

Selection
A selection process is used to allow organisms who have
higher fitness to transmit their features with higher
probability than those who have a lower fitness. In order to
consider that an organism is able to transmit their
characteristics to future generations, the best 50% of the
population that meets the requirements is selected. This
accelerates the convergence reducing those members of the
population that are not desirable. Wheel roulette is used to
select the group of organism that will become parents for
the next generation. The probability of an organism to be
selected is equal to the fitness of the organism divided by
the total fitness of all the organisms.

Results
Several tests were conducted using 2-, 3-, and 4-
dimensional spaces. Experimental results show that in all
of the performed tests 100% of the patterns used for
training were classified correctly. Twenty organisms were
used as the initial population, and convergence was
reached typically in 100 iterations. However, network
topology improves with more iterations reducing the
number of redundant neurons while optimizing the fitness
function.

The algorithm was tested using the Iris Fished Data. The
Iris Fisher Data is a set that consists of 150 patterns
divided equally among three classes. Half of the test

patterns were used to train the system obtaining a 100%
correct classification. The other half of the patterns were
used to test the network obtaining up to 96% correctly
classified patterns.

Figure 21 shows an example of how the algorithm
selected the decision boundaries for a set of patterns
presented by Sussner (Sussner 1998).

Conclusion
This paper presented an indirect encoding evolutionary
training algorithm to obtain multiple layer morphological
perceptron parameters. The algorithm looks for a set of
network weights in a reduced space simplifying and
accelerating the convergence of the problem. The training
algorithm determines the necessary number of neurons,
using up to three layers, required to perform the pattern
classification. The evolutionary training allows to obtain
different architectural solutions for the same problem and
the fitness function searches for the smaller number of
neurons needed to solve the problem. The algorithm allows
the training of networks for multidimensional data sets
such as the Iris Fisher Data. Different solutions for the
same problem can be accomplished using this method.

1

2

3

4

5

6

7

C1

C0

Class C0

Class C1

3 4 5 6 7 8 9 10 11 12 13
Figure 21. Decision boundaries found by the learning algorithm.

References
Ritter, G.X., Beavers, T., 1999. Introduction to
Morphological Perceptrons, In Proceedings of the 1999
Artificial Neural Networks in Engineering Conference,
173-178. St. Louis, MO.
Ritter, G.X., Sussner, P., 1997. Morphological Perceptrons,
Proceedings of International Conference on Intelligent
Systems and Semiotics - A Learning Perspective,
Gaithersburg, Maryland.
Ritter, G.X., Sussner, P., 1996 An Introduction to
Morphological Neural Networks, Proceedings of the 13th
International Conference on Pattern Recognition, 709-717.
Austria
Sussner, P., 1998. Morphological Perceptron Learning, In
Proceedings of the 1998 Joint Conference on the Science
and Technology of Intelligent Systems, Gaithersburg, MD.
Yao, X., 1999. Evolving Artificial Neural Networks, In
Proceedings of the IEEE, 1423-1447.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1240 1240]
 /PageSize [612.000 792.000]
>> setpagedevice

