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Abstract 
When designing any type of fuzzy rule based system, 
considerable effort is placed in identifying the correct number of 
fuzzy sets and the fine tuning of the corresponding membership 
functions. Once a rule base has been formulated a fuzzy inference 
strategy must be applied in order to combine grades of 
membership. Considerable time and effort is spent trying to 
determine the number of fuzzy sets for a given system while 
substantially less time is invested in obtaining the most suitable 
inference strategy. This paper investigates a number of 
theoretical proven fuzzy inference strategies in order to assess the 
impact of these strategies on the performance of a fuzzy rule 
based classifier system. A fuzzy inference framework is 
proposed, which allows the investigation of five pure theoretical 
fuzzy inference operators in two real world applications. An 
additional two novel fuzzy-neural strategies are proposed and a 
comparative study is undertaken. The results show that the 
selection of the most suitable inference strategy for a given 
domain can lead to a significant improvement in performance. 

1. Introduction 
Fuzzy inference has been applied to numerous control and 
classification problems in order to provide the mechanism 
for aggregating the rule strengths in any type of rule-based 
system. In particular, the application of fuzzy theory to 
classification problems has generally proved successful by 
allowing overlapping class definitions which consequently 
results in less uncertainty. It is often recognized that the 
key to a successful fuzzy classifier is the correct 
determination of the membership functions through careful 
partitioning of the input-output space. Early fuzzy systems 
used human experts in the specified domain to define sets 
of membership functions and rules. However, there was no 
way to assess whether they were a correct representation of 
the sample training set. Recently the task of generating 
fuzzy rules without the use of domain experts has been 
investigated. Methods include the use of clustering 
techniques, genetic algorithms and neural networks 
(Bouchon-Meunier 1997;  Castellano and  Fanelli 2000; 
Lee and Narayanan 2003;  Zadeh 1992; Zadeh 1994).  
   Once a fuzzy rule-base has been determined, a way of 
conducting inference is required. Inference is a way in 
which a conclusion is drawn from a sample set of data and 
a collection of rules. Zadeh first formulated a set of 

inference operators, which could be applied to fuzzy sets 
(Zadeh 1965). These were union (represented by the 
Maximum operator) and intersection (Minimum operator).  
In most fuzzy systems, a variant of Zadeh’s original 
operators are often used, i.e. product composition for 
intersection and min for union (Zadeh 1992; Klir and 
Folder 1988; Lee and Narayanan 2003). Whereas time is 
often invested in tuning membership grades to give the 
system optimal performance, little thought is given to the 
selection of the most suitable set of inference operators for 
a specific application domain. 
Significant literature (Dubois and Prade 1982; Dombi 
1982; Klir and Folder 1988; Novak and Pedrycz 1990; 
Yager 1980; Zadeh 1965) has been published concerning 
the appropriate definitions for intersection and union of 
fuzzy sets.  The criterion for choosing a particular set of 
these inference operators over another includes examining 
the domain of the chosen application and the ability to 
capture formal properties.  Other issues to consider are the 
accuracy of the fuzzy model, the degree of simplicity and 
the type of hardware implementation. 
   This paper investigates a number of theoretical proven 
fuzzy inference strategies within the context of a data 
driven fuzzy rule based classifier system. In addition two 
novel fuzzy-neural inference strategies are proposed and 
compared with the pure fuzzy inference strategies. 

2. Components of a Fuzzy Rule-based 
Classifier  

Let F be a single output fuzzy classifier system in an n-
dimensional input space [0,1]n. The training set for the 
system consists of a series of input-output pairs, i. Then 
 
F= {(xi;yi) |  i = 1,2,..n}                                                 (1) 
 
Where   xi = (xi1, xi2…xin) is the input vector of the ith 
input-output pair and yi is the corresponding output.  

2.1 Fuzzification Interface 
Fuzzification is the process of converting crisp values into 
their fuzzy representations. The construction of a fuzzy 
rule base requires the identification of all attributes and 



outcome variables within the system which need to be 
represented as fuzzy sets.  Each attribute and variable is 
then decomposed into a series of fuzzy regions. Each 
region is represented by a fuzzy set with a linguistic 
identifier. They collectively are referred to as the term set 
for a particular variable.  The proposed fuzzy rule base 
classifier system can incorporate both linear and non-linear 
membership functions in order to define each fuzzy set. 
For the purpose of this work linear membership functions 
were used to enable the focus to be on establishing the 
gains that could be made by applying different inference 
strategies. Within this generalised framework, a Genetic 
Algorithm (GA) was used to search for these boundaries 
for each domain (Goldberg 1998). Figure 1 illustrates how 
it is possible for a GA to tune the positions and size of a 
fuzzy set  young, by directing points (a,b) with the 
fundamental constraint (a < b) to produce (a’,b’) for a 
linear increasing membership function. 

Figure 1.   
 
The membership functions of each rule were encoded onto 
a chromosome. Each gene represented a real value used in 
the determination of one membership function domain 
delimiter (dmi, dni). Hence one chromosome will represent 
one possible set of membership functions.  

2.2 Rule Base Generation 
The rule base consists of a series of fuzzy IF-THEN rules 
and a coterie of fuzzy sets.  A typical simplified rule has 
the form: 
 
R j1..jn : IF x1 is A1j1 ..... AND Xn is Anjn  THEN y is b j1.jn, 
Where  
       j1 = 1,2,...K1;     jn = 1,2,...,Kn 
      Where R j1..jn is the label of each fuzzy if-then rule,  
                 b j1..jn, is the consequent real number and  
                 K is the number of fuzzy sub-spaces.            (2)
  
   These simplified fuzzy rules produce a singleton as the 
output however the majority of fuzzy models usually 
produce a fuzzy region. In this proposed generalized 
framework the fuzzy rule base is constructed by producing 
a C4.5-type crisp binary decision tree (Quinlan 1993; 
Quinlan 2002) and transforming each tree into a set of 
rules using a one-to-one mapping. Initial membership 
functions are selected to be equivalent to crisp sets with the 

initial fuzzy classifier system becoming an alternative 
representation of the decision tree.  
   For example, Figure 2 shows a C4.5-type highly 
optimised crisp decision tree, which was generated, from 
the binary outcome Diabetes in Prima Indians data set 
(Sigillito 2002). Each leaf node has an associated leaf 
probability which represents the probability that an 
example reaching a leaf node will have the same outcome 
as the leaf.  The probability of the dominant outcome is 
defined   as 
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Figure 2.  

 
   In the one-to-one mapping the leaf probability becomes 
the associated rule probability for each given rule and after 
fuzzification the attribute boundaries identified in the tree 
rules cease to exist. The tree in figure 2 thus becomes as a 
one-to-one mapping for the following set of rules (Figure 
3) where h, f and g are attributes from the domain. 
 
R1: IF h is LOW and f is LOW THEN outcome is 1 with 
probability 0.94 
R2: IF h is LOW and f is HIGH THEN outcome is 1 with 
probability 0.53 
R3: IF h is HIGH and g is LOW THEN outcome is 2 with 
probability 0.52 
R4: IF h is HIGH and g is HIGH and f is LOW THEN 
outcome is 1 with probability 0.83 
R5: IF h is HIGH and g is HIGH and f is HIGH THEN 
outcome is 2 with probability 0.84 

Figure 3. 



 
 
2.3 Inference Mechanism  
The inference mechanism deduces new conclusions from 
the given information in the form of fuzzy IF-THEN rules.  
One form of fuzzy inference is called generalised Modus-
Ponens (Pedrycz, 1996) where 
 
Implication    : IF x is A THEN y is B 
Premise         :  x is A'____________ 
Conclusion   :  y is B'   
 
Where x and y are linguistic variables and A, A', B, B' are 
fuzzy sets representing linguistic labels over the universe 
of discourse, such as small, medium and large. 

2.4 Defuzzification Interface 
The defuzzification interface performs a mapping from 
fuzzy output of a Fuzzy Rule Based Classifier System to a 
non-fuzzy output. If the output is not a singleton, the 
process may involve performing an operation on an output 
fuzzy region in order to establish the expected value of the 
solution variable. 

3. Fuzzy Inference Framework 
The application of a selected inference strategy is formally 
defined as follows:  
A set of data S will consist of i-attributes {A1,A2....Ai} of 
domain D which are used to describe a single object. The 
process of learning from S involves a transformation 
function F which accepts as input S and produces a 
defuzzified outcome O, which is a mapping  
 
      F(S) → O                                                (4) 
 
Applying an inference technique to an existing rule base 
consisting of x rules involves the combination of V 
membership function values {µ1, µ2,...µv} of all root 
antecedents. Let T be a set of all possible outcomes 
{t1,t2,..ty} where y is the total number of outcomes. 
 
Fuzzy inference of S will involve an inference mechanism, 
IM which consists of an intersection function f∩, which 
takes in V and produces a set of minimum outcomes Min 
{Min1,Min2.......Minj} where j is the number of rules, and a 
union function f∪ , which combines output  from f∩ to 
produce a maximum membership grade O.  
 
Let f∩, f∪, O ∈ {0.0,1} consisting of real numbers, ℜ. 
 
• Applying the fuzzy intersection function, f∩ 
    This involves combining membership grades of the 
antecedent parts of all rules. 
 

f∩ ({µ1, µ2,...µv}) → Min {Min1,Min2...Minj}                  (5) 
 
• Applying rule probabilities   
Let P be a set of rule probabilities {p1,p2...py} where y is the 
total number of outcomes then 
 

f∩({µ1, µ2,..µv }) → 
Min{(Min1*p1),(Min2*p2)….(Minj*py)}              (6) 

 
Each rule probability is applied to the corresponding 
membership grade after the intersection operation. 
 
•  Applying fuzzy union function f∪ 
The fuzzy union operator is applied in-order to combine 
the membership grades from all rules in order to produce a    
representative final grade of membership. 
 
f∪ ({(Min1*p1),(Min2*p2)......(Minj*py)}) → O                (7) 
 
O is the fuzzy singleton used to determine the success of a 
correct classification having taken place for S. 

3.1 Pure Fuzzy Inference Operators  
For the purposes of this paper, five contrasting fuzzy 
inference techniques (Table 1) have been selected to 
combine grades of membership generated by linear 
membership functions for each attribute featured within 
the rule base. Zadeh’s min-max technique is often used as 
the standard benchmark inference technique in many fuzzy 
systems.  However, it is sometimes criticized for not 
allowing interaction of membership grades (Zadeh 1965, 
Klir and Folder 1988). If the fuzzy subsets are restricted to 
crisp sets then the operators become the conjunction and 
disjunction of classical set theory. This is known as the 
correspondence principle. As the set tends towards 
fuzziness, different values are obtained for the min and 
max.  
   Yager uses parameters: wu, wi ∈ [0,∞] in order to soften 
the union and intersection operators and in order to make 
them more adaptable (Yager 1980). For each variation of 
the parameters wu and wi a different fuzzy intersection or 
union is obtained. In essence w determines the strength of 
the operation carried out. Dubois and Prade also offer a 
general class of fuzzy connectives and make the 
assumption that the grade of uncertainty of a union of 
mutually exclusive events can be obtained by combination 
of grades of uncertainty of each of the events (Dubois and 
Prade 1982). The strengths / weakness are again 
determined by two operators αi, αu where αi, αu∈[0,1].  
   Two other parameterised inference operators that also 
offer contrasting weighting schemes are those proposed by 
Hamacher (Klir and Folder 1988) and Dombi (Dombi 
1982). Table 1 defines each set of fuzzy inference 
operators which are investigated. 
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Table 1. Fuzzy Inference Techniques 

3.2 Back-Propagation  
Back-Propagation is probably the most commonly used 
and well-documented FFNN (Feed-Forward Neural 
Network) training algorithm (Plaut, Nowlan and Hinton 
1986; Sethi 1990). The problem of training a BP-FFNN 
involves finding a mapping that approximately transforms 
all the input vectors in the training set into their associated 
class.  This is broken down into a set of transformation 
sub-problems that must be solved at each layer of neurons.   

Firstly a FFNN’s ability to approximate a function 
mapping of arbitrary complexity through consecutive 
spatial transformations is defined.  These transformations 
are implemented using decision regions constructed from 
the hyperplanes of neuronal layers. A set of data T consists 
of a number p of tuples of arity 2, t(v,c) where v is a set of 
n attributes {I1,I2,..,In} from the domain, from which T is 
taken, that describe a single object or occurrence and c is 
the associated class or set of outcomes {ζ1, ζ2,.., ζm}. The 
task of learning from this data set can be considered as 
finding an approximation F’, of a mapping function F 
which transforms any set of attributes from the domain v, 
to its corresponding set of outcomes c. The function F may 

be linearly inseparable and thus require multiple layers of 
neurons to approximate it.  In this case the transformation 
is broken down into simpler mapping functions where each 
layer of neurons provides a further abstraction until the 
overall mapping is accomplished. 
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Figure 4. Mapping Functions in a Layered BPNN 
 
Each layer of the network above implements a mapping 
function fω which performs a transformation on the 
vectors fed to its neurons.  The composition of these 
functions F’, approximately maps all the subsets of input 

vectors in the training set, to the 

corresponding output vectors O  where 

each . 
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  At each iteration BP attempts to improve on each of the 
transformations fΩ to f1 (Figure 4) individually and in that 
order.  Each error-correcting step is based on the error at 
the outputs of the current layer ω, of neurons and the 
outputs of the previous layer ω-1.  The weights are 
adjusted so as to improve the transformation fω of the 
previous layer’s outputs (the domain D) to the desired 
outputs at the current layer (the range R) and thus reduce 
the error term for each training pattern.  
 
3.2.1 Fuzzy-neural Inference Operators 
In this section, a novel hybrid strategy is proposed to 
combining membership grades uses a fuzzy-neural 
inference process. This strategy is based around the 
selection of a fuzzy intersection operator from a predefined 
fuzzy inference technique (such as those defined in Table 
1) and then applying the outputs generated at each leaf 
node to a Back Propagation Feed Forward Neural Network 
(BP-FFNN). To summarise, the Fuzzy-Neural inference 
approach requires:  
1. For each input record that is applied to the fuzzy rule 

base, determine the membership grades of each rule 
antecedent. 

2. Apply a pre-selected fuzzy intersection operator to 
combine values to produce resultant membership 
grades. 



3. Use the resultant grades as input into a BP-FFNN to 
provide the classification for any given case.  

3.3 Optimisation of Inference parameters 
A GA was used to optimize the weights of the union and 
intersection operators for each of the parameterised 
inference techniques. In order to accomplish this, the 
chromosome structure used to encode the membership 
functions (section 2.1) was extended to allow simultaneous 
optimization of fuzziness and the strengths of the inference 
operators. 

4. Experimental Results 

4.1 Domain  
Two real world binary outcome data sets known as 
‘Mortgage’ (Attar, 2002) and ‘Diabetes in Pima Indians’ 
(Sigillito, 2002) will be used for the purpose of this 
investigation. These two data sets were chosen due to their 
varying size and complexity. The Mortgage data set 
investigates the possibility of a person acquiring a 
mortgage and comprises 8611 records featuring 11 discrete 
and 14 continuous attributes. (4306 representing a Good 
Risk and 4305 depicting a Bad Risk). The second set, 
known as ‘Diabetes in Pima Indians’, investigates whether 
Pima Indian patients show signs of diabetes, and comprises 
of 768 records featuring 9 continuous attributes (500 Class 
1, indicating that a person has diabetes, 268 Class 2, which 
represents a person who shows no signs of the disease). 

4.2 Methodology  
Each technique comprises of two operators, fuzzy union 
and fuzzy intersection whose strengths of application are 
determined by two parameters, p∪ and p∩ respectively. For 
example, every value of p∪is will generate a different fuzzy 
union for each inference strategy, is. The aim of these 
experiments was to explore the effect of p∪is and p∩is for 
each inference technique when applied within a real world 
application. For each data set, ten complete 10-fold cross 
validations were carried out. For each data set, the training 
cases were partitioned into 10 equal-sized blocks with 
similar class distributions. Highly optimized binary C4.5-
type trees were first created using the statistical chi-square 
pruning technique with a significance level of 0.1%. Using 
a one-to-one mapping each tree was transformed into a 
fuzzy rule base.  Each dataset in turn was then used as test 
data for the crisp and the five pure fuzzy inference and the 
two fuzzy-neural strategies generated from the remaining 
nine blocks. Membership grades would then be combined 
firstly using pure fuzzy inference and then using the 
Fuzzy-Neural inference approach. For the purpose of 
experimentation, Zadeh’s and Yager’s intersection 
operators were used in the fuzzy-neural inference strategy. 
These pure inference operators were chosen to investigate 

the effect of both non-parameterised and parameterised 
operators when combined using a BPNN. 

4.3 Results 
Each table shows firstly, the classification results obtained 
for the crisp classifier i.e. when initially the membership 
functions are selected to be equivalent to crisp sets and 
thus no fuzzification is applied.  Secondly the results 
obtained when using each of the five pure fuzzy inference 
strategies defined in Table 1, and finally the results of 
using two different combinations of Fuzzy-Neural 
inference (FNIA).  
 

INFERENCE %AVG 
TEST 

% 
CLASS 1 

%CLASS 
2 

Crisp Classifier 70.0 89.0 52.0 
Yager 74.3 73.0 75.5 
Zadeh 74.1 81.6 66.7 
Dubois/Prade 75.2 72.9 77.4 
Hamacher 74.1 72.1 76.1 
Dombi 74.5 71.7 77.7 
FNIA – Zadeh 76.0 81.0 71.0 
FNIA – Yager 75.1 77.2 73.1 

Table 2: Diabetes 

 
INFERENCE %AVG 

TEST 
% 

CLASS 1 
%CLASS 

2 
Crisp Classifier 67.0 70.0 64.0 
Yager 71.4 78.4 64.4 
Hamacher 71.2 72.3 69.9 
Dombi 71.2 77.7 67.0 
Dubois/Prade 70.7 74.2 67.3 
Zadeh 70.2 71.2 69.2 
FNIA – Zadeh 70.0 78.2 61.8 
FNIA – Yager 70.8 72.4 69.2 

Table 3: Mortgage 

4.4 Evaluation 
The results in tables 2 and 3 show that the choice of 
inference technique and the strength to which it is applied 
has an effect on the performance of the fuzzy rule-based 
classifier. Generally, increasing p∪is resulted in a stronger 
fuzzy unions whilst increasing p∩is gave weaker fuzzy 
intersections. For each technique it is generally found that 
weak unions coupled with strong intersections gave the 
best overall performance. Deviations from this pattern 
caused a decline in the accuracy. The selection of 
parameter values for each inference operator by the GA 
was generally found to be domain dependent, however 
both Hamacher’s and Dubois and Prade’s techniques gave 
identical parameter values on both data sets. It is not 
however, possible to state whether these values will be the 



same for any other data domains. The results in Tables 2 
and 3 show significant improvement in the classification 
accuracy has been achieved by using each inference 
strategy within the fuzzy rule-based classifier system. 
Fuzzification of rules alone provides a reasonable 
improvement that is reflected in the results obtained using 
Zadeh’s operators with an average 4.1% (Diabetes) and 
3.2% (Mortgage) increase respectively when compared 
with a crisp classifier. The results show that by focusing on 
optimizing the strength of application of both the union 
and intersection of the parameterised operators the 
performance of the classifier system can improve further. 
The two new strategies of fuzzy-neural inference also 
show improvements, but the issue of transparency in the 
decision-making problem remains an issue. 

5. Conclusion 
This paper has presented a number of strategies for fuzzy 
inference within rule based classifier systems. A 
generalized framework for fuzzy inference was proposed 
which enabled the testing of seven strategies on two real 
world data sets. A GA was used to determine a number of 
high performance membership functions and 
simultaneously optimise the strength controlling union / 
intersection parameters for each specific inference 
technique. The results clearly show that the choice of 
strategy can improve the overall performance of the 
classifier and justifies the need to investigate the selection 
of inference parameters when designing fuzzy rule based 
systems.  
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