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Abstract 
Many dramatizations have depicted a fully automated home 
living environment, where actions and events are 
understood or even anticipated. While the realization of 
such environments requires innovations on many fronts, our 
current research focuses on the development of an active 
database subsystem to respond to events in a home. The 
architecture implements the well-known event-condition-
action (ECA) paradigm within an active data layer that is 
abstracted from the detection and processing of raw data 
sources. Our goals in this work are to develop and analyze 
the effectiveness of the active database system in a smart 
home system being developed as part of a larger 
collaborative effort. The knowledge encoded in the system 
is based on significant domain modeling, including analysis 
of inhabitant-device data collected from actual and 
simulated home environments, and standard knowledge 
acquisition techniques. The current system is composed of a 
Java framework for event management, an underlying data 
model to store transient and persistent data, and a JESS rule 
base to represent condition and actions. Interaction between 
the subsystems is maintained through an event manager 
responsible for interpreting the semantics of event execution 
and recognition.  

Introduction 
Smart home environments have the potential to enhance 
home living whether through reducing cost and effort or 
supporting the elderly or handicapped. While the 
realization of such environments requires innovations on 
many fronts, our focus here is on the analysis of event 
types and the development of an active database subsystem 
to capture and respond to events in a home. To date, the 
application of such systems to smart homes has been 
limited.  

The Event-Condition-Action (ECA) paradigm in active 
databases detects event patterns, evaluates conditions 
under which the event occurs and selects appropriate 
actions. A relational database trigger is perhaps the most 
familiar use of the ECA paradigm. Rules are defined that 
monitor specific data updates and take appropriate actions. 
For instance, a bank database trigger might raise a flag 
when the current funds available drop below a certain 
value. In such a case, a withdrawal would constitute the 

triggering event, the condition would consist of a 
comparison of values and the action could be something as 
simple as sending an alert to the bank manager. 

Our system employs a Java control framework, a 
relational database, and a rule base for representing 
complex conditions and decisions. Active behavior is 
based on the Event-Condition-Action model and is 
implemented in JESS (Java Expert System Shell). A Java 
event dispatcher is used to manage event information, 
communicate with the rule base, and execute appropriate 
actions when necessary. The event dispatcher takes 
advantage of the Java Reflection API to reference objects, 
fields and methods at runtime. Objects and methods can be 
reflected (initiated) at runtime from within the rule base to 
dynamically construct appropriate actions. Event 
processing is performed independently of underlying 
hardware. A simulator that currently supports a subset of 
Smart Home events provides the input required to test the 
system. SOAP and CORBA provide interfaces between 
both Java and C++ components of the smart home system. 

In this article, we report on the development of our 
active database system that is one component of a 
collaborative effort to create a distributed multi-agent 
smart home. First, we discuss related work in smart homes 
and active databases, and summarize the architecture of the 
smart home within which our system fits. Next, the active 
data model is presented, including event types, 
representation, and persistence. Architecture and 
implementation issues are described, followed by 
conclusions and discussion of future work. 

Related Work 
Smart Homes 
Smart home architectures typically adopt a layered 
architecture approach, with the database separating lower-
level processing (e.g., sensors) from decision-making 
components. Database implementations may be centralized 
or distributed, and are often based on a relational or object- 
relational model.  

In the Microsoft Easy Living Project (Microsoft, 2002), 
a world model database describes computing devices, 
people and their personal preferences, services and the 
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home geometry such as rooms and doorways. The database 
serves as an abstraction layer between sensors and 
applications that use data from sensors. The disadvantage 
of the relational DBMS used is speed and the awkwardness 
of representing some knowledge as relations.  

Rule bases are common in intelligent environments. The 
Intelligent Home Project (Lesser, et al, 1999) achieves 
goals by analyzing the methods of achieving them and 
taking the best action, based on a set of rules. Ambiente (i-
LAND, 2002) uses rules to allow a room to reconfigure 
itself to the state that the user last had it in.  

Active Databases 
Active database capability most frequently uses triggers 
that execute actions based on the Event-Condition-Action 
(ECA) Model (Elmasri and Navathe, 2003). Events are 
specified actions detected by the system that are tested for 
specified conditions that, when true, trigger one or more 
actions to be taken. In most relational DB systems, rules 
are defined to detect certain data manipulation operations 
such as inserts, updates and deletes. Object-oriented 
database management systems (OODBMS) such as 
Sentinel (Chakravarthy, 1997) consider any operations on 
an object as a possible event. Snoop (Chakravarthy and 
Mishra, 1993) defines an expressive language for 
representing active capability, most prominently in 
Sentinel. Ode (Gehani, 1992) is another active database 
developed by AT&T Bell Laboratories. 

Active database research has examined both integrated 
solutions and adding an active layer that resides above 
underlying data sources. Alert (Schreier, et al., 1991) is a 
simple architecture that provides active capabilities to SQL 
queries. ECAAgent (Li and Chhakravarthy, 1999) provides 
a seamless approach that emphasizes the ECA paradigm. 
Finally, (Desari, 1999) reports on an event detection 
framework on which our work is based. 

While most research concentrates on centralized models 
with data and events in a single domain, complex 
applications such as smart homes can benefit from a 
distributed architecture. The Global Event Detector (GED) 
(Chakravarthy and Liao, 2001) detects events in a 

distributed environment through a client/server 
architecture that minimizes message communication and 
allows for event registration and notification. GED extends 
the active capabilities of the Sentinel active OODBMS. 
Other systems include SRI’s Open Agent Architecture 
(OAA) (Martin, 1999) that supports cooperation of 
software services within autonomous agents, actively 
matching agents with user requests, and DeeDS (Andler, 
1996) that implements active features in a real-time 
distributed database system. 

An active data layer in a smart home needs to not only 
react, but also predict events and inhabitant behaviors. 
Many of the rules and events in a home environment and 
in active systems in general are dependent upon time. For 
recording a favorite television show or starting the 
sprinkler system, techniques from temporal databases 
(Dittrich and Gatziu, 1993; Ramamritham, 1996) can be 
employed. 

Smart Home Architecture 
The smart home effort for which we are exploring active 

DB issues is focused on developing a distributed, multi-
agent, adaptable home environment (Figure 1) (Cook, 
2001). Sensors monitor the environment and, if necessary, 
transmit data to other agents through the Communication 
layer. The data is recorded in the Information layer, 
learned concepts and predictions are updated as needed, 
and the Decision layer is alerted of the presence of new 
data. During action execution, information flows top 
down. The Decision layer selects an action and relates the 
decision to the Information layer to update the database 
and send a message to the Communication layer that routes 
the action to the appropriate effector to execute. If the 
effector is actually another agent, the agent receives the 
command as perceived information and must decide upon 
the best method of executing the desired action. A 
specialized interface agent provides interaction capabilities 
with users and with external resources such as the Internet.  
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Figure 1. Agent Architecture.



 
Example Scenario 
The smart home needs to detect, predict and respond to 
inhabitant behaviors. Consider an example in which an 
inhabitant wakes up at 6:30, checks the weather on the 
computer, showers, dresses, gets a cup of coffee while 
watching local news, gets into the car, and leaves for work. 
The following actions could be taken by the smart home: 

• At 6:30, turn on the shower so water is warm by the 
time inhabitant is done reading the weather. 

• Start the coffee pot 5 minutes into inhabitant's shower 
so coffee is fresh and ready by the time inhabitant is 
done dressing. 

• Turn on TV to local news as soon as the inhabitant 
enters the kitchen. 

• Turn off all lights in the house once inhabitant has left 
for work and set the security system. 

For this scenario, the active DB must receive 
notification of a number of events and respond 
appropriately. To predict future behaviors, inhabitant 
behaviors must be recorded.  

Knowledge acquisition and domain analysis of the 
required events, conditions and actions has been performed 
in three ways: 1) analysis of actual and simulated 
inhabitant behaviors and device interactions, 2) interviews 
and observations of typical inhabitant behavior patterns, 
and 3) analysis of output from inhabitant behavior 
predictors developed within the overall smart home 
project. (Cook, et al, 2003). 

The Active Database 
The active database design is patterned after that described 
by Li and Chakravarthy (1999) in which a mediator uses 
ECA rules to interface with a standard DBMS. Such an 
approach overcomes restrictions of trigger capabilities in 
existing systems, such as lack of composite event 
specification and restriction of a trigger to a single table. A 
relational DBMS affords many built-in benefits for 
maintenance, concurrency control, and transaction 
management. The separation of active capability from the 
underlying database system provides a number of benefits 
including extensibility, scalability, and portability (Li and 
Chakravarthy, 1999).  

In this section we describe event types, data 
representation, and storage, with further details of the 
current version given in the implementation section. The 
phrase “external agent” used in this section refers to smart 
home agents within the complete smart home software that 
interact with the active database system.  

Events and Action Types  
Typical home events can be categorized. Four key event 
types are 1) data manipulation, 2) temporal, 3) exception, 
and 4) behavioral. Data manipulation events correspond to 
standard update queries in relational databases. For 
example, in predicting television-viewing patterns by an 

inhabitant, an external agent (e.g. a smart remote control) 
would gather data such as channel, duration and genre of 
what was viewed. Temporal events constitute events that 
occur based on a specified pattern with time. This category 
may include events that occur periodically within a 
schedule, or events that occur at a specific time. For 
example, inhabitants may want the living room 
temperature set at 70 degrees at 7:00 a.m. when inhabitants 
awaken every morning. In contrast, an event where 
recording of a television show occurs at 8:00 p.m. on 
Sunday, February 10, 2003 describes an instant event.  The 
first example relies on a specified schedule, while the 
second event relies on recognizing a specific instance in 
time. In the event of failures or unexpected behavior, 
certain exception events are raised, and actions must be 
carefully designed to handle these conditions. One 
example of an exception event is a power failure. What 
actions should the DBMS take when power is restored? 
Finally, behavioral events include actions taken by a 
particular inhabitant. Events in this category frequently 
include events that require recording for interpretation by 
the decision layer. For instance, the system may record 
when the children arrive home from school, or when 
dinner for a particular household is typically served. 

Temporal and behavioral events and the associated 
actions that should be taken have been our primary focus. 
Critical issues are the ordering and timing of action 
execution. Actions may be a single device change or a 
composition of actions for which an order of execution 
must be guaranteed. In either case, how long an action 
takes to complete and whether it was successful must be 
considered.  

Persistent and Transient Data 
The data and storage types are based on whether the data 
needs to be retained over time. Persistent data such as 
object location and name are maintained in a relational 
database. Transient data regarding current state, including 
sensor readings, on/off device status, and inhabitant 
locations, is maintained in the knowledgebase, with 
notifications sent to appropriately registered agents. 
However, specific events that produce transient data may 
have a useful purpose after a particular session has ended.  
For example, an inhabitant turning the television on in the 
late afternoon is useful for predicting future behaviors and 
thus needs to persist.   

Device and Inhabitant Representation 
An entertainment class contains devices such as 
televisions, VHS recorders, and DVD players that 
generally allow direct control assuming a reliable physical 
layer for transmitting, for example, IR signals, between the 
software and these devices. JINI (Jini, 2003) and JavaTV 
(JavaTV, 2003) could be used to support interaction with 
this class of devices. 
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of data encountered. First, the event interface is 
responsible for event processing, whether the input is 
derived from sensors or software triggers. Furthermore, the 
event interface resolves semantics of an event such as the 
event type (composite/primitive), coupling mode and 
execution mode (sequential, repetition, etc).  Another 
significant responsibility of the event interface is proper 
management of Jess facts, retracting and updating when 
necessary.  

From the event interface, data moves toward the active 
layer, which maintains object and environment status data, 
evaluates Jess rules and dispatches additional events 
accordingly. Operations from the active layer not only 
encompass internal data manipulation events, but also 
external environment operations such as switching off 
lights.   

Below the active layer resides the persistence layer, 
which storages long-term data.  Any updates such as 
logging of a television may be pre-specified and executed, 
or may be a single data manipulation operation to long-
term data such as location.  

The active layer is implemented in Java and Jess and the 
persistent layer in Postgres. Java supports multi-platform 
development and deployment, including handheld (Java 
ME) and entertainment (JavaTV) devices. Jess provides 
the rules to express conditions and actions, and is 
expressly designed to integrate with Java. Postgres is 
robust, readily available, and supports object extensions to 
base relational model.  

The persistence mechanism, which provides seamless 
interaction between the relational database and the active 
architecture, uses the Castor API. Castor provides binding 
of Java objects with data from relational database tables. 
Although Castor has a built in mechanism to deduce object 
information using reflection, an XML mapping file is used 
to bind object fields to relational database columns. 
Persistent device objects are currently bound at system 



 
initialization using Castor. Device updating, using 
something like JINI, is planned for a future version. 

Events 
Primitive event handling depends largely upon the 
capabilities of the Java virtual machine and closely 
resembles an earlier approach (Dasari, 1999).  Events that 
are available to the Smart Home are loaded through the 
classpath environment variable, which includes the 
supported objects home devices. Each class is recursively 
traversed to determine supported methods, regardless of 
scope. The goal is to select appropriate method objects 
available given a message.  Primitive event input can occur 
directly through a user interface, while composite events is 
accomplished through XML input.  Generation of events 
occurs through a testing user interface, where method 
signatures are selected, followed by the specification of 
input parameters if applicable. An approach to interfacing 
with underlying hardware components would require 
detecting event occurrences at the hardware level, 
triggering the appropriate Java method, which is then 
recognized by the expert system. 

Events, both primitive and composite, are represented as 
standard Java objects with a corresponding Jess fact that is 
asserted when an event runs. The PrimitiveEvent must 
maintain a reference to the invoking object, the method 
object to be invoked and an array of parameters, which are 
cast appropriately before execution. Events are prioritized 
based on coupling mode and execution order, which will 
be discussed further. The Jess template for a simple event 
is shown below. 
(deftemplate PrimitiveEvent  
   "The basic template for a primitive event" 

   (slot event)  ;Java Method object that is a primitive event 
   (slot parent) ;object reference to the calling object 
   (multislot params); store the parameters 
   (slot firedTime); when the method was fired 
   (slot priority) ;priority of the event )) 

An event is processed by the EventDispatcher, which 
analyzes the semantic properties of the event. Data is 
extracted to generate a Jess fact. For PrimitiveEvents, fact 
assertions simply set the appropriate slot values to the 
corresponding object attribute value. CompositeEvent facts 
are generated dynamically by the expert system. Event 
patterns, which constitute composite events require 
detection in the form of a Jess rule, with the right hand side 
of the rule asserting a CompositeEvent fact with references 
to other event IDs. Parameter passing is modeled after that 
described in (Dasari, 1999). Parameters are maintained in 
arrays as general Java objects obtained from input. 
Primitive data types are represented as literals, while 
object parameters are referenced through a unique ID. 

Composite events, which are composed of other events 
both primitive and composite, inherit other attributes such 
as name and id from the event superclass. Specification of 
composite events and the semantics of composite events 
have been well researched and generally many different 

composite event patterns exist. However, for the purpose 
of home events, typical events can be represented in the 
categories presented earlier.  

Whereas most database transactions occur 
instantaneously, events in home living do not necessarily 
terminate in a reasonable period of time. For instance, a 
channel surf event, which cycles through the channels in a 
loop may not end until some sort of user intervention has 
occurred. Hence, each event received by the event 
dispatcher for execution is arranged such that all expert 
system fact updates, database transactions and method 
execution occur in a separate thread.  The effect of this is 
platform dependent and may pose problems in single 
processor systems (Holub, 2000).  

Scheduled tasks are implemented as Java timer tasks, 
and the job of scheduling is left to the virtual machine. 
Polling temperature sensors is one example of such a task. 
Although this works for simple types of polling patterns, 
not all events run on a regular, scheduled pattern used by a 
Java TimerTask. For instance, consider the monitoring of 
gas levels in the house, where the carbon monoxide levels 
were taken every ten minutes. However, suppose an 
increase occurred, causing the responsible agent to ask for 
readings at faster intervals than ten minutes.  Hence, the 
scheduling is a function of the results of the event itself. In 
particular, the monitoring of human behavior, such as 
human motion and location is difficult to monitor in a 
regular fashion. This is an area still under investigation.  

Rules 
Rule evaluation and event detecting are accomplished 
using the Jess API (Jess, 2003). The rules left hand side 
corresponds to triggering events and conditions, which 
cause invocation of actions and possibly new events to be 
generated. Rules can be predefined or, via the 
reinforcement learning component in the decision layer, 
modified dynamically.  

A recent update to Jess includes rule listeners that 
provide the ability to listen for rule firings when the 
corresponding events and conditions have occurred. The 
current system takes advantage of this feature, and actions 
are written in Java code. All actions to be executed must 
extend the generic ECAAction class, which provides the 
framework for all actions that appear on the RHS of Jess 
rules. Furthermore, these actions are themselves a type of 
event, either primitive or composite, and can trigger the 
firing of other rules. Again, ECAActions are executed 
using the event dispatcher.   

We are exploring two improvements in this area that 
would enhance usability and performance. First, the 
association between rule and action is hard coded within a 
generic JessListener, which listens for the firing of any 
rule. A better method of association between rules and 
actions is desired. Secondly, and outside the scope of the 
current project is the ability to compile actions into Java 
code. For example, many actions involve turning on or off 
something. 



 
Preliminary evaluation of system performance for 

simple and composite event execution has been performed 
on a standard MS Windows 2000 PC. For simple events, 
the time between event invocation and recognition rule 
was measured using a maximum of 1000 rules and 
250,000 facts. Peak target rule recognition rate was 20 
milliseconds. For composite events, the maximum number 
of child events was 500. Similar to the first experiment, 
these limits are affected by hardware specifications. 

Conclusions and Future Work 
We have presented an active database subsystem to 
respond to events in a home that is based on the event-
condition-action (ECA) paradigm. The main contributions 
of this paper are the domain analysis and identification of 
issues peculiar to intelligent environment domains, and the 
development of a prototype active database system for a 
multi-agent smart home that is based on inhabitant 
behaviors in actual homes. The active database is a 
necessary component to support reasoning and learning 
within the smart home that we are developing in 
partnership with another university. Storage, retrieval and 
relatively simple decision making is supported with the 
active database subsystem.  

Current work indicates promise in the approach. In 
particular, the seamless interaction between the rule base 
and the event dispatcher has generally led to accurate 
evaluation of rules and execution of events.  It remains to 
be seen how the system will react as temporal sequences 
and composite events are incorporated. A simulator that 
currently supports a subset of Smart Home events provides 
the input required to test the system. 

Three possible avenues for further work are 1) moving 
from a simulated to physical data environment, 2) 
exploring the use of a distributed processing environment 
designed to support inference systems, as in (Hannon, 
2002), and 3) adding an emotion-based control mechanism 
(Hannon, 2003) to model inhabitant’s emotional states and 
respond appropriately via biologically inspired decision 
making.  
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