
Combining Global and Local Ontology handling in a Multiagent System

Ramon F. Brena and Hector G. Ceballos
Tecnologico de Monterrey, Mexico

{rbrena, ceballos}@itesm.mx

Abstract

Ontologic knowledge is getting more and more important in
agent-based systems, and its handling is becoming crucial
for successful applications. But placing all the ontology-
handling capabilities in each of the system’s agents could
make them too heavy. We propose a combination of local
and global ontology handling, where part of the ontology is
handled locally, using a “client component”, and the rest of
the ontological knowledge is handled by an “ontology agent”,
which is accessed by the other agents in the system through
their client component. We propose specific methods for rep-
resenting, storing, querying and translating ontologies for ef-
fective use in the context of the “JITIK” system, which is a
multiagent system for knowledge and information distribu-
tion. We report a working prototype implementing our pro-
posal.

Introduction
It is widely accepted that communication is an absolute re-
quirement for many multiagent system applications. This re-
quires, of course, low level facilities for physical connectiv-
ity as well as higher level internet protocols and even inter-
agent communication protocols. Even if these are not com-
pletely solved problems, what is right now most challenging
is taking into account themeaningof agent messages. But
this is one crucial aspect that we have to deal with in order
to build realistic open agent-based applications (Nwana and
Ndumu 1999).

The term ontology refers to a definition of meanings
for terms used in inter-agent communications (Wooldridge
2002). Ontologies allow to define concepts and their re-
lations, properties, operations, and the like in a structured
fashion. Open standards like DAML- OIL(Conolly et al.
2001), or more recently OWL(Dean et al. 2003) allow to
publish ontologic knowledge in a way understandable both
by humans and machines.

Even if a representation standard is set, it remains to be
decided where to put each piece of knowledge to be rep-
resented. Some efforts like the Cyc project (Lenat 1993)
suggest to build huge centralized repositories of encyclope-
dic knowledge. Others considered this impractical in terms

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

of performance and robustness, and prefer decentralized ap-
proaches (Weichhardt 2002). But handling distributed on-
tologies generates new difficult problems as well, namely:
1) Where to put or get pieces of knowledge -i.e. how to dis-
tribute the knowledge; 2) How to maintain some degree of
coherence among the different pieces -or even versions- of
ontological knowledge. Further, independent partial ontol-
ogy repositories could evolve independently and diverge.

The method we will present in this paper is intended to
be used in the context of the JITIK project (Brena et al.
2001). JITIK -which stands for “Just-In-Time Information
and Knowledge”- is a multiagent-based system for dissem-
inating pieces of knowledge among the members of a large
or distributed organization, thus supporting a Knowledge-
management (Liebowitz and Wilcox 1997) function. Al-
though our ontology-handling proposal was primarily in-
tended for its application in the JITIK system, which im-
posed some architectural as well as other restrictions, our
proposal is applicable in principle to a wide range of agent-
based systems.

Our approach

In this paper we propose a solution to one of the aspects
of this situation: we propose a method for combining cen-
tralized with distributed ontologies. We consider a central
repository encapsulated in an “ontology agent”, (OA) pro-
viding answers to questions about the ontology to the other
agents in the system. But besides that, we endow each agent
in the system with a “client ontology component” (COC)
which gives it basic ontology handling capabilities. This ar-
rangement works in the following way:

• Standard agents start with a subset of a common ontology,
which is loaded at startup from an internet resource.

• Standard agents use their local ontologies, handled by
the COC, as long as the local knowledge suffices for the
agent’s activity.

• When further knowledge is required -for instance, an
unrecognized term arrives from other agent- the COC
queries the OA, and receives a taylored addition to the
basic ontology, that allow the agent to continue working.
The COC stores locally the ontology addition so it could
be used in the future.

Site
Agent

Ontology
Agent

Personal
Agent

Bridge
Agent

Legacy
App

Monitor
Agent

Site
Agent

Site
Agent

Personal
Agent

Figure 1: JITIK agents

This solution simplifies some of the inherent complexities of
knowledge distribution, because:

1. There is no risk of incoherence -every piece of knowledge
comes ultimately from the common ontology -either from
the initial ontology or as a result of a query to the OA.

2. There is noa priori decision about how to distribute or
specialize the knowledge, because local knowledge gets
specialized automatically as agents’ operation proceed.

In the next sections we detail our method, the prototype and
the experimental results. Finally we draw some conclusions.

The proposed solution for ontology handling
in JITIK

In Figure 1 we depict JITIK’s architecture, composed of sev-
eral kinds of agents, like theSite agent, taking in charge the
distribution of information to severalpersonal agents, which
interact with an end user; there are as wellbridge agentsfor
interacting with traditional software (legacy applications).
Site agents are the heart of a “cluster” composed by one site
agent and several personal agents served by the former. In an
organization, clusters would be associated to departments,
divisions, etc., depending on the size of them. Networks can
be made up connecting several site agents. Distributed orga-
nizations like multinational companies would have a web of
many connected site agents. There are alsoontology agents,
which we will discuss in the following.

From the point of view of ontology handling, we will clas-
sify the agents in two categories:ontology agents, and “reg-
ular” agents, which are all the other agents. Sometimes we
will call “client” agents the regular agents, because they act
like a client with respect to the ontology agent. The OA and
the clients correspond to the “initiator” and “respondent”
roles in standard agent design methodologies like (Collis
and Ndumu 1999).

Client agents try to fulfill their knowledge needs using the
knowledge in the COC. If necessary, the COC makes a query

to the OA, and interprets and use the answer, and eventually
incorporates it to the local knowledge.

Regular agents access ontologies through the COC intro-
duced before, and the COC eventually communicates with
the OA. The architecture of both the ontology agent and a
client agent is depicted in Figure 2. It is shown there OA at
the left side, with some internal components to be discussed
later, and a client agent at the right side.

Let us first take a look to the OA.
The OA encapsulates the functionality for playing the role

of a knowledge provider, storing the ontology conveniently
encoded, translating, interpreting and executing incoming
queries, then translating back the results to a format un-
derstandable by the client agents. Translation is sometimes
necessary because the encoding for storing knowledge and
answering queries, which is mandated by performance re-
quirements, could be different from the one used in the client
agents. This format separation provides a layer of indepen-
dence, so that the ontology representation could be changed
in the OA without impact to the client agents.

Client agents access ontology definitions through their
COC. At startup they load abase ontology, which is evi-
dently application dependent, and try to use it as long as
it suffices for agent’s work. In the JADE system, ontolo-
gies are needed for message validation purposes in the first
place. Every term in agents conversations should be vali-
dated against a definition in an ontology. Thus, normally
the base ontology will contain definitions of common terms.
The size of the base ontology is a tradeoff between space
efficiency -asking for a small initial ontology- and time effi-
ciency -asking to maximize the coverage of the local knowl-
edge so remote queries are minimized.

Aiming to decentralize access to the ontology, we propose
a combination of global and local ontology handling, where
the agents clients can access part of the ontology locally, or
remotely, asking directly to the OA. Local access is going to
be encapsulated in the COC which is attached to the client
agents.

At agent’s startup, the COC is responsible for fetching -
normally from an internet location- a base ontology. This
mechanism is general enough to be customized so that dif-
ferent types of agents load different base ontologies, though
we have not done this in our prototype.

In order to overcome the limitations of the base ontology,
the COC is responsible for accessing the OA for extending
its ontology knowledge, through the query mechanism we
have been describing. The results of a query are incorpo-
rated by the COC to the local ontology, thus extending auto-
matically the ontology as needed.

In this model, the very existence of the OA is transparent
to the client agent, as it directs every query to the COC, this
one takes in charge the whole process until an answer arrives
to the agent -either from a local COC consultation or from a
query from the COC to the OA.

As we can see in the diagram of figure 2, the COC has the
following elements:

• Local Ontology representation. It allows to store a subset
of the ontology, and supports local querying.

ONTOLOGY AGENT

Schema and
Instances
Database

Representation

Query Solver

Schema Module

Conversion to
DB Query Language

Frames
Formating

Instance Module

Conversion to
DB Query Language

Frames
Formatting

CLIENT AGENT

Client Ontology Comp.

Appending

Local
Query
Solver

Update
Model

Introspector

Message Validation

Agent
Engine

Another
Client
Agent

Query
Operators

+
Metaontology

Schema
Information

Schema
Query

Instance
Query

Instance
Information

DB Query Lang. Middle Lang. Frames

Agent Internal
Representation

 Ontology
Local

Representation

Schema
Container

Instance
Container

Figure 2: Ontology handling architecture

• Local query solver. Interface between the agent itself and
the ontology view. Exposes methods usable by the agent
to query about the ontology schema or instances.

• Message validation. As the COC contains definition of
terms from the base ontology and from queries to the OA,
it allows to validate messages in terms of an ontology, as
it is required by the JADE platform.

• Schema container and Instance container. We wanted
schema information to be kept separate from instance in-
formation for performance reasons, particularly when a
large number of instances is involved. Instance informa-
tion can be accessed either directly from the client agent
or exporting a Java class through the use of theIntrospec-
tor.

• Appending mechanism (“update model”). New knowl-
edge coming from OA as a response to a query is incor-
porated to the local view. Of course, imprudent use of this
facility could bloat the COC.

• Introspector. Converts frame representations to agent in-
ternal representations objects (Caire 2002).

Ontology representation
In the preceding discussion we were assuming an adequate
encoding for the ontologies was available. Now we discuss
this issue.

We analyzed existing ontology encodings, requiring that
they should have enough descriptive power, and at the same

time be widespread used among the scientific community.
The descriptive power we consider as satisfactory is that of
Description Logics (Baader et al. 2003), which is broadly
implemented in standards like OWL (Dean et al. 2003).

Next we had to find an adequate mechanism for querying
the ontology agent from client agents. This includes query
formation, query execution, and response interpretation.

We wanted to be able to ask questions not only about spe-
cific instances in the ontology, but also about the concepts
and their relations themselves. The need to make inferences
on the ontology entails the need to define the minimal el-
ements of the ontology. These elements are specified in a
metaontologythat will serve as a basis to encode the ontol-
ogy, as well as the questions to the ontology and the frag-
ments of it that conform the answers. In the metaontology
we consider a set of concepts likeClass, Propertyand oth-
ers, and each concept hasattributes.

We examined several ontology formats created for Se-
mantic Web (Berners-Lee et al. 2001), as they are the
best known today. In particular, RDF (Lassila and Swick
1999), DAML+OIL (Conolly et al. 2001), and recently
OWL (Dean et al. 2003), contain the elements we defined
in the metaontology, and are expressive enough so we can
make inferences on them. We decided to use DAML+OIL,
as it provides good expressive power for our purposes, and
has reached widespread acceptance. There is no point in de-
scribing in detail the ontology formats, as it is just standard
DAML+OIL. A fragment of our example ontology looks
like the following:

<?xml version="1.0" encoding="ISO-8859-1"?>
...
<daml:Class rdf:about="itesm.daml#ResAssist">

<rdfs:label>ResAssist</rdfs:label>
<rdfs:subClassOf>

<daml:Class rdf:about="itesm.daml#Assist"/>
...
<daml:ObjectProperty

rdf:about="nsJITIK/itesm.daml#head">
<rdfs:label>head</rdfs:label>
<rdfs:domain>

<daml:Class rdf:about=
"itesm.daml#OrganizationalUnit"/>

</rdfs:domain>
...

Prototype
Since in the JITIK project we program using the JADE mul-
tiagent development platform (Bellfemine 2002), we con-
sidered ontology handling support recently incorporated to
JADE.

From version 2.5, JADE incorporates some support for
ontology handling. Using these facilities we built the COC
that gives to the client agents immediate access to the local
part of the ontology.

To do this, it was necessary to redefine the “Ontology”
class, which encapsulates the ontology definition, as well as
to implement access methods for consulting it.

In JADE, query operators can be defined usingpredicates
(PredicateSchema) andquantifiers(AbsIRE). The metaon-
tology is defined in terms ofconcepts(AbsConcept class)
andaggregates(AbsAggregate).

Another JADE facility is to use theIntrospectorclass,
which allows to translate between Java objects and text-
encoded objects ready for being sent in agent messages, in
framesformat.

We have developed so far a somewhat simplified imple-
mentation of the ideas presented above. The simplifications
we introduced are the following:

• The Jena Toolkit (Jena) we decided to use for the proto-
type has incorporated a persistent storage facility, which
was easier to use than a separate database-style storage
for the ontologies, as was suggested in the conceptual di-
agram (figure 2).

• Access to ontologies on the client agents and on the OA
are identical, both based on aClientOntologyclass we de-
veloped, which calls Jena package facilities. So ClientOn-
tology is implemented in both the COC and the OA.

• The COC does not redirect queries to the OA. The client
agent instead has to know which component to query, ei-
ther the COC or the OA.

• No distinction is made between instances and schema for
storing purposes.

• RDF multitype instances are treated asCompound Class’
instances. This compound classes are created at runtime
when amixed instancearrives(Ceballos 2003).

Query solving
Queries consist of the following:

• A quantifier, which indicates if all the results are needed,
or we want to check if there are items with a given de-
scription.

• A variable, where the result data type is specified.

• A query operator.

Query operators are defined so that their evaluation is made
in two steps: first, the characteristics of the objects are
specified, and second, the element of the found objects
is indicated. During the first step, Jena extracts a list of
DAML+OIL schemas satisfying the given specification, and
in the second step results are constructed.

For instance, assume that we want to know which proper-
ties are defined in the class “Worker”. We will use the ALL
quantifier, so the properties themselves, and not just their
number, are returned. Now we define a variable “x” of type
CLASSPROPS, which can store a list of properties defined
in a class.

Finally, the DescWhere operator is introduced, using as
parameters a filter and the results structured. In the exam-
ple below the filter is a class name (Worker), and the result
structure uses the result variable “x” to store answers.

The query in our example would be as follows (ommited
details appear as “. . . ”):

(ALL
:VARIABLE ... :NAME x)
:PROPOSITION (DESCWHERE
...

:CLASS_NAME Worker))

Using our example ontology, the following query result
indicates that Worker class’ properties areid, email, interests
andname:

(RESULTS :RESULTS_SET ... (PROPLIST
#1 (... :PROP_NAME id)
#2 (... :PROP_NAME email)
#3 (... :PROP_NAME interests)
#4 (... :PROP_NAME name)

It shoud be noticed that the returned property list in this
example includes not only the direct properties of Worker,
but those defined in its superclasses as well.

In the prototype we achieve good COC-OA integration,
as the query results are sent to the COC, which forwards
them to the agent, and in addition incoporates those results
to the local ontology. We are taking advantage of Jena’s
mechanism for merging ontologies. When a query response
arrives from the OA, instead of arriving directly to the client
agent it passes though the COC, allowing it to incorporate
those results as an extension to the base ontology.

Experiments and Results
We designed and carried out experiments aiming to ensure
that every possible query could be solved by our system,
and that translations work properly. What we intended to
prove refers to the correctness of our methods –as well as

our implementations–, but we proved nothing yet about per-
formance issues (see section). We assumed, of course, that
the software we are building upon (JADE, Jena) works cor-
rectly.

We carried out a formal testing methodology, sorting first
all the possible queries in a linear sequence, and then taking
randomly some of the queries, until a sample size is met. De-
tails of our testing method are reported in (Ceballos 2003).

We used a test ontology about our university (Monter-
rey Tech), representing the organizational structure, as well
as properties of people studying and working there. The
DAML files (itesmcore.daml and personal.daml, for schema
and instances), are accessible by internet. The tool OilEd
(Bechhofer et al. 2001) was used to edit our test ontology.
Some manual adjustments were necessary to make it usable
by Jena.

The main result from our experiments was that all of the
sample queries were correctly answered. Technical details
of our proof methodology are available in a separate report
(Ceballos 2003).

It remains to be proved that our approach outperforms
both completely centralized and completely distributed ap-
proaches, when we consider various time and space trade-
offs (see conclusions).

Related work
Although there are several toolkits for ontology handling
(Alexaki et al. 2002; Ontoprise), some with inference mech-
anisms, none of these are really suited to multiagent sys-
tems. Thus their adaptation require an important effort. Fur-
ther, almost none include mechanisms specificallyl designed
for distributing ontologies in a flexible way.

In the KAON project (Maedche et al. 2003) the empha-
sis is in reusing ontologies and propagating changes in dis-
tributed ontologies. It handles a registry with known ontolo-
gies URIs in several “Ontology Servers”, similar to out OA,
which take in charge ontology loading, updating and prop-
agation. Each Ontology Server provides a querying service
for its agent community. In the Ontology Server a local copy
of the original RDF ontology is stored, taken initially from
an URI. Our OA, on the other hand, uses full DAML+OIL
ontologies. In our approach, the COC is responsible for up-
dating the ontology, and the copy at the OA remains static.
On the “minus” side, we have not taken into account ontol-
ogy evolution, though we plan to change this in the future
(see section).

In the COMMA project (Gandon 2003), as in JITIK, there
is a global ontology, which is propagated to known agents.
Each agent receives a complete copy of the ontology, and
is able to solve queries about it. COMMA uses RDF for
ontology coding, and includes an API for ontology access
by agents. Obviously this approach lies in the centralized
extreme of the spectrum.

In the FRODO system (Van Elst and Abecker 2002) there
are specificroles with respect to ontologies: the “ontology
provider” and the “ontology consumer”. Providers take in
charge ontology services, including updating. Consumers
just use ontologies to run their applications. In FRODO

there are two ontology distribution levels, with respect to
a given agent community: internal and external or “intersys-
tem”. There are in FRODO three ontology handling cate-
gories: ontologyuse, ontologyevolutionand ontologyso-
cialization. Emphasis is given to query formulation and so-
lution. In JITIK we consider use and ontology socialization,
but not (yet) evolution. In JITIK there is one distribution
level, as we have not yet considered ontology distribution
between different JITIK “clusters”. Nevertheless, FRODO
does not have provisions for fine-tunning the ontology de-
gree of distribution, which is one of the main qualities of
JITIK ontology handling.

Discussion
Although they share the same basic ideas, the first pro-
posed architecture and the prototype explore slightly differ-
ent technological options, giving this way a range of possible
solutions for specific systems.

The conceptual architecture illustrated in Figure 2 uses
explicit persistent storage, as well as separation between
schema and instances. This could be preferable over more
homogeneous schemae like Jena in the case of extremely big
instance numbers, because we can take advanage of efficient
database queries, instead of specialized ontology inference
mechanisms.

Our prototype does not use any form of persistent stor-
age, though the Jena toolkit has recently offered persistance
support. So, incorporating persistence is mainly a matter of
updating our Jena version. But persistence is not essential
for the COC at client agent side, as the client could load the
base ontology as it is done in the prototype, and get addi-
tional definitions from the persistent storage on the OA side
as we explained above. But of course, if the ontology is go-
ing the be enriched by the client agents, new concepts defi-
nitions should be stored permanently either in a local perma-
nent storage at the COC, or sent to the OA in order to enrich
the common ontology.

Conclusions
We have presented an architecture and a prototype which
solve the ontology handling problem for the JITIK system,
and which could be applied to other systems as well. The
main requirements to apply our architecture is that there
should be a common ontology, which is in principle agreed
over the entire system, but which is not completely known
by each agent in the system. So, we proposed a way of shar-
ing the knowledge of the common ontology residing at an
Ontology Agent, but avoiding the bottlenecks that would re-
sults from a centralized ontology handling. For this, we have
incorporated to all the agents in the system a Client Ontol-
ogy Component, which is capable of solving locally part of
the ontology queries. This hybrid system could allow to bet-
ter scale the system size.

We have used open standards for representing ontologies,
like DAML+OIL. Further, we combined these standard for-
mats with a multiagent-specific format offered by the JADE
agent building toolkit.

A prototype is reported, which implements the basic el-
ements of our architecture, making extensive use of the

Jena toolkit. A package (xont) was developed encapsu-
lating all the additional functionality required to query the
DAML+OIL ontologies from JADE.

Our hybrid approach, combining the advantages of a
global and those of a local handling, introduces the possi-
bility of fine-tuning the compromise between central an dis-
tributed ontology access, basically varying the size of the
local ontologies. In one extreme, a zero size of COC on-
tology is equivalent to a central solution, whereas a COC
ontology identical to the OA one gives a completely decen-
tralized solution. Any intermediate solution is possible in
principle.

The experiments carried out with our prototype demon-
strate the basic querying and inferencing capabilities.

Future work
We intend to further explore the following aspects:

• We need to complete our quantitative experiment to show
that our method outperforms both completely centralized
and completely distributed approaches, considering time
and space tradeoffs.

• In practice we could not allow unlimited updating of on-
tologies in the COC. One solution we foresee is to main-
tain a cache of the most frequently used definitions, even-
tually replacing the least used, or the least “valuable” on-
tology items.

• Define a mechanism for maintaining synchronization and
coherence between central and distributed ontologies up-
dating OA ontologies from additions to client ontologies.

References
Alexaki, S.; Athanis, N.; Vassilis, Ch.; Karvounarakis,
G.; Maganaraki, A.; and Plexousakis, D. 2002. The ICS-
FORTH RDFSuite: High level scalable Tools for the
Semantic Web. Poster Session of theEleventh Interna-
tional World Wide Web Conference (WWW’02). Honolulu,
Hawaii, USA.
Baader, F.; Calvanese, D.; McGuiness, D.; Nardi, D.; and
Patel-Schneider, P. 2003.The Description Logic Hand-
book: Cambridge University Press.
Bechhofer, S.; Horrocks, I.; Goble, C.; and Stevens, R.
2001. OilEd: A Reason-able Ontology Editor for the Se-
mantic Web,24th German / 9th Austrian Conference on
Artificial Intelligence.

Bellifemine, F.; Caire, G.; Poggi, A.; and Ri-
massa G. 2003.JADE - A White Paper http:
//sharon.cselt.it/projects/jade/papers/
WhitePaperJADEEXP.pdf

Berners-Lee, T.; Hendler, J.; and Lassila, O. 2001.The Se-
mantic Web, Scientific American, May.
Brena, R.; Aguirre, J.L.; and Trevino, A.C., Just-in-
Time Knowledge Flow for Distributed Organizations
using agents technology,Knowledge Technologies 2001
Conference, Austin, Texas, 4-7 March 2001,http:
//www2.gca.org/knowledgetechnologies/
2001/proceedings/index.asp .

Caire, G. 2002. JADE Tutorial. Application-
Defined Content Languages and Ontologies.
http://sharon.cselt.it/projects/jade/
doc/CLOntoSupport.pdf

Ceballos H. 2003.Manejo de Ontologias en Sistemas Mul-
tiagentes por medio de un Agente de Ontologias aplicado
a JITIK. Master thesis Monterrey Tech.
Conolly, D.; Van Harmelen F.; Horrocks I.; McGuinness
D.; Patel-Schneider P.; and Stein L. 2001.DAML+OIL
(March 2001) Reference Description.W3C Note 18 Dec
http://www.w3.org/TR/2001/NOTE-daml+
oil-reference-20011218

Collis, J.; and Ndumu, D. 1999.The Zeus Agent Build-
ing Toolkit. The Role Modelling Guide.British Telecom-
munications Report,http://more.btexact.com/
projects/agents.htm

Dean M.; Schreiber G.; Van Harmelen F.; Hendler J.; Hor-
rocks I.; McGuinness D.; Patel-Schneider P.; and Andrea
Stein L. 2003.OWL Web Ontology Language Reference.
W3C Working Draft, 31 March 2003.http://www.w3.
org/TR/2003/WD-owl-ref-20030331/

Gandon, F. 2003. Agents handling annotation distribution
in a corporate semantic web.Web Intelligence and Agent
Systems.1(1):23-45. OIS Press.
Lassila, Ora, and R. Swick, Ralph. 1999.Resource De-
scription Framework (RDF) Model and Syntax Definition
Specification.W3C Recommendation.http://www.
w3.org/TR/1999/REC-rdf-syntax-19990222

Lenat, D. 1993. Context dependence of representations
in CYC. In proceedings of Colloque ICO’93. Montreal,
Canada.
Liebowitz, J.; and Wilcox L.C. eds. 1997.Knowledge Man-
agement and its Integretive Elements. CRC Press.
McBride, B. Jena Semantic Web Toolkit - Data
Sheet. http://www.hpl.hp.com/semweb/
jena-datasheet.htm .
Maedche, A.; Motik B.; Stojanovic L.; Studer R.; and
Volz R. 2003. An Infrastructure for Searching, Reusing
and Evolving Distributed Ontologies.In proceedings of
WWW2003. Budapest, Hungary: ACM.
Nwana, H.; and Ndumu, D. 1999. A Perspective on Soft-
ware Agents Research.The Knowledge Engineering Re-
view. 14(2):1-18.
Ontoprise.http://www.ontoprise.com/

Van Elst, L.; and Abecker, A. 2002. Domain Ontology
Agents in Distributed Organizational Memories.Knowl-
edge Management and Organizational Memories.Rose
Dieng-Kuntz and Nada Matta eds. Kluwer Academic Pub-
lishers.
Weichhardt, F.; Fillies, C.; and Smith, R. 2002.The Se-
mantic Web is the Database: Decentralised Modeling with
central Coordination. http://www.semtalk.com/
pub/spain2.htm .
Wooldridge, M. 2002.Introduction to MultiAgent Systems.
John Wiley and Sons.

