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Abstract

This paper describes our continuing work on enabling a tutor
to evaluate algebraic solutions to word problems in physics.
Current tutoring systems require students to explicitly define
each variable that is used in the algebraic equations. We have
developed a constraint propagation based heuristic algorithm
that finds the possible dimensions and physics concepts for
each variable. In earlier work we developed techniques that
worked for a small set of problems and evaluated them on a
small number of students. The work described here covers an
extension to and evaluation of a much larger class of prob-
lems and a larger number of students. The results show that
our technique uniquely determines the dimensions of all the
variables in 89% of the sets of equations. By asking the stu-
dent for dimension information about one variable, an addi-
tional 3% of the sets can be determined. Thus a physics tutor-
ing system can use this technique to reason about a student’s
answers even when the scaffolding and context are removed.

Introduction
In teaching problem solving, Intelligent Tutoring Systems
(ITS) often employ a rigid and explicit framework to guide
the student along a predetermined sequence of steps. This
mechanism called “scaffolding” is pedagogically sound and
beneficial to beginning students in the subject, because it
helps them go through each step in detail. After some expe-
rience, students internalize and combine some of these steps,
and a human tutor would not require the student to explicitly
demonstrate the most basic steps. At some point, the scaf-
folding should be removed from the tutoring system because
the students find the mechanism cumbersome.

Removing the scaffolding puts a greater burden on both
the student and the tutoring system. The student must do
more on his own without guidance from the tutor and the
system must now interpret answers that may be in a different
sequence or may have incorporated some basic assumptions.
This is especially true when there are many ways to describe
the answer as there are when specifying algebraic equations
in physics. There are many equivalent forms with differing
numbers of equations and variables. In addition, students
can use one of many different variable names to refer to a
single physical property. Tutoring systems must be able to
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infer properties that are referred to by the variables in a set
of equations before they can evaluate the correctness of the
equations.

This paper describes our continuing work on developing
tutoring systems where the scaffolding is relaxed. In particu-
lar, we examine issues of identifying of the meaning of vari-
ables in equation sets that solve college level introductory
physics problems. In earlier work we developed techniques
that worked for a small set of problems and evaluated them
on a small number of students. The work described here
covers the extension to and evaluation of a much larger class
of problems and a larger number of students. The initial re-
sults of these evaluations showed that some improvement in
the techniques were needed. Subsequent improvements re-
sulted in the technique uniquely determining the dimensions
of all the variables in 89% of the sets of equations. By asking
for dimension information about one variable, an additional
3% of the sets could be determined.

Algebraic Physics Problems
Physics uses sets of algebraic equations to specify the in-
terrelations of a set of physical quantities. One of the main
differences between generic algebraic equations and alge-
braic equations describing a relationship in physics is that
the latter must be dimensionally consistent. Two algebraic
equations in physics are shown below.

T − m1 ∗ g = m1 ∗ a (1)

a1 = −a2 (2)

Algebraically speaking, these equations could be added to
one another to form a new equation. However in physics,
each of the variables, constants, terms, expressions, and
even equations must have specific dimensions. Further they
can only be combined using dimensionally consistent oper-
ations. Equation 1 is likely to have the dimensions of force
(kg · m/s2) while equation 2 would have dimensions of ac-
celeration (m/s2). It would thus be incorrect to add these
equations, since that operation would violate dimensional
consistency. Physically speaking, the variables represent
physical properties of an object or a system of objects and
the equations describe the constraints between these quanti-
ties given by the laws of physics.



Issues in Removing the Scaffolding
Removing the scaffolding imposes an additional computa-
tional requirement on tutoring systems. We illustrate this
with an example problem based on Atwood’s machine, a
pulley with two masses, m1 and m2 hanging at either end,
as shown in Figures 1 and 2.
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Figure 2: Different variable sets describing the solution.

A common problem based on Atwood’s machine asks the
student for the equation(s) that would determine the accel-
eration of the mass m1, assuming that m1 and m2 are not
equal. Equations 3 through 6 represent one solution to the
problem using variable set i in Figure 2.

T1 − m1 ∗ g = m1 ∗ a1 (3)

T2 − m2 ∗ g = m2 ∗ a2 (4)

T1 = T2 (5)

a1 = −a2 (6)

From a pedagogical standpoint, physics instructors teach
beginning students that the steps involved in solving prob-
lems of this type are:

1. variable definition: Each variable is defined with the ob-
ject(s) and properties to which it refers. In some cases,
the time period when this variable is applicable is also de-
fined.

2. identification of physics laws: Each applicable physics
law, e.g., force balance or conservation of momentum,
must be identified and the objects that they apply to must
be specified.

3. instantiation of physics laws: The general physics laws
are stated as equations with “textbook” variables. Each
specific variable specified from the first step is substituted
as appropriate for the textbook variables. The result is an
equation or system of equations sufficient to solve for all
unknowns in the current problem.

As students become accustomed to the vocabulary of the
domain, they start using problem solving “shortcuts”. In-
stead of defining each variable explicitly, the students select
from a dictionary of well-known physics variables to repre-
sent the properties that they desire. For example in force bal-
ance problems, variables beginning with m typically repre-
sent masses while variables beginning with an a usually rep-
resent acceleration. Thus the naming of a variable implicitly
specifies the dimensions or properties. The judicious and
consistent selection of subscripts with each variable speci-
fies the object(s) that the variable refers to. For example, m1

and a1 would refer to the mass and acceleration of the same
object while p1,t1 might refer to the momentum of object 1
at time t1.

When the scaffolding is removed, the tutoring system
must be able to determine the context of the system of equa-
tions. For example, the student might choose to use a single
variable a to represent acceleration, and a single T for the
tension, implicitly using the principle that equates T1 and
T2. Diagram ii in figure 2 identifies the variables used with
such an approach. The resulting equations are shown below.

T − m1 ∗ g = m1 ∗ a (7)

T − m2 ∗ g = −m2 ∗ a (8)

The tutor must determine that (1) the variable a has the di-
mensions of acceleration (kg ·m/s2), (2) the single variable
is mapped to the acceleration of object 1 and that (3) the ac-
celerations of the other objects are replaced by an algebraic
substitution using Eq. 6. The system must make similar de-
terminations for the tensions.

In this paper, we focus on the first step, that of determin-
ing the dimensions of each variable. Our preliminary work
in addressing the second step, that of mapping the variables
to objects is described in (Liew & Smith 2002a).

Prior Work
Checking for dimensional consistency is an important first
step for a physics tutoring system as it can then focus on
reasoning about dimensionally correct equations only. Ex-
isting systems, e.g. ANDES (Gertner 1998) and PHYSICS-
TUTOR (Liew, Shapiro, & Smith 1999), require that the di-
mensions of each variable and constant be known a priori



either through a knowledge base of variables and constants
or by having the student define them. Once these dimen-
sions are known, it is a fairly simple step to determine if the
equation is dimensionally consistent by using some form of
“dimension mathematics”.

There are many systems that use constraint propagation
to ensure consistency of values of variables. Examples of
such systems include VEXED (Steinberg 1987), OPIS (Ow
& Smith 1986). Their use of constraint propagation is sim-
ilar except that they are propagating values and not dimen-
sions.

There has also been some work done on adding dimen-
sion specifications to programming languages to support
compile-time (Novak 1995; Hilfinger 1988) and run-time
(Cunis 1992) detection of dimension errors. These systems
are similar to strongly typed programming languages where
every variable has to be defined and has a type. Our system
is analogous to a weakly typed language where variables are
partially defined on first use and their types are inferred from
the context.

Determination of Dimensions
In an earlier paper (Liew & Smith 2002b), we described an
approach for determining the dimensions of every variable
in an algebraic equation. The earlier version of the technique
combined the use of a knowledge base of commonly used
physics variables and constants with constraint propagation.

A constraint graph is built where variables in the equa-
tion are instantiated as leaf nodes and internal nodes rep-
resent operators, e.g., +,−, ∗, /, =, and functions, e.g.,
cos, sin, tan. The value at each node represents the set of
possible dimensions for that node. The knowledge base is
used to determine the probable dimensions of each vari-
able. Each entry in the knowledge base consists of a name
(a string) and values for each dimension. The initial value
for each variable node is determined by matching the names
in the knowledge base with the variable. If the name in the
knowledge base matches an initial substring of the variable
name, then it is considered a match. There may be more than
one possible combination for a variable as it may match sev-
eral names in the knowledge base or a name may have multi-
ple possible values. Constraint propagation is used to propa-
gate dimension information to other terms and literals to (1)
infer dimension information and (2) determine dimensional
consistency. The algorithm can use partial information about
the dimensions of a variable and combine that with knowl-
edge of operators and functions (which are just operators)
to completely determine dimensions. In essence knowledge,
even incomplete knowledge, propagates from one part of the
equation to another. This permits the algorithm to reason
about dimensional consistency when the variables are not
explicitly defined.

This algorithm was evaluated on roughly 350 answers to
four physics problems from 88 different students in an in-
troductory physics course for engineers and science majors.
Only 5% of the submitted answers (two to three answers for
each problem) were ambiguous and required additional in-
formation from the student to disambiguate. The technique

was subsequently evaluated on equation sets extracted from
the log files of the ANDES system (Gertner 1998).

The ANDES data
The ANDES system is also a tutoring system for introduc-
tory college level physics. It has a large database of prob-
lem types and is in current use at the United States Naval
Academy. Logs of student answers and tutor responses have
been maintained since the initial introduction of the ANDES
system. We extracted the student answers from one semester
(Fall 2000) and used it to evaluate our system. The key fea-
tures of this data set (and of the ANDES system) are:

• large database of problems and problem types: The AN-
DES system has a repository of approximately one hun-
dred problems. These problems are much more diverse
than the ones previously analyzed.

• large number of equation sets: The ANDES data ana-
lyzed contained 9,865 equation sets in 6,000 logs. These
logs were created by many students each of whom worked
on many problems. The system recorded answers, includ-
ing partial answers, making the number of equation sets
larger than the number of logs. Many of these equation
sets contain incomplete answers, i.e., the student has not
entered all the equations. Our analysis does not group
equations sets by either student or problem but rather
treats all 9,865 equations sets as a single corpus.

• variables are explicitly defined before use. The ANDES
framework requires that the students define all variables
before they can be used in equations and provides a graph-
ical interface to help them with this step. Our analysis
does not use this information, but the fact that the student
was required to give it may have affected the inputs.

• use of numeric values: The questions in ANDES are given
in terms of explicit numerical quantities and require nu-
meric answers. While students were strongly encouraged
to generate complete algebraic solutions before substitut-
ing numeric values to arrive at the answer, students fre-
quently use numeric values in place of variables at earlier
stages.

The data from the ANDES logs provides a good evalua-
tion of our technique in several ways that our original exper-
iments did not. These are:

• how general is our technique? how well will it perform
on a more diverse set of problems?

• how well will the technique perform on incomplete sets
of equations?

Initial Results
The knowledge base was greatly expanded to handle the
larger class of problems. Entries were created for all uses
of variable names in a full exposition of all of introductory
physics. Possible dimension values for each variable were
determined by matching the beginning of variable names
against a single list of well-established prefixes. The initial
results showed that the dimensions could be completely de-
termined for a small set of equations (less than 50%). There



were many sets of equations that were categorized as consis-
tent but ambiguous, i.e., at least one variable had more than
one valid value for dimensions,

Analysis and Extensions
Analysis of the results showed problems that were not re-
vealed with the earlier smaller data set. Most equation sets
had more than one set of possible dimension assignments
for the set of variables. We observed that because we were
using possible concepts from all of physics, including elec-
tricity and magnetism and modern physics (which were not
covered in the Andes problems) the range of choices of di-
mensionality were often very large and the constraints are
often insufficient to uniquely determine the correct choice.

This problem was fixed by (1) splitting the knowledge
base into broad subfields of relevance and (2) adding a more
powerful matching capability to the knowledge base. The
knowledge base was split up into disjoint categories, e.g.,
Newtonian mechanics, electricity and magnetism, and mod-
ern physics, and the ANDES problems were annotated to
specify that they were problems in Newtonian mechanics.
In addition, instead of just searching for a matching prefix,
the knowledge base now supports three types of matches.
Each entry into the knowledge base consists of (1) a string,
(2) a set of dimensions, (3) category and (4) type of match.
The three types of matches are:

• prefix match: Any variable name whose beginning
matches the string of a prefix-match entry in the knowl-
edge base will have the associated set of dimensions as
a possibility. The variable alp will prefix match with the
entry a and will have dimensions associated with acceler-
ation as one of the valid possibilities.

• pre-emptive match: Any variable name whose prefix
matches the string of a pre-emptive entry in the knowl-
edge base will pre-empt any prefix matches. The variable
alpha1 will pre-emptively match with alpha and have ra-
dians as one of the possible dimensions. This match will
also remove acceleration (and any other prefix matches)
from the list of possibilities.

• exact match: Any variable name that matches exactly
with the string of an exact match entry in the knowledge
base will have the associated set of dimensions. This
match overrides and excludes all other matches. The vari-
able G will have the dimensions of the universal gravi-
tational constant and the match will remove all prefix or
pre-emptive matches with G. The variable G1 however
will not be an exact match.

The improved matching capability provided us with
ways to specify preferences amongst the different possible
matches for a variable.

It was also found that the order in which inferences were
performed limited the quality of the feedback when equa-
tions were not dimensionally consistent. In our original ap-
proach, each unique variable name was considered to always
refer to the same dimensions, wherever it occurred in the
equation set. Depending on the order in which constraints
are checked, information from an inconsistent equation may

be propagated to other equations before an inconsistency is
discovered. At that point, it is difficult to determine the ori-
gin of the problem, i.e., which equation was inconsistent.
In addition, a variable can be used in multiple equations
and more than once in an equation. The constraint graph
only maintained one copy of each variable since all occur-
rences have the same set of dimensions. This made it dif-
ficult to determine which instance of the variable was used
incorrectly when an inconsistency was discovered. These
problems were solved with the following changes to the con-
straint graph and associated procedures.

• create a leaf node for each occurrence of a variable: In-
stead of having only one node for each variable, a node
is created for each occurrence of a variable. When a di-
mensional inconsistency is found, the specific instance of
the variable that is at fault can then be pinpointed. To
maintain consistency within the system of equations, a
new type of constraint is added, an identity constraint.
The constraint connects all nodes that are instances of the
same variable and restricts the nodes to have the same set
of dimensions.

• delay propagation across terms and equations: Essen-
tially, this heuristic favors propagation of information to
nodes in the same local region and then to nodes “further
away”. That is, consistency of each equation was imposed
before the identity constraints. This is a means of making
it easier to detect inconsistencies in the regions where the
fault lies.

The goal of these changes is to delay information prop-
agation across terms and equations and thus discover in-
consistencies before incorrect dimension information can be
propagated to other terms or equations.

Final Evaluation
The changes described in the previous subsection were im-
plemented and the resulting module was re-tested on the data
from the ANDES logs. The results are shown in Table 1.

In 83% of the cases the dimensionality of every variable
and every constant was uniquely determined. Considering
only variables and ignoring constants, we found that in 89%
of the equation sets the dimensionality of all variables were
determined. In 3% of the cases we found that exactly one
variable was ambiguous so that with at most one clarifying
question to the student we could uniquely determine the di-
mension of all variables in 92% of the cases.

Of the remaining 8% of the cases, 6% had more than one
ambiguous variable and 2% were found to be dimensionally
inconsistent. The variable-matching knowledge base that we
used had 109 entries and contained information covering all
of Newtonian mechanics, the area from which the analyzed
corpus was obtained.

As described earlier, the ANDES system permits the stu-
dents to use numeric values in place of variables, e.g., 9.8
instead of g for the acceleration of gravity. Consequently,
constants can sometimes have unstated dimensions and the
system has to treat each constant initially as having all di-
mension possibilities instead of as dimensionless constants.



Equation Set Property Number Percent
in Corpus of Corpus

No ambiguous variables 8761 89%
One Ambiguous variable 267 3%

Two or more Ambiguous variables 639 6%
Inconsistent Dimensions 198 2%

Table 1: Evaluation on the ANDES data. A partitioning of
the equation sets by the number of variables whose dimen-
sionality could not be uniquely determined.

In the evaluation, we found that there were many equation
sets where the dimensions of all the variables were deter-
mined but the dimensions of some of the constants were
ambiguous. Further examination revealed that the ambigu-
ity could have been resolved if the constants were treated as
dimensionless but the initial assumption prevented this.

The first row of the table (No ambiguous variables) shows
that when ambiguous constants are ignored 89% of the equa-
tion sets have unique dimensionality. Thus, without any spe-
cial information about ANDES, e.g., variable naming con-
ventions, our technique can determine the dimensions of all
the variables in 89% of the corpus. The second row (One
Ambiguous variable) shows the number of unique sets if the
system could ask the student for the dimensions of a single
variable. Thus, by asking at most one question of the stu-
dent, the technique can uniquely determine the dimensions
of all the variables in 92% of the sets of equations.

Conclusion

This paper has shown how domain knowledge combined
with heuristic constraint propagation can be used to deter-
mine the context and implicit information contained in stu-
dent answers, specifically the dimensions of variables in sys-
tems of equations. This approach has been tested and eval-
uated on answers from students at two colleges. The results
show that the technique uniquely determined the dimensions
of all the variables in 89% of the sets of equations. By asking
for dimension information about one variable, an additional
3% of the sets can be determined.

Scaffolding is a technique that is useful and helpful to be-
ginning students. After some experience, students would
benefit from having the scaffolding removed. The experi-
ments validate the hypothesis that our technique allows us
to remove the scaffolding from a physics tutoring system
and still be able to determine the dimensions of the variables
used in the equations.
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