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Abstract 
It is a vital and challenging issue in AI community to get the 
“Right Information” to the “Right People” in the “Right 
Language” in the “Right Timeframe” in the “Right Level of 
Granularity”. More and more researchers recognized that a 
well-designed instructional plan in intelligent tutoring 
systems will open up new possibilities of genuinely 
intelligent knowledge delivery for future education society. 
This paper proposes a novel three-layer student-state model 
and discusses the core elements in the architecture of a 
practical ITS model based on the theory of instructional 
automata. The main advantages of instruction automata 
theory lie in that it can not only generate, regulate, update 
and implement instructional plans for individualized learner 
in the efficient and effective way, but also provide a uniform 
and extensible domain-independent environment for ITS 
designers and engineers.  

Introduction  
With deeper fusion of advanced technology in artificial 
intelligence and research theory in pedagogical science and 
cognitive science, intelligent tutoring systems are endowed 
with more and more attention and energy by researchers and 
developers, which are distinctive from and more 
individualized than traditional “one-size-fits-all” approach 
(Brusilovsky 2001; Brusilovsky 2003). During more than 
thirty years from 1970 when the system SCHOLAR was 
developed as an beneficial attempt to build an ITS, a large 
number of ITSs have successfully been designed, 
implemented, tested, and approved in varied domains from 
expertise skills to public education. In recent years, a 
common agreement about the core elementary models of an 
ITS seems to be reached in the ITS community, which 
consists of at least four models, i.e. an expert knowledge 
model (viz. Domain Model), a pedagogical knowledge model 
(viz. Pedagogical Model), a model that represents the learner 
state in the system (viz. User Model) and a user interface 
model (viz. Human-Computer Interface) (Martens 2003; 
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Matsuda and VanLehn 2000; Murray and VanLehn 2000; 
Zapata-Rivera and Greer 2001). Recently, Reddy challenged 
AI researchers with three open problems (Reddy 2003). One 
of the problems is “Encyclopedia on Demand”, which Jaime 
Carbonell calls the “Bill of Rights for the Information Age” 
(namely, how to get the “Right Information” to the “Right 
People” in the “Right Language” in the “Right Timeframe” 
in the “Right Level of Granularity”). From our perspective, 
this problem could be included in the research area of 
knowledge design, and there are some common theoretical 
grounds between knowledge design and intelligent tutoring 
systems both of which can tailor knowledge “product” to 
consumer’s requirements (Yue and Cao 2003).  
 Recently, psychological researches have appreciated that 
significant improvements in learning ability occur when 
instructional strategies in content and navigation planning  
are geared toward the cognitive processing fashion of 
learners (Mohan 1992; Murray and VanLehn 2000; Wasson. 
1992). It is an important issue how to deal with learner 
control from “tutor authority” to “tutee democracy”, which 
results in the debate about the locus of control (LOC) 
between the Computer System / Designer (SYS) and the 
Learner(L) (Kay  2001; Vassileva and  Wasson 1996).  
 Accordingly, PIModel is presented as a pragmatic ITS 
model based on the instructional automata theory. The 
remainder of this paper is organized as follows. In Section 2, 
we first introduce the method about student state models 
which is fundamental to provide individualized service to 
learners. In Section 3, we propose the novel idea about 
instructional automata theory and concentrate on its 
architecture. In Section 4, we conclude the paper and raise a 
few problems for our future research. 

Student State Modeling 
User model can help ITSs to select adaptable content and 
navigation to a given user in efficient and effective way. 
John Self proposed that during user modeling process there 
are an “ideal” student and a “real” student, such that the 
former holds no misconceptions, reasons and learns 



rationally, and the latter is naturally less considerate and 
more uncertain (Self 1994).  
 Obviously, student states can be depicted by the tuple 
<Ss, St> anytime, where symbol Ss indicates practical student 
states from student perspectives and symbol St indicates 
planned student states from tutor perspectives. In other 
words, symbol Ss describes factual learning states which can 
be attained through pedagogical evaluation during the 
learner’s cognitive process, and the symbol St reflects 
expected learning states which can be analyzed and inferred 
through assessing teaching actions and learner response. 
Both unit exercises and class quizzes need to be considered 
during the pedagogical evaluation. For example, teaching 
actions can be “Teach”, “Review” and “Remedy”, and some 
variables (e.g. spent time, repetition times, attention focus 
and facial emotion i.e.) are introduced into learner responses. 
In Figure 1, we give an explicit and integrated description of 
the student states from a three-level structure that 
comprises knowledge conceptual layer, knowledge 
methodological layer and meta-cognitive layer. At the same 
time, there are corresponding predictions used to elaborate 
the functions of these three layers.  
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Three-layer Architecture of Student State Model 

Knowledge Conceptual Layer 
Given a knowledge concept k, there are three predications 
derived from k in the knowledge conceptual level as follows.  

1. known(k). It means that a student knows and 
masters concept k after the occurrence of instruction 
about k. 

2. unknown(k). It means that a student is still 
unknowable about concept k after the occurrence of 
instruction about k. 

3. error(k). It means that a student holds cognitive 
problem about concept k after the occurrence of 
instruction about k. Furthermore, the prediction 
error(k) is classified into two kinds: misconception(k) 
and missing(k).  
l The former denotes that there is  a 

misconception about concept k which will 
result in cognitive deviation for a given learner. 
For example, the concept “Inheritance” is 
mistaken into the concept “Polymorphism” in 
language C++, as behaves among many 
programming novices. 

l The latter indicates that for a given student 
(s)he holds incomplete information about 
concept k which maybe results from leaning 
distraction, and learning and forgetting within 
relatively long period. For instance, the student 
cannot remind “the data link layer” among 
seven layers of the concept “OSI network 
architecture”, which will incur cognitive 
difficulties to the comprehension of another 
advanced concept “network communication”.  

Therefore, for a given student, the whole structure about 
knowledge concepts (named Ω) is defined as follows: 
Ω  = {known(k), unknown(k), error(k) | k ∈K}, where K is the 
set which consists of all knowledge concepts  for delivery. 

Knowledge Methodological Layer  
Given a method m, there are also three predictions derived 
from m in the knowledge methodological layer as follows. 

1. capable-use(m). For a given method m, the student is 
full capable of making use of m into some applicable 
scenarios successfully.  

2. incapable-use(m). For a given method m, the student 
is incapable of making use of m into some applicable 
scenarios on the premise of knowing the method m. 

3. misuse(m). In a given applicable scenario, the 
student employs some inaccurate method that gives 
birth to an undesired end-state. It is requisite to 
point out that the theoretical perspective about 
human error was developed by James Reason in 
1990 (Reason 1990). Reason’s definition of error is  
quoted extensively as below: 

“Error will be taken as a generic term that 
encompasses all those occasions in which a planned 
sequence of mental or physical activities fails to 
achieve its intended outcome, and when these 
failures cannot be attributed to the intervention of 
some chance agency.” 

 
Table 1.  Errors’ Distinction 

Student 
Error 

Is the action 
appropriate? 

Is the action 
performed 
correctly? 

Is the 
goal 
attained
? 

no error √ √ √ 
Mistake × √ × 
Slip/Lapse √ × × 

 
 Moreover, Rasmussen proposed the distinction amo ng 
the three performance-levels corresponding to decreasing 
levels of familiarity or experience with the environment or 
task (Rasmussen 1983). These performance levels are 
labeled skill-based, rule-based and knowledge-based 
respectively. On the basis of their work, Laughery offered 
some guidance about the cognitive characteristics, abilities 
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and limitations of people that have implications in some 
respects  (e.g. error cause and effect, error prevention and 
correction) (Laughery and Wogalter 1997). Therefore, we 
can classify the coarsely-grained prediction misuse(m) into 
three kinds of finely-grained predictions: mistake(m), slip(m) 
and lapse(m). Table 1 depicts an explicit classification of 
these predictions from intention perspective. Table 2 
illustrates the origins of their causes, prevention mechanism 
and performance occurrence.  
 

Table 2.  Errors’ Cause and Effect 
Error 
Type 

Cognitive 
Cause 

Prevention 
Mechanism 

Performance 
Level 

Mistake Mental 
failures 

More training 
and timely 
hint 

Rule-based 
or 
Knowledge-
based 

Slip Attentional 
or perceptual 
failures 

Good display 
and avoid 
distractions 

Skill-based 

Lapse memorial 
failures 

Memory aids, 
minimizing 
time delays 

Skill-based 

 
 Accordingly, for a given student, the whole structure 
about knowledge methods (named Ψ) is defined as follows: 
Ψ={capable-use(m), incapable-use(m), misuse(m) | m ∈M}, 
where M is the set which consists of all knowledge methods. 

Meta-Cognitive Layer 
Given a cognitive ability c, there are three predictions 
derived from c in the meta-cognitive layer. These predictions 
include good(c), average(c) and poor(c). Some 
psychological experiments argue that the taken granularity 
of instructional actions (e.g. hint, remedy) for some a learner 
is  heavily dependent on one’s meta-cognitive level (Lesgold 
1988; Siemer and Angelides 1998).  
 The taxonomy  of cognitive levels  was proposed by Bloom 
and his associates  (Bloom et al. 1956): knowledge, 
comprehension, application, analysis, synthesis and 
evaluation. Based on their work, Wasson used three types 
of learning outcomes: fact, analysis, and synthesis  (Wasson 
1990). We define all cognitive levels by set C as follows: 
C={knowledge-ability, comprehension-ability, application-
ability, analysis -ability, synthesis -ability, evaluation-ability} 
 Accordingly, for a given student, the whole structure 
about meta-cognitive levels  is defined as follows: 

Φ = {good(c), average(c), poor(c) | c ∈C}. 

Comparative Operators between Student States 
We define some useful operators in order to compare two 
student-states , which can not only describe the same 
student from both practical and planned viewpoints, but 
also depict two different students  from the same viewpoint. 
Among these five comparative operators discussed in the 
following, the first three operators denote the comparison 

between one student-state with another student-state, the 
last two operators show the subordinate relation between 
two student-state sets.  

1. >> The operator indicates that the learning state of 
the former learner is higher than that of the latter. E.g. 
St.good(c) >> Ss.poor(c) 

2. << The operator indicates that the learning state of 
the former learner is lesser than that of the latter. E.g. 
St.poor(c) << Ss.good(c) 

3. = = The operator indicates that the learning state of 
the former learner is equal to that of the latter. E.g. 
St.capable-use(m) = = Ss.capable-use(m) 

4. ⊂ The operator indicates that the set of learning 
state of the former learner is subset of that of the 
latter. It can be formalized by the formula as follows: 

 ∀c(c∈C)( St.p (c) >= Ss.p’ (c)) ∧∃x(x∈C) (St.p (x) >> Ss.p’ 
(x))à Ss. P’(C)⊂ St.P(C) 
5. ⊃ The operator indicates that the set of learning 

states of the latter learner is a subset of that of the 
former. It can be formalized by the following formula: 

∀c(c∈C) (St.p (c) <= Ss.p’ (c)) ∧∃x(x∈C) (St.p (x) << Ss.p’ 
(x))à St.p(C) ⊃ Ss. P’(C) 

What’s Instructional Automata Theory? 
We propose that intelligent tutoring systems can be 
formalized, analyzed, implemented and evaluated by the 
uniform intelligent tutoring automaton based on the 
framework of pushdown automata.  
Definition 1. Define an intelligent tutoring automaton to be 
a 6-tuple ITA= (Q, ∑, Γ, q0, F, δ), where 

1. Q is a knowledge-state set about learners, 
2. ∑ is a nonempty set about pedagogical tasks, 
3. Γ is a task regulation stack set, 
4. q0 ∈Q is the initial learner-knowledge-state, 
5. F⊆Q is the set of final learner-knowledge-states, and  
6. δ is a learner-knowledge-state transition function, 

δ⊆(Q×(∑∪{ε})×Γ*)×(Q×Γ*) 
The initial learner-knowledge-state can be obtained through 
learner’s self-assessment, pretest and questionnaire. The 
remainder of this section will concentrate on the 
descriptions of a knowledge-state set, pedagogical task set, 
the task regulation set and the final learner-knowledge-state 
set, which are core elements in the architecture of an 
intelligent tutoring automaton. 

The Learner-Knowledge-State Set Q 
Definition 2. Define an admis sible learner-knowledge-state 
is a subset of set Q:  
Q⊆ 2Ω ∪Φ∪Ψ×2Ω ∪Φ∪Ψ such that 

1. For every state q = (q1, q2)∈Q, q1 represents the 
expected state of the learner and q2 denotes the 
practical state of the learner. 



2. Q is legitimate if and only if it satisfies the three 
conditions below: 
l For every knowledge concept k, there is at 

most one predication(known(k), unknown(k) or 
error(k)) which belongs to Q. 

l For every knowledge method m, there is at 
most one predication(capable-use(m), 
incapable-use or misuse(m)) which belongs to 
Q. Some axioms correlate the knowledge 
method layer with knowledge concept layer, e.g. 

 capable-use(m) ∨  incapable-use(m)àknown(k). 
l For every meta-cognitive level c, there is at 

most one predication(good(c), average(c) or 
poor(c)) which belongs to Q. At the same time, 
some axioms associate the meta-cognitive layer 
with knowledge method layer, e.g. 

 good(knowledge-ability)∧poor(comprehension-
ability)àmisuse(m). 

The Pedagogical Task Set ∑  
Once the student requirement and the initial student state 
have been obtained and the expertise in a subject domain is 
given, the instructional automaton will select an initial 
efficient teaching strategy based on the student's previous 
performance. The symbol ∑ is used to denote a finite 
nonempty set and can correspond to the element instruction 
in educational triple <curriculum, instruction, assessment> 
(Dowling and Hockemeyer 1999; Pellegrino,  Chudowsky, 
and Glaser 2001; Pellegrino 2002). 
Definition 3.  The set ∑ can be defined as follows: 

1. ∑={teach(α, k), test(β, t), review(γ, k), correct(η, k)}, 
in which α, β, γ and η belong to teaching strategies, 
k denotes a set of knowledge concepts involved in a 
pedagogical plan, t represents knowledge item for 
the assessment of student knowledge states. 

2. Teaching strategies (ab. TS) can be classified into 
TSs with prompt and TSs without prompt. They can 
be sorted into TSs with guidance, TSs with half-
guidance and TSs without guidance. 

3. The knowledge item can further be divided into the 
conceptual item and the inferential item.  

4. The instruction action “test” can be classified into 
class-test (ab. ctest), homework-test (ab. htest), unit-
test (ab. utest) and final-test (ab. ftest). Usually, the 
student’s passing-ratio is gained through some 
objective tests from different aspects. 

Two commonly used strategies in curriculum design is the 
Socratic method and the diagnostic or debugging method 
(Klein, 1985). 

1. The Socratic Method: This method provides the 
student with questions to guide him to find out his 
own mistake and thereby modify his conceptions. 
The process can be formalized as the proposition 
below: 

(q, Y)=δ(p, Ctest(t), Z) if error(t)∈q→Y⊆{Ctest(β, t), 
review(γ,k), teach(η, k)} 

2. The Diagnostic or Debugging Method: In this 
method the tutor debugs the student's 
misconceptions and explains why the student made 
that mistake. Figure 2 depicts this detailed process 
from the state transition perspective. It can be 
formalized as the proposition below: 

(q, Y) = δ(p, test(β, t), Z) if error(t)∈q ∨  misconception(t) ∈q 
∨  missing(t)∈q à Y⊆{test(β, t), review(γ,k), correct(η, k)}. 

The Task Regulation Stack Set Γ 
The stack set Γ is  equivalent to practical learning history 
determined by student-assigned detached learning 
strategies (Mohan, Greer, and Jones 1992) and can be 
corresponded to the element assessment in educational 
triple < curriculum, instruction, assessment >. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The Diagnostic or Debugging Method 
 

Definition 4.  Let Γdefine as follows: 
 Γ={<current goal g, pedagogical action a, action 
repetition times n, <action expected time limit td, practical 
action spent-time tr>, <possible errors ep, practical errors er, 
error evaluative rules re>>}.  

1. The current pedagogical goal g relates closely with 
the current instructional task t : 
l Instructional automata will move to next 

pedagogical task t’ if equal(g, t) ∧  St.error(k) = 
= ∅ 

l Instructional automaton will change the current 
task regulation stack to new repairing stack (viz. 
empty-movement) if different(g, t) ∨  St.error(k) 
≠ ∅ 

2. a∈A, A={teach(α, k), test(t), review(β, k), 
correct(k), … }(see definition 3) 

3. The influence of action repetition times on learner 
meta-cognitive level is formalized by a logarithmic 
function. 
l If the instruction action a is given as teach(α, 

k), the possibility about poor(comprehension-
level) will increase more quickly when the 
repetition times n(a) is higher. 

l If the instruction action a is given as Ctest(α, k), 
the possibility about poor(knowledge-level) will 
increase more quickly when the repetition times 
n(a) is higher. 

p1
p2

p3

test(β, t) 

test(β, t)

test(β, t)
ask(β, t)

review(γ,k)
correct(η, k)

P1: unknown-error state before testing

P2: known-error state after testing

P3: zero-error state after testing

p1
p2

p3

test(β, t) 

test(β, t)

test(β, t)
ask(β, t)

review(γ,k)
correct(η, k)

P1: unknown-error state before testing

P2: known-error state after testing

P3: zero-error state after testing



4. The influence of the spent-time tuple <td, tr> on 
learner meta-cognition level is formalized by a normal 
distribution function. 
l If the instruction action is given as teach(α, k), 

the possibility about poor(comprehension-level) 
will increase more quickly when the absolute 
value between desired spent-time and practical 
spent-time (viz. |tr (a)- td (a)|) is higher. 

l If the instruction action is given as test(α, k), 
the possibility about poor(application-level) 
will increase more quickly when the absolute 
value between desired spent-time and practical 
spent-time (viz. |tr (a)- td (a)|) is higher. 

5. There are two cases about error triple <ep, er, re>, 
which may result in different choice about next stack. 
l Instructional automata will push down a new 

stack if ep ⊂ er. 
l Instructional automata will push down a 

previous stack again if ep ⊄ er. 

The Final Learner-Knowledge-State Set F 
There are some classifications in the final learner-
knowledge-state set.  

1. The final state f is a final tutor-satisfied state if none 
of error(k), unknown(k), incapable-use(m), misuse(m) 
and poor(c) exists in f ∧  Ss (p) ⊇ St (p). 

2. The final state f is a final tutee-satisfied state if f is a 
final tutor-satisfied state ∨  (St (p)-Ss (p) ≠ ∅ ∧  Ss 
(p).passing-ratio >= θ ∧  Ss (p).spent-time <= τ ∧  St 
(p). repetition-times <= ρ). 

3. The final state f is a final tutor-unsatisfied state if at 
least one of error(k), unknown(k), incapable-use(m), 
misuse(m) and poor(c) exists in f  ∨  Ss (p) ⊄ St (p) 

4. The final state f is a final tutee-unsatisfied state if f is 
a final tutor-unsatisfied state ∧  (St (p)-Ss (p) ≠∅ ∧  Ss 
(p).passing-ratio < θ ∨  Ss (p).spent-time > τ ∨  St (p). 
repetition-times > ρ). 

5. The final state f is a final tutor-acceptable state if the 
values for all variables in Ss (p) and St (p) are 
deterministic and consistent with pedagogical 
constraints.  

6. The final state f is a final tutee-acceptable state if the 
values for all core variables in Ss (p) and St (p) are 
deterministic and consistent with pedagogical 
constraints. 

7. The final state f is a final dangerous state if there is 
at least one variable in Ss (p) or St (p) whose value is 
uncertain. 

8. The final state f is a final warning state if there is at 
least one variable in Ss (p) or St (p) whose value is 
inconsistent with the pedagogical constraints 
although the values for all their variables are  
deterministic. For instance, although the student 
passed the examination, his spent time always 
exceeds expected time limit greatly. 

Conclusion                              
The student state model and the core elements in the 
architecture of a practical ITS model based on instructional 
automata theory were highlighted in this paper. The main 
advantages attributed to the instructional automata lie in 
that it can generate, regulate, update and implement 
instructional plans in an efficient and effective way, which 
are tailored to users’ static features and dynamic 
requirements. Moreover, the instructional automata theory 
provides a unified and extendable domain-independent 
environment to ITS designers and engineers.  
 In our future work, instruction initiative will be further 
taken into account in instructional automata, which can be 
classified into tutee initiative and tutor initiative. On the 
basis of instruction initiative, we proposed that the 
instructional automata can also be classified into two kinds: 
tutor-centered IA and tutee-centered IA, which strongly 
affect the granularity of educational delivery during learning. 
In addition, some measures should be taken in order to deal 
with the failures during tutoring and evaluation process, as 
result from inappropriate content and navigation, 
uncertainty regarding the estimate of the student’s 
knowledge. Therefore, an extension of instructional 
automata theory that accounts for these problems needs to 
be designed and developed.  
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