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Abstract 
We develop the default logic for pragmatic analysis of 
natural language queries. Ambiguous sentences are 
considered so that each set of meanings is assigned an 
extension of default system. The approach is applied to 
natural language question answering, where even a correct 
semantic representation needs to be modified in accordance 
to the set of default rules to better match a knowledge 
domain.  

Introduction   

Although recent years have seen an explosion in the 
question answering (Q/A) technology, there is still lack of 
systems satisfactorily providing answers in the domains 
which are logically complex, poorly structured and hardly 
formalized. To approach such domains, designers of every 
Q/A system must find a compromise between a full-
featured natural language processing (NLP) system 
oriented for complex domains, advanced reasoning for 
semantic processing and knowledge representation, and 
shallow processing, leveraging the issues of performance 
and automation of domain creation (Creary and Pollard 1985, 
Romacker et al 1999). 
       In spite of the high number of commercial Q/A 
systems functioning in a wide spectrum of domains, it is 
still unclear what NLP component is essential to achieve 
satisfactory answer accuracy, high performance and 
efficient domain preparation. Clearly, increase of the 
(logical) complexity of queries to be understood can be 
accomplished by involving more sophisticated reasoning. 
Let us enumerate the potential components of an abstract 
Q/A system, considering them from the practical reasoning 
viewpoint. The reader should bear in mind that a particular 
implementation is based on a selected subset of these 
components: 

1) Rule-based system for morphological and syntactic 
analysis that reveals the interconnections between 
the words and their roles. 
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2) Rule-based semantic analysis that obtains the query 
representation after the maximum possible number 
of rules have been applied. 

3) Inference-based pragmatic analysis, transforming 
query representation in accordance with the 
answer knowledge base. 

4) Answer knowledge base, obeying the efficient 
reasoning-based properties of consistency, 
completeness, easy update and restructuring. 

5) Reasoning-accented information extraction. 

6) Reasoning-accented textual annotation 

7) Interactive domain development tools 

     The third component, pragmatic analysis, usually 
attracts the least attention with respect to the other items 
above, probably because it is based on heuristics rather 
than on a firm linguistic or logical base. Pragmatic 
component may implement the verification of 
compatibility between the formal representation of a 
query and the knowledge base. In particular, our study of 
generality control (Galitsky 2003) suggested the feedback 
mechanism of sorting out the invalid hypotheses for 
formal representation of an input question. Therefore, 
pragmatic analysis filters out the hypotheses of syntactic 
and semantic translation of input query, inconsistent with 
domain representation. This approach is especially viable 
under fully formalized domains. 
      In this paper we introduce the technique which allows 
developers of Q/A systems to use the domain-specific 
pragmatic information. We believe that the idea of using 
nonmonotonic reasoning for correction of semantic 
representation of an input query under Q/A was first 
suggested in (Ourioupina and Galitsky 2001). The aim is 
not to achieve a semantic representation which is more 
precise, but to make the given representation fit better into 
the domain. This is achieved by the application of the 
default logic machinery. Default rules can naturally 
appear in the domain representation itself.   
       Note that the use of default rules for the 
transformation of translation formula is independent of the 
degree of knowledge formalization: it helps from fully to 
weakly formalized domains. However, one needs to 
distinguish the default rules for query transformation and 
for domain representation: the former are linked to NL, 



and the latter are supposed to be language-independent. 
Though the default reasoning technique is applicable to a 
variety of semantic analysis approaches, the particular set 
of default rules is domain-specific. 
      Default reasoning seems to be well suited to represent 
the semantic rules which process the ambiguous terms. In a 
horizontal domain, a term may have a set of meanings such 
that each of them is important and needs separate 
consideration.  For a vertical (narrow) domain, an 
ambiguous term usually has one common meaning and 
multiple infrequent meanings which still have to be 
formally represented. The system may assume the default 
meaning of this term unless it is inconsistent to do so. This 
inconsistency can be determined based on the occurrence 
of some words in a sentence, or some terms in the 
translation formula (formal representation of an input NL 
question). We refer the reader to (Hirst 1988, Creary and 
Pollard 1985) for discussions of the disambiguation 
problem. 
      In this study we evaluate the application of default 
reasoning to the domain based on semantic headers 
(Galitsky 2003). However, the proposed technique is 
representation-independent and can be combined with any 
approach to semantic analysis, achieving a certain level of 
formalization (Sondheimer et al 1984, Ciravegna and 
Lavelli 1999). Note that nonmonotonic reasoning is 
suggested here for query processing and not for knowledge 
representation.  
      From the perspective of nonmonotonic reasoning, 
linking the semantic representation of a query with that of 
answers, additional (lexical) data in a query may switch the 
resultant pattern (answer). Such nonmonotonicity would be 
considered as a non-desired property in the standard 
(statistical or structural) pattern recognition settings: 
discovering an additional feature of an input stimulus is not 
supposed to alter the resultant pattern. This is not the case 
for the pattern recognition under Q/A: an occurrence of an 
additional word which may seem insignificant being stand-
alone, may cause a totally different answer for a query. We 
believe explicit nonmonotonic reasoning machinery is an 
appropriate means to handle this phenomenon of NL-based 
recognition systems. 

Basics of Default Reasoning for Question 
Answering  

An abstract default logic (as proposed by (Reiter 1980)) 
distinguishes between two kinds of knowledge, usual 
predicate logic formulas (axioms, facts) and “rules of 
thumb” (defaults). Default theory (Brewka et al 1995, 
Bochman 2001) includes a set of facts which represent 
certain, but usually incomplete, information about the 
world (query, in our case); and a set of defaults which 
cause plausible but not necessarily true conclusions (for 
example, because of ambiguity).  In the case of textual 
knowledge representation, some of these conclusions have 

to be revised when additional context information becomes 
available.   
      Division of knowledge into the fixed (facts) and 
flexible (rules) components may serve as a good model of a 
textual message or an arbitrary portion of text, taken 
separately from its context. Some statements are context-
independent and have a single meaning, other statements 
have context-dependent meanings and can be determined 
after the context is established, and a third group of 
statements is ambiguous in as exact a context as possible. 
As we have said, in this work we use the system of default 
rules to modify the formal representation of a textual 
answer for the sole purpose of question answering and not 
to better represent the text meaning itself ( or knowledge of 
an arbitrary nature). The latter problem is the subject of 
future studies. 
    Let us consider the traditional example quoted in the 
literature on nonmonotonic reasoning: 

      bird(X): fly(X) 
       
             fly(X) 

One reads it as If X is a bird and it is consistent to assume 
that X flies, then conclude that X flies. As a Q/A matching 
rule default, it reads as follows If the query is about the 
bird, and it is consistent to assume that there can be a 
word in this query with the meaning of flying, then 
conclude that the query is about flying. If nothing 
contradictory can be derived from the other words of the 
query, it is natural to assume that this query is about the 
flying of a bird.  
     As a traditional default, we obtain the assumption 
Usually (typically) birds fly. Given the information that 
Tweety is a bird (in accordance with the history of 
nonmonotonic reasoning) we may conclude that he flies. 
But if we learn later that he cannot fly, for example, 
because he is a penguin, then the default becomes 
inapplicable. 
     The nonmonotonic reasoning technique (see e.g. 
(Bochman 2001)) helps us to provide the proper Q/A in 
this situation. Imagine that we have a set of documents 
answering questions about birds.  Let us imagine there is a 
general answer, which presents information that birds fly, 
and which contains common remarks. Besides, there is also 
a specific answer, stating that there is a bird Tweety, who is 
a penguin, lives at the South Pole, swims, but does not fly.  
      If there is no processing of the translation formula, then 
the explicit restriction for the semantic representation will 
look like the following. The possible questions are Do 
birds fly?, Tell me about birds, Which animals fly?, Do 
seagulls fly?, What do you know about eagle birds?, Is 
Tweety a bird?, Does Tweety fly?, Is Tweety a penguin?; 
they will cause the same answer that birds fly, unless we 
mention the bird Tweety. 

bird(X), not(X=Tweety) → answer(birds fly). 

fly(X), not(X=Tweety) → answer(birds fly). 



bird(Tweety) → answer(there is a bird Tweety, which is a 
penguin, lives at the South Pole, swims, but does not fly). 

fly(Tweety) → answer(there is a bird Tweety, which is a 
penguin, lives at the South Pole, swims, but does not fly). 

  The problem with this approach is that it requires 
explicit enumeration of constraints in knowledge base. 
Each exceptional object has to be enumerated in the 
representation, which includes the properties of normal 
objects. When default rules come into play to modify the 
translation this complication is avoided. The first answer 
does not have to contain explicit constraints that X is not 
Tweety or some other object; it will be reached if it is 
consistent to assume that fly(X). The latter is verified using 
the default rule above and the clause that Tweety does not 
fly. 
  Here is a formal definition of default rule, as proposed in 
(Antoniou 1997). A default δ has the form:  

           ϕ: ψ1,…, ψn 
δ  =    
                   χ 

where ϕ, ψ1,…,ψn ,χ  are closed predicate formula and n>0. 
The formula φ is called the prerequisite, ψ1,…,ψn the 
justification, and χ the consequent of δ (pre(δ), just(δ) and 
cons(δ) correspondingly). A default δ is applicable to a 
deductively closed set of formulae Ε iff ϕ∈Ε  and ¬ψ1∉  Ε, 
…, ¬ψn∉  Ε . 
     Note that it is inefficient to encode the rules for typical 
and non-typical situations on the same level of their 
potential application. Instead, all abnormalities should be 
merged and linked with the negation of justification of the 
default rule. The prerequisite of this rule should include the 
typical conditions. 

  Operational Semantics 

In an abstract rule-based system, the inference (or 
recognition) result depends on the order of rule 
applications. The operational semantics of default logic 
come into play to handle the possible order of application 
of the conflicting default rules. In this Section we propose 
an informal description of operational semantics for default 
reasoning. Formal definitions, theorems and proofs can be 
found, for example, in (Antoniou, 1997). 

The main goal of applying default rules is to make all the 
possible conclusions from the given set of facts. If we 
apply only one default, we can simply add its consequent to 
our knowledge base. The situation becomes more 
complicated if we have a set of defaults because, for 
example, the rules can have consequents contradicting each 
other or, a consequent of one rule can contradict the 
justification of another one. In order to provide an accurate 
solution we have to introduce the notion of extensions: 
current knowledge bases, satisfying some specific 
conditions. 

Suppose D is a set of defaults and W is a set of facts 
(our initial knowledge base). Let ∆ be an ordered subset 
of D without multiple occurrences (it is useless to apply 
the default twice because it would add no information). 
We denote a deductive closure (in terms of classical logic) 
of ∆ by In(∆): W ∪  {cons(δ) δ∈ ∆}. We also denote by 
Out(∆) the set {¬ψ ψ ∈  just(δ), δ∈ ∆}. We call ∆={δ0, 
δ1,…}a process iff for every k δk is applicable to In(∆k), 
where ∆k is the initial part of ∆ of the length k. 

Given a process ∆, we can determine whether it is 
successful and closed. A process ∆ is called successful iff 
In(∆)∩Out(∆) = ∅  . A process ∆ is called closed if ∆ 
already contains all the defaults from D, applicable to 
In(∆). 

Now we can define extensions. A set of formulae E⊃ W 
is an extension of the default theory <D, W> iff there is 
some process ∆ so that it is successful, closed, and 
E=In(∆). 

The following example (life insurance Q/A domain) 
shows that there can be multiple extensions for one set of 
facts and default rules: 

dangerous_job(X): insure_life(X) 
δ1       
                   insure_life(X) 

   young(X): not  insure_life(X) 
δ2       

            not insure_life(X) 

These rules explain that people with dangerous jobs 
usually insure their lives and young people normally do 
not. This is knowledge required to answer the question 
Am I advised to have  life insurance as a teenager? Let us 
suppose that we want to conclude something about a 
young man who has a dangerous job: 
W={dangerous_job(X), young(X)}. After the application 
of each default, the other one becomes inapplicable. So, 
both {δ1}and{δ1}are closed and successful processes. 
Thus, both {dangerous_job(X), young(X), insure_life(X)} 
and {dangerous_job(X), young(X), not(insure_life(X))} 
are the extensions. 

Pragmatic Analysis with the Help of Default 
Rules 
Suppose S is a semantic representation of a query. Our 
intention is to transform S into another well-formed 
semantic representation, @S (about S), which fits our 
narrow domain better because it takes into account default 
domain knowledge. Note that the latter is not necessarily 
explicitly mentioned in a NL query, so the transformation 
above is required.  To perform it, the following algorithm 
is proposed: using a set of facts like word X is used in S 
and word X is not used in S as an initial knowledge base, 
we can apply default rules (created manually by 
knowledge engineers) to obtain all the possible 
extensions. These extensions contain facts about elements 
of @S (as well as initial statements). After doing that we 



can use the extensions to build up the @S representation. 
It includes the n-conjunction of  initial facts (word 
occurrences in a query Xi) and their specific meanings  
@Xj :  @S= & (Xi , @Xj,)   
           i,j < n 
     Note that S (and not @S) is indeed the most precise 
representation of the query meaning, taken separately. 
However, S needs to be transformed to point to the 
desired answer with higher accuracy. This transformation 
is intended to eliminate the least important entities so as 
not to interfere with the most important ones, as well as to 
add the implicitly assumed elements. 
      There are two possible ways to use default systems to 
modify semantic representations: 

• Application of defaults in the fixed order. This can 
be used when there are no conflicts in the 
consequents of the default rules. 

• Building extensions for conflicting defaults. We 
employ the operational semantics of default logic in 
more complex situation, for example, when we have 
multiple ambiguous terms in a query (Fig. 1). 

 

Facts Si , 
comprising the 
query 
representation 
(occurrences of 
words in a query) 

Default rules, establishing the 
meanings of words based on the 
other words and the meanings 
that have been established 

Successful & 
closed process:  
extension  
@S1, @S2 ,… 
→ answer 1 

Successful & 
closed process: 
extension  
@S3, @S1 ,… 
→  answer 2 

Either 
unsuccessful or  
non-closed 
process: 
No extension 

Fig.1 Question answering architecture which provides multiple 
answers as a result of default reasoning 

 If we do not want to modify initial representation at all 
(S=@S), we can apply trivial defaults to each element of 
S: 

  X is used in S: X is used in @S 
  
            X is used in @S 

      All the facts in our knowledge base are about the 
element occurrence: it is either used in the representation 
or not. In our rules we can write X instead of X is used in S 
and @X instead of X is used in @S, not causing any 
confusion. Sometimes we will speak about entities X and Y 
connected semantically or syntactically. In that case we 
would write X(Y), which means that X is used in S, Y is 
used in S and X and Y are connected by semantic or 
syntactic link. In this form trivial rules look like: 

 X: @X 
  
    @X 

    We can use these defaults not only when we want to have 
S unmodified. In fact, we should apply trivial rules to every 
representation. Elements which are not affected by 
nontrivial defaults are simply moved from S to @S. As far 
as other elements are concerned, trivial and nontrivial rules 
can interact with each other, leading to specific extensions. 

Processing ambiguous terms 

Ambiguous elements correspond to multiple default rules. 
Let us consider an example from an insurance domain. 
The word company is ambiguous: it can refer either to 
insurance company or to company where the customer 
works. In default form it looks like: 

company():@insurance_company(),not @place_of_work 
δ:    
                          @insurance_company() 

company():not @insurance_company(),  @place_of_work 
ε:  
                              @place_of_work 
If we have no other entities in the query which can help us 
to make a decision on what company is meant, both rules 
(δ and ε) can lead to an extension. As a result we have two 
representations @Sδ and @Sε, and two respective answers.  
       However, if the query contains some words 
incompatible with one of the meanings proposed, then one 
of the rules does not lead to an extension. For example, if 
the query is about companies ratings (What is the best 
company?) then it is about insurance_company rather 
than about place_of_work. Note that this rule of thumb 
holds for the narrow domain on insurance. If a person 
looks for a job-related domain, the Q/A system’s decision 
should be the opposite one. And in the everything-about-
the-world domain we cannot create such rules at all. As a 
default rule, it looks like the following: 

        company(rating): @insurance_company() 
α:    
                @insurance_company(rating) 

Consequent of α contradicts a justification of ε. That is 
why there can be no extension created by means of ε: ε is 
inapplicable after α, α is still applicable after ε, but it 
makes the process unsuccessful. 

If the query contains no information which can help us to 
perform the query disambiguation, default rules lead to 
multiple extensions, corresponding to multiple meanings of 
ambiguous elements. If the query contains some specific 
concepts, our rules lead to single extension and the system 
proposes a single answer. We believe that the optimal 
solution for a Q/A system is to provide multiple answers in 
case of multiple extensions (i.e. in case there are no words 
indicating the particular meaning). 
  Default rules can help us to add new elements to 
semantic representation, using the basics of commonsense 
knowledge. Frequently, it is necessary to insert an entity 



which links the specific attribute with the more general 
concept occurring in a query.  For example, if the query 
contains word school it is likely to be about education. So 
Can I deduct my school expenses? should be interpreted as 
deduct(expense(education(school()))). We propose the 
following default rule: 
 
 

       school(): @education() 

    
         @education(school()) 

This rule should be accompanied by the clause presenting 
situations of justification inconsistency. If we have a query 
Can I deduct my donation to a catholic school?, it is about 
a donation rather than about education. The following 
clause provides the proper solution: 

     @education :- deduct(Attribute),  

                                              not( Attribute =expense). 

The rule above expresses the fact that if there are attributes 
of deduct in a query, then the query is likely about these 
attributes (donation, construction, moving, etc.). If 
Attribute is rather general (expense), then the clause fails 
and justification stays consistent. 
  Let us consider another example when we add an entity 
(donation) to the query representation to link the specific 
word (church) to a general concept (deduct): Can I deduct 
what I gave to church? We have similar default rule: 

church(): @donation() 

  
@donation(church) 

      Furthermore, what would happen if we have more than 
one specific word potentially connected with the general 
concept, as in a query Can I deduct my church school 
expenses? Occurrence of multiple attributes may require 
analysis of conflicting defaults (operational semantics). If 
the justification failure clause for @donation is similar to 
that proposed above, we have two extensions for this query 
- {…, @donation} and {…,@education}. But if we 
consider education to be more general than donation, the 
justification failure clause looks like 

@donation:- deduct(Attribute),not(Attribute=expense),  

                     not(Attribute=education), 
and the only possible extension is {…, @donation}. 

      The default technique indeed brings in significant 
advantages in the processing of poorly structured (NL) 
knowledge representation. If we do not want to use default 
technique for our school example then, either we are not 
able to substitute school() in the formula at all or, we have 
to use  deduct(expense(school())) representation. In the first 
case we lose important information and obtain a wrong 
answer. In the second case we have to provide the 
possibility to substitute university, college, institute, and 
other terms in expense() as well. As a result the domain 

becomes less structured and query processing loses 
efficiency. 
      As we have seen, default rules can help us to improve 
domain hierarchy. It affects not only the performance but 
also the quality of query processing. Let us imagine that we 
have no information about school expenses. Instead, we 
know how to treat educational expenses in general. If the 
system cannot connect school with education, users get 
wrong answers because the formula 
deduct(expense(school())) is interpreted literally. 
  Semantic representation can contain more or less 
specific entities. The most general parts can lead to vague 
answers. For example, the query How to file time extension 
for my tax return? has a representation 
tax(return)&extension(file). It leads to two answers: about 
tax returns in general and about extension of time for filing. 
It is obvious that the first part is redundant and must be 
eliminated. In fact, in tax domain we can interpret 
extension only as extension of time to file, and not for 
example, as extension of computer file. Therefore, 
tax(return) can be deleted from the formula without loss of 
information. We first present the naïve stand-alone rule: 

   extension(time): tax 
              
                  @extension() 

This rule can be read as follows: if a query mentions 
extension of time and it is consistent to assume that it is 
about tax, then the query is indeed only about extension. 
Although this rule follows our intuition better, it is not 
appropriate for interaction with other rules, because it does 
not actually eliminate tax from the current knowledge base. 
Therefore, we suggest the following rule instead:       

   extension(): not @tax() 
δ:    

not @tax 

It is read as follows: if a query contains the word extension, 
then tax should be eliminated. Note that the elimination of 
redundant elements is connected with the disambiguation 
problem. If we have no idea about the topic of the query, 
both meanings (filing time extension and computer file 
extension) are probable, so we need an  additional 
information to apply our analysis to. However, if we 
provide the Q/A for a narrow domain, only one meaning is 
expected and the other is exceptional. That is why this 
additional information becomes redundant. 
      To comment on the rule δ we present the simplified 
default “without extension”, which would mean that we can 
always eliminate tax from a query. 

  ⊥ : not @tax() 
  
      not @tax  

However, this rule would misinterpret the queries What is 
tax?, Can I deduct the tax I paid last year?, and others.  
      Depending on the order in which rules of eliminating 
redundant parts and trivial rules are used, we can obtain 
several extensions containing more or less elements of the 



initial structure, because these two types of defaults make 
each other inapplicable. If we begin with trivial rules, the 
representation remains unmodified. Otherwise, some 
entities are eliminated. The order in which defaults are 
applied can be chosen by knowledge engineers depending 
on the task specifics. 

Conclusions 

In conclusion, we outline the semantic role of the suggested 
approach. Generally speaking, default rules are used to 
convert a formal representation of an NL question in the 
form which is adequate as a knowledge base query. Such 
the conversion is required even for a semantically correct 
representation of a given query. The set of default rules 
with consequents that correspond to a single knowledge 
base query covers semantically different, but pragmatically 
similar questions. Syntactically different questions are 
handled on the earlier stage (at a lower level with respect to 
a knowledge base); however, application of default rule is 
capable of correcting a wrong syntactic or semantic 
processing. 
      As to the quantitative  measure of how the Q/A  
accuracy can be improved by applying default rules, we 
present the data for the domain on retirement saving, which 
is quite narrow. This domain contains 1200 generalized 
questions (semantic headers), 400 answers prepared by an 
expert, and is subject to testing by 5000 questions most of 
which were supplied by customers. In the Table 2 below 
we show the percentages of the above questions which 
were properly answered, caused situations where there was 
no appropriate knowledge available, led to a lack of 
understanding or a wrong answer. As we see, the overall 
accuracy was increased by 15 percent. It included 4.6 
percent cases when the query modification lead to a 
successful run against a knowledge base versus a void run 
without such mofification, and 10.4 percent when a better 
answer was returned. 
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Before using default 
rules  

65 7 9 19 

After using default 
rules 

75 7 6 12 

Table 2: Percentages of correct/wrong answers before and after 
default rules were used to transform the formal representation of 
input query. 
 
       One of motivations of our study of default reasoning 
for Q/A is the lack of convincing, from our viewpoint, 
examples of practical default reasoning, and especially the 
operational semantics of default reasoning. The verbal 
description highlights “usual” (default) and “unusual” 
circumstances but, as only the data is formalized and there 

are conflicting rules while computing the extensions, 
intuitive perception of being usual and unusual dissipates. 
Only thorough consideration of natural language scenarios, 
presented within a vertical domain, may serve as a 
satisfactory illustration of practical nonmonotonic 
reasoning. Nontrivial extensions induced by a query appear 
when this query has multiple ambiguities. In particular, the 
situations where two words or multi-words have double 
possible meanings each such that the sentence has at least 
three overall meanings, are relatively rare (Krijevsky and 
Galitsky 2002). 
       NLP offers unique possibilities to apply nonmonotonic 
reasoning to a domain which is sufficiently complex in 
terms of knowledge structure on one hand and possess the 
intrinsic feature of having a typic and an atypical meanings 
on the other hand. Advanced theoretical investigations have 
been carried out in order to build the formal background 
for nonmonotonic intuition and a series of counter-
examples (see e.g. Pascu and Carpentier 2002). However, 
the number of practical applications of nonmonotonic 
reasoning is far below the number of the theoretical results 
and their value. We believe that this study contributes to 
restoration of the balance between theoretical and applied 
issues of default reasoning. 
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