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Abstract

Artificial Neural Networks (ANNs) have proved both a pop-
ular and powerful technique for pattern recognition tasks in
a number of problem domains. However, the adoption of
ANNs in many areas has been impeded, due to their inabil-
ity to explain how they came to their conclusion, or show in
a readily comprehendible form the knowledge they have ob-
tained.
This paper presents an algorithm that addresses these prob-
lems. The algorithm achieves this by extracting a Decision
Tree, a graphical and easily understood symbolic representa-
tion of a decision process, from a trained ANN. The algorithm
does not make assumptions about the ANN’s architecture or
training algorithm; therefore, it can be applied to any type of
ANN. The algorithm is empirically compared with Quinlan’s
C4.5 (a common Decision Tree induction algorithm) using
standard benchmark datasets. For most of the datasets used
in the evaluation, the new algorithm is shown to extract De-
cision Trees that have a higher predictive accuracy than those
induced using C4.5 directly.

Introduction
The two main approaches to machine learning have been Ar-
tificial Neural Networks(ANNs) and symbolic learning al-
gorithms. ANNs characteristically produce models that are
capable of generalizing to previously unseen data (predic-
tion). However, ANN’s do not explicitly reveal the reason-
ing behind their decisions. Conversely, symbolic learning
methods, do not generalize as well as ANNs, but present
the explanation behind their reasoning explicitly. This pa-
per presents a method that extracts a symbolic representa-
tion from the knowledge embedded within an ANN. There-
fore combining the predictive accuracy of an ANN with the
advantage of an explicit explanation provided by a symbolic
model.

Artificial Neural Networks
The field of Artificial Neural Networks consists of a large
collection of models and techniques originally inspired by
biological nervous systems such as the human brain. ANNs
are based around a number of individual models of neurons
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Figure 1: An Artificial Neuron
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Figure 2: A two layer Multilayer Perceptron

(figure 1) arranged in a network. These artificial neurons ac-
cept a number ofweightedinputs and process these inputs
to produce an output. It is the value of these weights that
determine the function of the ANN. Using the backprop-
agation algorithm (Rumelhart, Hinton, & Williams 1986),
Multilayer Perceptrons (MLPs) are able to learn non-linear
mappings. It is this type of model that will be used through-
out this paper. A typical two layer MLP is shown in figure 2.

Decision Trees
Decision Trees are one of the most widely used classifier
models(Michie, Spiegelhalter, & Taylor 1994). Decision
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Figure 3: Decision for Quinlan’s Play–Not Play Example

Trees are directed acyclic graphs consisting of nodes and
connections (edges) that illustrate decision rules. Each non-
terminal node has a splitting test associated with it, which
splits the data into mutually exclusive subsets. The terminal
nodes called leaves represent a classification. A Decision
Tree for the Quinlan’s classic ‘play/not play tennis’ exam-
ple(Quinlan 1986) is shown in figure 3.

To make a decision using a Decision Tree start at the root
node and follow the tree down the branches, according to
the tests for the instance being classified, until a leaf node
representing the class is reached. Although Decision Trees
are very simple to understand, the method of creating a de-
cision tree from examples is a nontrivial task, in fact, it has
been shown to be NP complete(Hyafil & Rivest 1976).

Rule Extraction From Multilayer Perceptrons
Multilayer Perceptron’s (MLP’s) greatest weakness is their
lack of transparency. Unlike decision trees, which show
their reasoning explicitly, MLPs hide their knowledge in the
complex interrelationships of their weights. This means that
although MLPs often provide excellent models for predic-
tion, they provide no insight into the relationships between
input values and output values that the model may have
found(Andrews, Diederich, & Tickle 1995). For example,
Rothwell(2002) has created an ANN that can classify a per-
sons responses as either deceptive or truthful, using clues in
their nonverbal behaviour (eye moments, shrugs etc) but al-
though the ANN has good predictive accuracy it does not
reveal the relationships it has found between nonverbal be-
haviour and deception.

The aim of rule extraction is to reduce the complexity
of an ANN into a more easily understood symbolic form.
These rules can then be analyzed for trustworthiness for
safety critical systems or used to provide insights into the
relationships found by the ANN.

There have been two main approaches to extracting
rules from trained ANNs decompositional and pedagogi-
cal(Craven & Shavlik 1994a). The decompositional ap-
proach examines the individual weights of the underlying
ANN. This approach is typified by the KT algorithm(Fu

1995). The second approach to rule extraction is the ped-
agogical approach. This approach is typified by the Trepan
algorithm(Craven & Shavlik 1994b). This approach treats
the ANN like a ’black box’, and uses a symbolic learning
algorithm to ’learn’ the rules which represent the mapping
the ANN has found.

ExTree

ExTree is an algorithm(figure 5) for extracting Decision
Trees from trained ANNs. ExTree is an example of the
pedagogical approach to rule extraction. ExTree uses
Craven’s querying and sampling method (Craven & Shavlik
1995), but unlike Craven’s Trepan, which uses MofN based
splits(Murthy 1995), ExTree uses standard splitting tests like
CART and C4.5.

The standard Decision Tree induction algorithms have the
limitation that the selection of the splitting test is based on
fewer and fewer instances as the tree grows downwards.
Therefore, the splitting tests that are near the bottom of the
tree are often poorly chosen because they are based on less
data. ExTree alleviates this problem by generating new in-
stances then querying the ANN (which acts as an oracle)
with the newly created instances. ExTree can then select a
splitting test based on the newly created instances as well as
the original dataset.

ExTree requires a trained ANN to act as an oracle. In the
next section ExTree is applied to trained MLPs but ExTree
could be as easily applied to other ANN types such as trained
Radial Basis Function networks or even other pattern recog-
nition techniques which are opaque. ExTree does not require
the ANN to use a special training algorithm or architecture
only that it maps the input space to 1 ofK classes. Once a
trained ANN is available ExTree proceeds in a similar man-
ner to Decision Tree induction algorithms recursively split-
ting the tree by finding the best feature to split on.

Split Types

ExTree considers two types of tests: for discrete features Ex-
Tree creates a branch for each possible value of the feature,
for continuous numeric features a binary split is made with
two outcomesA ≤ Z andA > Z. The threshold valueZ is
determined by first sorting the set of instances on the value
of featureA. For a set withm unique values for featureA
there will bem − 1 possible split points that could parti-
tion the set into two. ExTree chooses a split point halfway
between the bounding values.

Split Selection Measure

To determine which one of the possible splits to use, Ex-
Tree uses a modification of Information Gain. Information
Gain has a bias towards selecting tests with many outcomes.
Quinlan(1999) proposed a modification to Information Gain
giving Information Gain Ratio. Gain Ratio is determined
by dividing the Information Gain by the Information gained
solely by splitting the data into the number of outcomes re-
sulting from the test. The information gained by arbitrarily
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Figure 4: A Decision Tree demonstrating a constraint

splitting a setS into n subsets is given by

split info(X) =
n∑

i=1

|Si|
|S| × log2

( |Si|
|S|

)
. (1)

The gain ratio of testX can thus be calculated as

gain ratio(X) =
gain(X)

split info(X)
. (2)

Oracle Querying

As previously stated the advantage of pedagogical ap-
proaches such as ExTree is that new instances can be created
and classified by the ANN. ExTree is able to create these
new instances by maintaining a set of constraints which
flows down the tree with the training instances. These con-
straints specify what conditions an instance must have satis-
fied to have reached a node as determined by the splitting
tests above. For example, new instances created at node
1 in figure 4 must satisfy the constraints:Att1 < 50 and
Att2 < 15. Given these constraints, new instances can cre-
ated by sampling linearly in the area of input space delim-
ited by the constraints. Currently ExTree makes an extra
100 extra instances at ever split point but ideally the num-
ber of extra instances created would be adjusted to suite the
dataset.

Pruning
ExTree only stops growing the tree when the set of instances
reaching a node all belong to the same class or the instances
can not be split any further. For the majority of datasets

Extree( dataset S, constraints Const )
BEGIN
NewInstances :=

Create N new instances constrained
by Const;
FOR each instance in NewInstances

Label instance using ANN
S := S + NewInstances;
IF all S belongs to Ck THEN

label node as leaf Ck

9 RETURN
ELSE

Find Best Split S∗
Split the S into subsets S1..Snaccording

to S*
FOR each subset Si

BEGIN
IF the number of instances in

subset is 0
THEN mark node as dominating class

of parent
ELSE IF node is a mixture of classes

Create new Constraint Consti from Const,
ExTree(oracle, Si, Consti)

END

Figure 5: ExTree Algorithm

which contain noise this will lead to overfitting. ExTree uses
a form of post-pruning to create smaller trees that should
generalize better and be more comprehendible. Before train-
ing, 33% of the training data is set-aside as a validation
set. ExTree uses the pruning method of subtree replace-
ment. Starting at the leaves and working back towards the
root, each subtree is tested using the validation set to deter-
mine whether the replacement would be beneficial. If the
tree with the replacement has a lower error then the subtree
is replaced.

Empirical Evaluation of Extree
ExTree was evaluated using benchmark machine learning
datasets from the well known UCI machine learning reposi-
tory(Blake & Merz 1998). The predictive performance of a
trained MLPs and C4.5 induced Decision Trees were com-
pared on number of datasets. Nine datasets from those
which the MLP outperformed the C4.5 Decision Tree were
randomly chosen to be used in this evaluation. The num-
ber of input features and number of classes for each dataset
is given in table 1. The Balance scale dataset is an artifi-
cial dataset originally generated to model psychological ex-
periments, all the others are real-world datasets originally
collected in their respective fields and then donated to the
UCI machine learning repository. The Hepatitis, Diabetes,
Housing and Heart datasets consist of only numeric features.
The Vote dataset consists of purely discrete data. The Labor
and Colic datasets have a mixture of numeric and discrete
features. The Housing dataset in its original form has a con-
tinuous output value, but for these experiments it has been



Dataset num of features num of classes
Balance-scale 4 3
Colic 8 2
Diabetes 24 2
Eucalyptus 19 5
Heart-statlog 13 2
Hepatitis 20 2
Housing 14 2
Labor 16 2
Vote 17 2

Table 1: Number of features and classes for datasets

transformed into a two class discrete problem of predicting
whether the output value is above $20000.

To measure the performance of the algorithm, two stan-
dard statistical techniques were used: Stratified ten fold
cross-validation(Stone 1974) was used to obtain a reliable
measure of the predictive accuracy of the algorithm on the
datasets and a Wilcoxon(Wilcoxon 1945) rank sign test was
used to test whether the difference in accuracy between Ex-
Tree and C4.5 was statistically significant. In all the ex-
periments the same ANN topology was used: a two-layer
MLP, with five hidden nodes. All training was done using
gradient descent with momentum to minimize a cross en-
tropy (Van Ooyen & Nienhuis 1992) error function. The
hidden nodes used the bipolar activation function. The
nodes in the output layer used the softmax activation func-
tion1. Learning rate and momentum were set at 0.01 and
0.9 respectively. Performance of the ANNs could possi-
bly be improved by optimizing the learning rate, momen-
tum and architecture of each ANN to each of the individual
datasets but because the purpose of this paper is to illus-
trate the validity of the ExTree approach to rule extraction
this has not been done. To foster generalization, 33% of
the training set was set aside to be used as an early stop-
ping validation set. The input features were normalized to
have a mean of 0, and a standard deviation of 1 for the
ANN as is normal for MLP training(Demuth & Beale 2002;
Haykin 1999). For purposes of comparison, predictive clas-
sification accuracy results were obtained for these datasets
using an implementation of Quinlan’s C4.5 algorithm2. The
C4.5 implementation used the same validation set based
pruning technique as ExTree to ensure that any differences
in predictive accuracy were not due to the pruning techique
used.

Table 2 shows the results obtained using 10-fold cross-
validation. As expected the results confirm that ANNs do
outperform C4.5. C4.5 does not make maximum use of
the information present in the datasets. ExTree performed
slightly better on average than C4.5 did. ExTree produced

1The combination of softmax activation functions and a cross
entropy error function has the advantage of allowing a probabilistic
interpretation of the ANNs output(Ripley 1996)(Bishop 1995).

2It should be noted that this was not the ’official’ C4.5 released
by Quinlan but a C++ work-a-like implementation which shares
much of the codebase of the ExTree implementation to ensure a
fair comparison.

DataSet Neural(CE) C4.52 ExTree100
Balance-scale 89.60 77.92 78.60
Colic 82.61 81.52 81.79
Diabetes 75.91 72.53 76.04
Eucalyptus 62.09 60.60 57.20
Heart-statlog 83.33 71.11 78.15
Hepatitis 83.87 70.32 80.65
Housing 87.55 82.41 85.18
Labor 90.35 83.33 85.96
Vote 96.09 93.79 95.63
Mean 84.18 77.69 79.80

Table 2: Percentage of Instances Classified Correctly

more accurate models on 8 of the 9 datasets. A Wilcoxon
rank sum test showed that the difference between the C4.5
and Extree was significant(p < 0.01). ExTree appeared to
do particularly well on numerically dominated datasets with
the largest improvement over C4.5 made on the Heart and
Hepatitis datasets which consist of purely numeric features.
A likely explanation for this improvement is that if the re-
gion ofX where the optimal splitting point lies is sparsely
represented in the dataset then C4.5 will be unlikely to find
it, whereas ExTree will have sampled extra points in the re-
gion and so will be able to produce a more accurate estimate
of the optimal splitting point. There are still large differ-
ences between many of results obtained by the ANN and
ExTree which suggests that there is still much knowledge to
be extracted. The ANN outperformed both ExTree and C4.5
by around 10% on the Balance scale dataset. This is almost
certainly due to Decision Trees not being able to represent
the mapping required by the balance scale dataset3 This in-
dicates that there will be ANNs that ExTree will be unable to
extract sufficiently comprehensible rules from because De-
cision Trees are simply not powerful enough to represent the
function that the ANN has learnt.

Conclusion
A method for extracting Decision Trees from trained Ar-
tificial Neural Networks regardless of the ANNs architec-
ture and independent of its learning algorithm has been pre-
sented. It was found that the trees produced had better pre-
dictive accuracy than trees produced using the C4.5 based
learning algorithm for eight of the nine datasets. The results
obtained using the ExTree algorithm indicate that querying
and sampling the ANN to induce a C4.5 like decision tree
is a workable approach for a wide range of problem do-
mains. The results showed that there were still large dif-
ferences between the predictive accuracy of the underlying
ANN and ExTree on some datasets. This suggests there is
further knowledge to be extracted from the ANN. An obvi-
ous next step to achieving this would be to modify the num-
ber of new instances generated at the nodes (currently 100).

3Because balance scale is an artificial dataset the concept func-
tion is actually known: (Feature1× Feature2) is equal, greater than
or less than (Feature2× Feature3)?



Preliminary experiments using an increased number of gen-
erated instances on a subset of the datasets used in this paper
have indicated an improvement in predictive accuracy.

The results report in the last section used ANNs had not
been optimized for the individual datasets. Optimizing the
ANN topology would most likely increase the accuracy of
the ANN which would in turn increase the accuracy of the
Decision Tree extracted by ExTree.
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