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Abstract 
 

A blind classification algorithm is presented that uses hyper-
dimensional geometric algorithms to locate a hypothesis, in 
the form of a convex polytope or hyper-sphere. The convex 
polytope geometric model provides a well-fitted class 
representation that does not require training with instances 
of opposing classes. Further, the classification algorithm 
creates models for as many training classes of data as are 
available resulting in a hybrid anomaly/signature-based 
classifier. A method for handling non-numeric data types is 
explained. Classification accuracy is enhanced through the 
introduction of a tolerance metric, ß, which compensates for 
intra-class disjunctions, statistical outliers, and input noise in 
the training data. The convex polytope classification 
algorithm is successfully tested with the voting database 
from the UCI Machine Learning Repository  (Blake and 
Merz  1998), and compared to a simpler geometric model 
using hyper-spheres derived from the k-means clustering 
algorithm. Testing results show the convex polytope 
model’s tighter fit in the attribute space provides superior 
blind data classification.  

Introduction 
Many popular data classification methods, such as 
Artificial Neural Networks, Support Vector Machines, 
and Decision Trees, are not blind. This indicates that on a 
decision with two or more classifications, they must be 
trained upon instances of the various data classifications 
against which they will be tested. If they are tested against 
an unfamiliar class instance, the learned hypothesis would 
not be able to reliably distinguish the foreign instance 
from the classes of the training set. A blind classification 
method recognizes that a foreign instance is not a member 
of any of its training classes  and identifies it as an 
anomaly. Anomaly detection is useful when there is 
incomplete domain knowledge available for training, as in 
one side of a two sided classification problem. 
 This paper presents a blind classification method 
using hyper-dimensional geometric constructs to create a 
class model without referencing other classes. Section 2 
introduces applicable geometric concepts generalized to 

arbitrary dimensions. Section 3 describes how class 
instance data is formatted for use in the geometric 
classifier. Sections 4 and 5 present two different hyper-
geometric construct-based classifiers, one using convex 
polytopes and the other using hyper-spheres. Section 6 
covers the testing methodology used to evaluate both 
classifiers and section 7 presents the testing results.  

Applicable Geometric Concepts 
Central to the primary geometric classifier algorithm is 
the concept of a polytope. A d-polytope is a closed 
geometric construct bounded by the intersection of a finite 
set of hyperplanes , or halfspaces, in d dimensions. It is the 
generalized form of a point, line, polygon, and 
polyhedron in zero, one, two, and three dimensions, 
respectively (Coxeter, 1973), but it is also defined for 
arbitrarily higher dimensions. As the number of 
dimensions rises, a polytope’s structure becomes 
increasingly complex and unintuitive for the human brain 
accustomed to modeling objects in the three-dimensional 
physical world (see Table 1). 
 

Dimensions Polytope 
Name 

Example 

0 point 
 

1 line  
2 polygon 

 

3 polyhedron 

 
4 polychoron N/A 

d d-polytope N/A 

Table 1- Dimensional Progression of Polytopes  

 
A polytope is convex if a line segment between any 

two points on its boundary lies either within the polytope 
or on its boundary. A convex hull of a set, S, of points in 



d dimensions is the smallest convex d-polytope that 
encloses S (O'Rourke 1998). Each vertex of this enclosing 
polytope is a point in S. As a two dimensional analogy, 
imagine that a set of nails (points) is driven into a table or 
other flat surface (plane). Next, a single rubber band is 
placed tightly around all of the nails. The polygon 
outlined by the rubber band is the convex hull of the 
points marked by the nails (see Figure 1a). The nails 
touching the rubber band where it bends are the vertices 
of the polygon. 

Each of the polytopes drawn in the third column of 
Table 1 is a special kind of polytope called a simplex. A 
d-simplex is the simplest (i.e. has the smallest number of 
vertices, edges, and facets) possible polytope that can 
exist in d dimensions. A d-simplex is always convex and 
contains exactly d+1 non-coplanar vertices. Thus, a d-
dimensional convex hull cannot be computed for fewer 
than d+1 points. 
 

  
(a) 2-D (b) 3-D (Lambert 1998) 

Figure 1- Convex Hulls  

 
The secondary classifier makes use of the generalized 

circle, or hyper-sphere. A d-sphere is a hyper-sphere in d 
dimensions that is defined simply by a center point and a 
radius.  This construct is significantly easier to deal with 
than the convex polytope. This fact has both its 
advantages and disadvantages, as will be explored in a 
later section. 

Both geometric classifiers evaluate separations 
between points in d-dimensional space using generalized 
Euclidean distance. The Euclidean distance between any 
two points in a continuous d-space is derived from the 
Pythagorean Theorem (Weisstein, 1999) and is given by 
Equation 1. It is common to compare distances squared to 
avoid performing a computationally expensive square root 
calculation. 
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Data Representation  
The data on which the hyper-geometric classifier trains 
and tests is comprised of a set of instances. Each instance 
belongs to a class and possesses an ordered list of 
attributes. Each class instance with d attributes  is mapped 

to a real-valued d-vector which represents a point, p, in a 
continuous d-space. Point p is defined symbolically as: 
 

{ } d
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The attribute values are mapped to the 1ℜ∈ip .Many 
classification problems involve non-numeric attributes. 
For example, an attribute describing the weather could 
contain values such as “sunny”, “cloudy”, or “rainy”.  
Such non-numeric attribute values may be arbitrarily 
mapped to real numbers, but the chosen mapping must be 
consistently applied. This arbitrary mapping leads to 
equally arbitrary point coordinate assignments and cluster 
disjunctions within the attribute space. These disjunctions, 
if not addres sed, can negatively affect the classification 
accuracy of the derived geometric class model. A method 
to handle these disjunctions is explained in the next 
section. 

Convex Polytope  Classifier  
Once the training instances  for class C have been 

mapped to a set, T, of d-vectors, a geometric class model 
is created. If the desired geometric shape is a convex d-
polytope, then the convex hull of T is computed: 

 
THTConvexHull ⊆≡)(  

 
For classification purposes, the convex hull of T is 

represented as a set of vertices, H, which are the vertices 
of the smallest convex d-polytope that encloses T. Note 
that this is a blindly-created model because it is derived 
solely from instances of class C. It knows nothing about 
the attribute values  of other classes. 

A  distinct test point, p, is declared to be a match 
(member of class C) iff it is bounded by the polytope 
defined by H. This is determined by computing: 
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If p is not bounded by H’s polytope, then D will 

represent a larger polytope of which p is a vertex. If p is 
bounded by the polytope, then HD ≡ . An alternate 
method, which handles the special case of Hp ∈ (i.e. p  
need not be distinct), is to compare the hyper-volumes of 
the polytopes represented by D and H. If 

)()( HvolumeDvolume > , then p does not match the 
model and is declared anomalous with respect to class C. 

Spatial disjunctions of data clusters and statistically 
extreme points caused by input noise or other factors can 
result in a convex hull model that is too voluminous, 



enclosing much of the attribute hyper-space that does not 
rightly define class C. This extra space translates to a 
poorly fitted model that is highly susceptible to declaring 
false positives. 

 
Convex Hull Tolerance Parameter: ß 

 
To compensate for disjunctions and lessen the impact of 
statistical outliers, a tolerance feature controlled by 
parameter 10 ≤≤ β  is added. It breaks up training 
points into groups of smaller convex polytopes and 
provides a tighter fit around the training data, as follows: 
 
1. Select values MIN and MAX, such that MIN < MAX.  
2. Scale each dimension of the vertices in T between 

MIN and MAX. All points in T then lie inside of a d-
hypercube with opposing extreme points at {MINd} 
and {MAXd}. The distance squared between these 
two extreme  points: 

22 )(}){},({ MINMAXdMAXMINdist dd −=  
provides the upper bound on the distance squared 
between any two points in T: 

22 )(),(:, MINMAXdqpdistTqp −≤∈∀  
3. Let G be an undirected, unweighted graph. For each 

vertex in T, add a corresponding node to G. Create an 
edge between each distinct pair of nodes, p and q, in 
G where: 

222 )(),( MINMAXdqpdist −≤ β  
4. Partition G into unconnected sets, such that in each 

set every node is connected by at least one edge and 
no edges  cross between sets. Throw out any set with 
fewer than d+1 non-coplanar points (the minimum 
needed to create a simplex in d-space--this is where 
statistical outliers are discarded). 

 
The multiple convex hulls constructed around the 

partitioned sets of G comprise the model of class C. Test 
point p is then scaled by the same factors used on T in 
step 2 and is declared a match iff it resides within any of 
C’s convex polytope models. With ß=1, the algorithm 
behaves as the unmodified version and creates a single 
convex polytope model. As ß decreases, the potential 
number of smaller polytopes  will increase and their 
combined hyper-volume in the attribute space will 
decrease. In testing, this leads to a lower probability of 
false positives at the expense of a higher probability for 
false negatives , or a loss of generality. At ß=0, no convex 
hull models are created and all test points are rejected. 
Finding the right ß value for each class model to fit the 
training data properly and achieve a good balance 
between false positives and negatives requires 
experimentation. 

If instances from multiple classes are available for 
training, then hyper-geometric models, or signatures, are 
created for each class. Test instances are compared 
against each of the models and classified as an anomaly if 
no matches are found. This classifying algorithm is thus a 
hybrid signature/anomaly detector. Classification 

accuracy and specificity increases with the level of 
training data available. 

When the classifier contains signatures for more than 
one class, model overlapping is possible. This is 
especially true when poorly discriminating attributes are 
used or when a model’s ß value is too high. Multiple class 
matches may be acceptable in the case of non-mutually 
exclusive classes (i.e.: a person with dual citizenship). For 
mutually exclusive classes, the accuracy of overlapping 
matches may be improved with a tie-breaking protocol, 
perhaps relying upon the test point’s distance from each 
geometric model’s center or nearest boundary. 

There are many freely available programs that 
compute convex hulls in high dimensions. (Avis , 
Bremner, and Seidel 1997) evaluated the performance of 
many of the most popular programs , including cdd+, 
PORTA, qhull, and lrs. The qhull program (Barber and 
Huhdanpaa 2002), version 2002.1, is used with this 
convex polytope classifier, in part because it can compute 
hyper-volumes. Qhull has a time complexity of 

  )( 2/dnΟ , for n input points  in d-space (Barber, Dobkin, 
and Huhdanpaa 1996).  

Hyper-sphere Classifier: k-means 
Hyper-spheres may also be used as the geometric class 
model, in lieu of convex polytopes. Using this paradigm, 
a class is described by a set, S, of k  hyper-spheres . The k-
means clustering algorithm partitions the training set, T, 
into k  different clusters. Each cluster has a centroid, the 
average of all points in the cluster. The k-means algorithm 
attempts to minimize the sum of squared within group 
errors, or the sum of the distance squared between each 
point and the centroid of its assigned cluster. 

k  behaves as a tolerance parameter for the hyper-
sphere classification algorithm by controlling the 
partitioning of T. The cluster centroids produced by the k-
means algorithm become the center points of the k hyper-
spheres in S. The radius of each hyper-sphere is given by 
the distance between the corresponding centroid and the 
most distant point in its cluster. Point p is bounded by a 
hyper-sphere with center point c and radius r iff 

rcpdist ≤),( . A point is declared a member of class C 
iff it is enclosed by any of the k  hyper-spheres  in S. 

The hyper-sphere classifier uses the SimpleKMeans 
program of the WEKA java suite, version 3.2.3 (Witten 
and Frank 2002). The time complexity of the k-means 
algorithm is )(knrΟ , for k  clusters, n points, and r 
iterations (Wong, Chen, and Yeh 2000). Testing a point 
for inclusion in S’s k  hyper-spheres takes )(kdΟ  time.  

The obvious advantage the hyper-sphere model has 
over a convex polytope is that its time complexity is 
linear, not exponential, in d.  Thus, a hyper-sphere can 
create a model with much higher dimensionality than is 
feasible with a convex polytope. The main advantage the 
convex polytope paradigm holds is that it can create much 
tighter-fitting models than are possible using a hyper-



sphere—an important requirement for good blind 
classification, as testing will show. 

Testing Methodology 
Both the convex polytope and the hyper-sphere geometric  
classifiers are tested with the voting database from the 
UCI Machine Learning Repository (Blake and Merz, 
1998). It contains the voting records of members of the 
1984 U.S. House of Representatives on 16 key votes. 
Each instance in the database represents an individual 
member of congress who belongs to one of two classes: 
Republican or Democrat. The instance attributes are the 
individual’s choices  on the 16 votes . Each attribute has 
one of three values: “yea” (voted for, paired for, or 
announced for), “nay” (voted against, paired against, or 
announced against), and “unknown” (voted present, voted 
present to avoid a conflict of interest, or did not vote).  

The non-numeric attribute values “nay”, “unknown”, 
and “yea” are arbitrarily mapped to real numbers -1, 0, 
and 1, respectively. Due to the dimensional complexity of 
the convex hull algorithm, the classifiers train and test 
with only the first seven of the 16 available attributes.  

The testing regimen creates a total of 6,400 blind 
models of the two classes, using the two different hyper-
geometric structures and sixteen different values for their 
applicable tolerance parameters (ß or k). These models are  
tested for matches a total of 147,200 t imes with test points 
from both classes.  

The results are displayed in the box-whisker graphs of 
Figure 2 through Figure 5. Each box-whisker structure 
displays the maximum, 3rd quartile, median, 1st quartile, 
and minimum match percentages over 100 trials  with a 
given tolerance parameter, training class, and testing 
class. In each trial, 90% of the training class instances are 
randomly selected for training. The testing set is 
comprised of the remaining 10% of the training class (top 
graphs) plus a random 10% of the non-training class 
(bottom graphs).  

Next, the best ß values for both models are used in a 
test to gauge how overall detection accuracy is affected 
by the training set size, as a percentage of the whole 
database. Overall accuracy is defined as average 
probability of the classifier correctly identifying a test 
instance. The results are given in Figure 6. 

Results Analysis 
Strong test results are represented by a high mean match 
percentage for the top graphs (correct matches) and a low 
mean percentage on the bottom graphs (false positives). A 
narrow inner-quartile range (distance between the Q3 and 
Q1 bars) reflects consistent/stable performance. 
 As expected, the convex polytope model’s tighter fit 
of the data space produces better results than that 
achieved with hyper-spheres.  

 

 

 
Figure 2 - Republican Model (Convex Polytopes) 

 
Figure 3 - Democrat Model (Convex Polytopes) 
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Figure 4- Republican Model (Hyper-Spheres) 

 

 

Figure 5- Democrat Model (Hyper-Spheres) 

 
The best ß values for the Republican blind model 

(Figure 2) range roughly between 0.45 and 1.0. The best ß 
for the Democrat model (Figure 3) falls at about 0.35. At 
these ß values both models  exhibit good, stable 
classification accuracy with low incidence of false 
positive and false negative matching errors. This is 
especially impressive considering that the classifiers use 
less than half of the available attributes! 
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Figure 6 - Training Sample versus Detection Accuracy 

 

The hyper-sphere models (Figure 4 and Figure 5) do 
not fare so well.  Their performance is less stable, as 
evidenced by their wider bar-whisker graphs. At every 
value of k  the models exhibit inferior balancing of false 
positive and false negative errors. 

Figure 6 shows that the overall classification accuracy 
for the convex polytope model declines only gradually as 
a smaller percentage of the database is used for training. 
Note that an overall accuracy of 50% is equivalent to 
classification via the flip of a coin. The classifier drops to 
this level when the training sample size is not large 
enough to form a working convex hull model. 

Preliminary testing with a few other UCI Machine 
Learning Repository databases suggests that the tight fit 
provided by a convex polytope does not perform as well 
for training sets requiring more generality. For example, 
for each of the monks1, monks2, and monks3 databases, 
which were designed to test induction algorithms, the 
convex polytope classifier achieved a blind classification 
accuracy of about 70%. Accuracy was increased to about 
80% by applying some domain knowledge in the form of 
two class models using the previously described tie-
breaking protocol. On the other hand, the classifier 
achieved 99% accuracy on the Iris database. 

Since a blind classifier does not, by definition, 
compare and contrast attribute values between opposing 
classes, it is at a clear disadvantage for sparse training sets 
(requiring greater generality), compared to more 
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traditional non-blind classifiers. This is the tradeoff for 
being able to recognize anomalous classes. The blind 
hyper-geometric classifier performs best on diverse 
training sets whose points are well-representative of the 
class’ true attribute space topology. In other words, a 
good blind class model can only be achieved if the class is 
well known. 

Future Possibilities 
The negative impact of the convex hull complexity 
limitation on the number of dimensions may be lessened 
by creating multiple classifiers, each using different 
partitions of the attribute space, and then boosting or 
bagging to combine the collective results. Alternate 
implementations of a tolerance feature can be explored to 
perhaps increase the generality of the hyper-geometric 
classifier. It may be possible to reduce the hyper-sphere 
model over-inclusiveness problem by scaling down the 
radii of the hyper-spheres.  

Structures other than convex polytopes and hyper-
spheres may be used in a hyper-geometric classifier. A 
polytope created by the alpha-shapes algorithm may be 
especially promising. Such a polytope need not be 
convex, potentially allowing for an even better spatial fit 
around training data. Further, the algorithm already has a 
built-in tolerance value in alpha. However, the alpha-
shapes algorithm suffers from similar dimensional 
complexity issues as the convex hull algorithm. While an 
alpha-shape is possible in hyper-dimensional space 
(Edelsbrunner and Mucke 1994.), the authors have yet to 
find an alpha-shape tool that can exceed three dimensions. 

Conclusion 
To be an effective blind classifier, a geometric construct 
must be versatile enough to create a good fit around a 
wide variety of training data topologies in the attribute 
space. Testing results on the voting database show that a 
hyper-dimensional convex polytope can offer good blind 
classification, even when dealing with non-numeric 
attribute values or training on only a portion of the 
attribute space. Further testing on a wider variety of 
standardized databases  from the UCI Machine Learning 
Repository and other sources will determine the true 
range of this method’s usefulness.  
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