
Copyright © 2004, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Blind Data Classification using
Hyper-Dimensional Convex Polytopes

Brent T. McBride and Gilbert L. Peterson

Department of Electrical and Computer Engineering

Air Force Institute of Technology
2950 Hobson Way

Wright-Patterson AFB, OH 45433-7765

Abstract

A blind classification algorithm is presented that uses hyper-
dimensional geometric algorithms to locate a hypothesis, in
the form of a convex polytope or hyper-sphere. The convex
polytope geometric model provides a well-fitted class
representation that does not require training with instances
of opposing classes. Further, the classification algorithm
creates models for as many training classes of data as are
available resulting in a hybrid anomaly/signature-based
classifier. A method for handling non-numeric data types is
explained. Classification accuracy is enhanced through the
introduction of a tolerance metric, ß, which compensates for
intra-class disjunctions, statistical outliers, and input noise in
the training data. The convex polytope classification
algorithm is successfully tested with the voting database
from the UCI Machine Learning Repository (Blake and
Merz 1998), and compared to a simpler geometric model
using hyper-spheres derived from the k-means clustering
algorithm. Testing results show the convex polytope
model’s tighter fit in the attribute space provides superior
blind data classification.

Introduction
Many popular data classification methods, such as
Artificial Neural Networks, Support Vector Machines,
and Decision Trees, are not blind. This indicates that on a
decision with two or more classifications, they must be
trained upon instances of the various data classifications
against which they will be tested. If they are tested against
an unfamiliar class instance, the learned hypothesis would
not be able to reliably distinguish the foreign instance
from the classes of the training set. A blind classification
method recognizes that a foreign instance is not a member
of any of its training classes and identifies it as an
anomaly. Anomaly detection is useful when there is
incomplete domain knowledge available for training, as in
one side of a two sided classification problem.
 This paper presents a blind classification method
using hyper-dimensional geometric constructs to create a
class model without referencing other classes. Section 2
introduces applicable geometric concepts generalized to

arbitrary dimensions. Section 3 describes how class
instance data is formatted for use in the geometric
classifier. Sections 4 and 5 present two different hyper-
geometric construct-based classifiers, one using convex
polytopes and the other using hyper-spheres. Section 6
covers the testing methodology used to evaluate both
classifiers and section 7 presents the testing results.

Applicable Geometric Concepts
Central to the primary geometric classifier algorithm is
the concept of a polytope. A d-polytope is a closed
geometric construct bounded by the intersection of a finite
set of hyperplanes , or halfspaces, in d dimensions. It is the
generalized form of a point, line, polygon, and
polyhedron in zero, one, two, and three dimensions,
respectively (Coxeter, 1973), but it is also defined for
arbitrarily higher dimensions. As the number of
dimensions rises, a polytope’s structure becomes
increasingly complex and unintuitive for the human brain
accustomed to modeling objects in the three-dimensional
physical world (see Table 1).

Dimensions Polytope
Name

Example

0 point

1 line
2 polygon

3 polyhedron

4 polychoron N/A

d d-polytope N/A

Table 1- Dimensional Progression of Polytopes

A polytope is convex if a line segment between any

two points on its boundary lies either within the polytope
or on its boundary. A convex hull of a set, S, of points in

d dimensions is the smallest convex d-polytope that
encloses S (O'Rourke 1998). Each vertex of this enclosing
polytope is a point in S. As a two dimensional analogy,
imagine that a set of nails (points) is driven into a table or
other flat surface (plane). Next, a single rubber band is
placed tightly around all of the nails. The polygon
outlined by the rubber band is the convex hull of the
points marked by the nails (see Figure 1a). The nails
touching the rubber band where it bends are the vertices
of the polygon.

Each of the polytopes drawn in the third column of
Table 1 is a special kind of polytope called a simplex. A
d-simplex is the simplest (i.e. has the smallest number of
vertices, edges, and facets) possible polytope that can
exist in d dimensions. A d-simplex is always convex and
contains exactly d+1 non-coplanar vertices. Thus, a d-
dimensional convex hull cannot be computed for fewer
than d+1 points.

(a) 2-D (b) 3-D (Lambert 1998)

Figure 1- Convex Hulls

The secondary classifier makes use of the generalized

circle, or hyper-sphere. A d-sphere is a hyper-sphere in d
dimensions that is defined simply by a center point and a
radius. This construct is significantly easier to deal with
than the convex polytope. This fact has both its
advantages and disadvantages, as will be explored in a
later section.

Both geometric classifiers evaluate separations
between points in d-dimensional space using generalized
Euclidean distance. The Euclidean distance between any
two points in a continuous d-space is derived from the
Pythagorean Theorem (Weisstein, 1999) and is given by
Equation 1. It is common to compare distances squared to
avoid performing a computationally expensive square root
calculation.

()∑
=

−=ℜ∈∀
d

i
ii

d qpqpdistqp
1

2),(:, (1)

Data Representation
The data on which the hyper-geometric classifier trains
and tests is comprised of a set of instances. Each instance
belongs to a class and possesses an ordered list of
attributes. Each class instance with d attributes is mapped

to a real-valued d-vector which represents a point, p, in a
continuous d-space. Point p is defined symbolically as:

{ } d
dpppp ℜ∈= ,,, 21 L

The attribute values are mapped to the 1ℜ∈ip .Many
classification problems involve non-numeric attributes.
For example, an attribute describing the weather could
contain values such as “sunny”, “cloudy”, or “rainy”.
Such non-numeric attribute values may be arbitrarily
mapped to real numbers, but the chosen mapping must be
consistently applied. This arbitrary mapping leads to
equally arbitrary point coordinate assignments and cluster
disjunctions within the attribute space. These disjunctions,
if not addres sed, can negatively affect the classification
accuracy of the derived geometric class model. A method
to handle these disjunctions is explained in the next
section.

Convex Polytope Classifier
Once the training instances for class C have been

mapped to a set, T, of d-vectors, a geometric class model
is created. If the desired geometric shape is a convex d-
polytope, then the convex hull of T is computed:

THTConvexHull ⊆≡)(

For classification purposes, the convex hull of T is

represented as a set of vertices, H, which are the vertices
of the smallest convex d-polytope that encloses T. Note
that this is a blindly-created model because it is derived
solely from instances of class C. It knows nothing about
the attribute values of other classes.

A distinct test point, p, is declared to be a match
(member of class C) iff it is bounded by the polytope
defined by H. This is determined by computing:

{ }()

),(
),(
CpmatchDp

CpmatchDp
DpHConvexHull

¬⇔∈
⇔∉

≡∪

If p is not bounded by H’s polytope, then D will

represent a larger polytope of which p is a vertex. If p is
bounded by the polytope, then HD ≡ . An alternate
method, which handles the special case of Hp ∈ (i.e. p
need not be distinct), is to compare the hyper-volumes of
the polytopes represented by D and H. If

)()(HvolumeDvolume > , then p does not match the
model and is declared anomalous with respect to class C.

Spatial disjunctions of data clusters and statistically
extreme points caused by input noise or other factors can
result in a convex hull model that is too voluminous,

enclosing much of the attribute hyper-space that does not
rightly define class C. This extra space translates to a
poorly fitted model that is highly susceptible to declaring
false positives.

Convex Hull Tolerance Parameter: ß

To compensate for disjunctions and lessen the impact of
statistical outliers, a tolerance feature controlled by
parameter 10 ≤≤ β is added. It breaks up training
points into groups of smaller convex polytopes and
provides a tighter fit around the training data, as follows:

1. Select values MIN and MAX, such that MIN < MAX.
2. Scale each dimension of the vertices in T between

MIN and MAX. All points in T then lie inside of a d-
hypercube with opposing extreme points at {MINd}
and {MAXd}. The distance squared between these
two extreme points:

22)(}){},({ MINMAXdMAXMINdist dd −=
provides the upper bound on the distance squared
between any two points in T:

22)(),(:, MINMAXdqpdistTqp −≤∈∀
3. Let G be an undirected, unweighted graph. For each

vertex in T, add a corresponding node to G. Create an
edge between each distinct pair of nodes, p and q, in
G where:

222)(),(MINMAXdqpdist −≤ β
4. Partition G into unconnected sets, such that in each

set every node is connected by at least one edge and
no edges cross between sets. Throw out any set with
fewer than d+1 non-coplanar points (the minimum
needed to create a simplex in d-space--this is where
statistical outliers are discarded).

The multiple convex hulls constructed around the

partitioned sets of G comprise the model of class C. Test
point p is then scaled by the same factors used on T in
step 2 and is declared a match iff it resides within any of
C’s convex polytope models. With ß=1, the algorithm
behaves as the unmodified version and creates a single
convex polytope model. As ß decreases, the potential
number of smaller polytopes will increase and their
combined hyper-volume in the attribute space will
decrease. In testing, this leads to a lower probability of
false positives at the expense of a higher probability for
false negatives , or a loss of generality. At ß=0, no convex
hull models are created and all test points are rejected.
Finding the right ß value for each class model to fit the
training data properly and achieve a good balance
between false positives and negatives requires
experimentation.

If instances from multiple classes are available for
training, then hyper-geometric models, or signatures, are
created for each class. Test instances are compared
against each of the models and classified as an anomaly if
no matches are found. This classifying algorithm is thus a
hybrid signature/anomaly detector. Classification

accuracy and specificity increases with the level of
training data available.

When the classifier contains signatures for more than
one class, model overlapping is possible. This is
especially true when poorly discriminating attributes are
used or when a model’s ß value is too high. Multiple class
matches may be acceptable in the case of non-mutually
exclusive classes (i.e.: a person with dual citizenship). For
mutually exclusive classes, the accuracy of overlapping
matches may be improved with a tie-breaking protocol,
perhaps relying upon the test point’s distance from each
geometric model’s center or nearest boundary.

There are many freely available programs that
compute convex hulls in high dimensions. (Avis ,
Bremner, and Seidel 1997) evaluated the performance of
many of the most popular programs , including cdd+,
PORTA, qhull, and lrs. The qhull program (Barber and
Huhdanpaa 2002), version 2002.1, is used with this
convex polytope classifier, in part because it can compute
hyper-volumes. Qhull has a time complexity of

 )(2/dnΟ , for n input points in d-space (Barber, Dobkin,
and Huhdanpaa 1996).

Hyper-sphere Classifier: k-means
Hyper-spheres may also be used as the geometric class
model, in lieu of convex polytopes. Using this paradigm,
a class is described by a set, S, of k hyper-spheres . The k-
means clustering algorithm partitions the training set, T,
into k different clusters. Each cluster has a centroid, the
average of all points in the cluster. The k-means algorithm
attempts to minimize the sum of squared within group
errors, or the sum of the distance squared between each
point and the centroid of its assigned cluster.

k behaves as a tolerance parameter for the hyper-
sphere classification algorithm by controlling the
partitioning of T. The cluster centroids produced by the k-
means algorithm become the center points of the k hyper-
spheres in S. The radius of each hyper-sphere is given by
the distance between the corresponding centroid and the
most distant point in its cluster. Point p is bounded by a
hyper-sphere with center point c and radius r iff

rcpdist ≤),(. A point is declared a member of class C
iff it is enclosed by any of the k hyper-spheres in S.

The hyper-sphere classifier uses the SimpleKMeans
program of the WEKA java suite, version 3.2.3 (Witten
and Frank 2002). The time complexity of the k-means
algorithm is)(knrΟ , for k clusters, n points, and r
iterations (Wong, Chen, and Yeh 2000). Testing a point
for inclusion in S’s k hyper-spheres takes)(kdΟ time.

The obvious advantage the hyper-sphere model has
over a convex polytope is that its time complexity is
linear, not exponential, in d. Thus, a hyper-sphere can
create a model with much higher dimensionality than is
feasible with a convex polytope. The main advantage the
convex polytope paradigm holds is that it can create much
tighter-fitting models than are possible using a hyper-

sphere—an important requirement for good blind
classification, as testing will show.

Testing Methodology
Both the convex polytope and the hyper-sphere geometric
classifiers are tested with the voting database from the
UCI Machine Learning Repository (Blake and Merz,
1998). It contains the voting records of members of the
1984 U.S. House of Representatives on 16 key votes.
Each instance in the database represents an individual
member of congress who belongs to one of two classes:
Republican or Democrat. The instance attributes are the
individual’s choices on the 16 votes . Each attribute has
one of three values: “yea” (voted for, paired for, or
announced for), “nay” (voted against, paired against, or
announced against), and “unknown” (voted present, voted
present to avoid a conflict of interest, or did not vote).

The non-numeric attribute values “nay”, “unknown”,
and “yea” are arbitrarily mapped to real numbers -1, 0,
and 1, respectively. Due to the dimensional complexity of
the convex hull algorithm, the classifiers train and test
with only the first seven of the 16 available attributes.

The testing regimen creates a total of 6,400 blind
models of the two classes, using the two different hyper-
geometric structures and sixteen different values for their
applicable tolerance parameters (ß or k). These models are
tested for matches a total of 147,200 t imes with test points
from both classes.

The results are displayed in the box-whisker graphs of
Figure 2 through Figure 5. Each box-whisker structure
displays the maximum, 3rd quartile, median, 1st quartile,
and minimum match percentages over 100 trials with a
given tolerance parameter, training class, and testing
class. In each trial, 90% of the training class instances are
randomly selected for training. The testing set is
comprised of the remaining 10% of the training class (top
graphs) plus a random 10% of the non-training class
(bottom graphs).

Next, the best ß values for both models are used in a
test to gauge how overall detection accuracy is affected
by the training set size, as a percentage of the whole
database. Overall accuracy is defined as average
probability of the classifier correctly identifying a test
instance. The results are given in Figure 6.

Results Analysis
Strong test results are represented by a high mean match
percentage for the top graphs (correct matches) and a low
mean percentage on the bottom graphs (false positives). A
narrow inner-quartile range (distance between the Q3 and
Q1 bars) reflects consistent/stable performance.
 As expected, the convex polytope model’s tighter fit
of the data space produces better results than that
achieved with hyper-spheres.

Figure 2 - Republican Model (Convex Polytopes)

Figure 3 - Democrat Model (Convex Polytopes)

Train: Republican
Test: Republican

0%

25%

50%

75%

100%

0.
10

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
90

1.
00

beta

M
at

ch
ed

 (
co

rr
ec

t)

Train: Republican
Test: Democrat

0%

25%

50%

75%

100%

0.
10

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
90

1.
00

beta

M
at

ch
ed

 (
er

ro
r)

Train: Democrat
Test: Democrat

0%

25%

50%

75%

100%

0.
10

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
90

1.
00

beta

M
at

ch
ed

 (
co

rr
ec

t)

Train: Democrat
Test: Republican

0%

25%

50%

75%

100%

0.
10

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
90

1.
00

beta

M
at

ch
ed

 (
er

ro
r)

Figure 4- Republican Model (Hyper-Spheres)

Figure 5- Democrat Model (Hyper-Spheres)

The best ß values for the Republican blind model

(Figure 2) range roughly between 0.45 and 1.0. The best ß
for the Democrat model (Figure 3) falls at about 0.35. At
these ß values both models exhibit good, stable
classification accuracy with low incidence of false
positive and false negative matching errors. This is
especially impressive considering that the classifiers use
less than half of the available attributes!

0%

25%

50%

75%

100%

90
%

80
%

70
%

60
%

50
%

40
%

30
%

20
%

10
%

Training Sample Size

C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y

Figure 6 - Training Sample versus Detection Accuracy

The hyper-sphere models (Figure 4 and Figure 5) do
not fare so well. Their performance is less stable, as
evidenced by their wider bar-whisker graphs. At every
value of k the models exhibit inferior balancing of false
positive and false negative errors.

Figure 6 shows that the overall classification accuracy
for the convex polytope model declines only gradually as
a smaller percentage of the database is used for training.
Note that an overall accuracy of 50% is equivalent to
classification via the flip of a coin. The classifier drops to
this level when the training sample size is not large
enough to form a working convex hull model.

Preliminary testing with a few other UCI Machine
Learning Repository databases suggests that the tight fit
provided by a convex polytope does not perform as well
for training sets requiring more generality. For example,
for each of the monks1, monks2, and monks3 databases,
which were designed to test induction algorithms, the
convex polytope classifier achieved a blind classification
accuracy of about 70%. Accuracy was increased to about
80% by applying some domain knowledge in the form of
two class models using the previously described tie-
breaking protocol. On the other hand, the classifier
achieved 99% accuracy on the Iris database.

Since a blind classifier does not, by definition,
compare and contrast attribute values between opposing
classes, it is at a clear disadvantage for sparse training sets
(requiring greater generality), compared to more

Train: Democrat
Test: Democrat

0%

25%

50%

75%

100%

1 2 3 4 5 10 15 20 30 40 50 60 70 80 90 10
0

K

M
at

ch
ed

 (
co

rr
ec

t)

Train: Democrat
Test: Republican

0%

25%

50%

75%

100%

1 2 3 4 5 10 15 20 30 40 50 60 70 80 90 10
0

K
M

at
ch

ed
 (e

rr
or

)

Train: Republican
Test: Democrat

0%

25%

50%

75%

100%

1 2 3 4 5 10 15 20 30 40 50 60 70 80 90 10
0

K

M
at

ch
ed

 (e
rr

or
)

Train: Republican
Test: Republican

0%

25%

50%

75%

100%
1 2 3 4 5 10 15 20 30 40 50 60 70 80 90 10
0

K

M
at

ch
ed

 (c
or

re
ct

)

traditional non-blind classifiers. This is the tradeoff for
being able to recognize anomalous classes. The blind
hyper-geometric classifier performs best on diverse
training sets whose points are well-representative of the
class’ true attribute space topology. In other words, a
good blind class model can only be achieved if the class is
well known.

Future Possibilities
The negative impact of the convex hull complexity
limitation on the number of dimensions may be lessened
by creating multiple classifiers, each using different
partitions of the attribute space, and then boosting or
bagging to combine the collective results. Alternate
implementations of a tolerance feature can be explored to
perhaps increase the generality of the hyper-geometric
classifier. It may be possible to reduce the hyper-sphere
model over-inclusiveness problem by scaling down the
radii of the hyper-spheres.

Structures other than convex polytopes and hyper-
spheres may be used in a hyper-geometric classifier. A
polytope created by the alpha-shapes algorithm may be
especially promising. Such a polytope need not be
convex, potentially allowing for an even better spatial fit
around training data. Further, the algorithm already has a
built-in tolerance value in alpha. However, the alpha-
shapes algorithm suffers from similar dimensional
complexity issues as the convex hull algorithm. While an
alpha-shape is possible in hyper-dimensional space
(Edelsbrunner and Mucke 1994.), the authors have yet to
find an alpha-shape tool that can exceed three dimensions.

Conclusion
To be an effective blind classifier, a geometric construct
must be versatile enough to create a good fit around a
wide variety of training data topologies in the attribute
space. Testing results on the voting database show that a
hyper-dimensional convex polytope can offer good blind
classification, even when dealing with non-numeric
attribute values or training on only a portion of the
attribute space. Further testing on a wider variety of
standardized databases from the UCI Machine Learning
Repository and other sources will determine the true
range of this method’s usefulness.

Acknowledgements
The work on this paper was supported (or partially
supported) by the Digital Data Embedding Technologies
group of the Air Force Research Laboratory, Rome
Research Site, Information Directorate, Rome NY. The
U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes
notwithstanding any copyright notation there on. The
views and conclusions contained herein are those of the

authors and should not be interpreted as necessarily
representing the official policies, either expressed or
implied, of Air Force Research Laboratory, or the U.S.
Government

References
Avis, D; Bremner, D., and Seidel R. 1997. How Good are
Convex Hull Algorithms? ACM Symposium on
Computational Geometry, 20-28.

Barber, C.B., Dobkin, D.P., and Huhdanpaa, H.T. 1997.
The Quickhull Algorithm For Convex Hulls . ACM Trans.
on Mathematical Software. 22, 469-483.
http://www.acm.org;

Barber, C.B and Huhdanpaa. 2002. Qhull, version 2002.1.
http://www.thesa.com/software/qhull/

Blake, C.L. & Merz, C.J. 1998. UCI Repository of
Machine Learning Databases. University of California,
Department of Information and Computer Science, Irvine,
CA.
http://www.ics.uci.edu/~mlearn/MLRepository.html

Coxeter, H. S. M. 1973. Regular Polytopes, 3rd ed. New
York: Dover.

Edelsbrunner, H. and Mucke, E. 1994. Three-dimensional
Alpha Shapes. ACM Transactions on Graphics, 13(1):43-
72.

Lambert, Tim. 1998. Convex Hull Algorithms applet.
UNSW School of Computer Science and Engineering
http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html

O'Rourke, J. 1998. Computational Geometry in C, 2nd ed.
Cambridge, England: Cambridge University Press.

Weisstein, E. 1999. Distance. Wolfram Research, CRC
Press LLC.
http://mathworld.wolfram.com/Distance.html

Witten I.H. and Frank E. 2002. WEKA, version 3.2.3,
Java Programs for Machine Learning University of
Waikato, Hamilton, New Zealand.
www.cs.waikato.ac.nz

Wong C., Chen C., and Yeh S. 2000. K-Means-Based
Fuzzy Classifier Design, The Ninth IEEE
International Conference on Fuzzy Systems , vol.
1, pp. 48-52.

