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Abstract 
The probabilistic concept formation general problem in 
dealing with mixed-data scale environments is due to the use 
of different evaluation function for each attribute type. We 
claim that different behaviors for discrete and continuous 
evaluation functions are due to an unbalanced contribution 
for each attribute-type evaluation function inside the main 
evaluation function. This paper describes an approach based 
on the difference between the predictability gain for each 
attribute type. Our approach presents a way to work around 
for the unbalanced contribution for each attribute-type 
evaluation functions. Experiments using our approach have 
shown higher quality in terms of inference ability. 

Introduction 
Incremental algorithms for concept formation perform the 
building process of concept hierarchies based on a set of 
observations (normally a list of attribute/value pairs), 
which characterize an observed entity. In general, these 
algorithms perform a heuristic search considering every 
concept feasible of being generated. 

In the real world, most of the observed entities are 
characterized by a combination of attributes with values 
with varied types. This article concerns specifically the 
concept formation based on entities characterized by 
discrete and continuous attributes. 
 The main problem in concept formation systems using 
mixed attributes is to define the heuristic function to 
measure the quality of concepts. Basically, problems in this 
area derive from the use of different evaluation functions 
and the combination of its results. We verified that this 
kind of approach generates an unbalance due to 
contribution difference (in terms of value scales) during the 
calculus of the general evaluation function. This unbalance 
directly affects the inference ability of the generated 
hierarchy. 
 In this article, we analyze the main approaches in 
probabilistic concept formation systems (PCFS) with mixed 
data-type attributes and its related problems. Based on 
these analyses, we propose an approach to get around the 
identified problems. 

Incremental probabilistic concept formation 
Incremental concept formation systems perform a process 
to create a concept hierarchy that generalize the 
observations represented in a hierarchy node in terms of the 
conditional probability of the observations’ characteristics. 
 Most recent works in the area of concept formation are 
based on Fisher’s (1987) COBWEB, which forms 
probabilistic concepts. These concepts have a set of 
attributes and its possible values. Each concept has also the 
probability of an observation being classified in it and each 
attribute value has a predictability associated with. 
Predictability is the conditional probability of an 
observation X having the value V to the attribute A, given 
that X is represented by the concept C or P(A=V|C). 
 COBWEB uses an evaluation function called Category 
Utility. This metric favors the creation of concepts that 
maximize the inference ability. Category Utility for a 
partition of concepts (CU({C1,C2,..., Cn})) is 
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Equation 1: Traditional Category Utility. 

 Gluck and Corter (Gluck and Corter 1985) made an 
association among values computed by the expression 
�i�jP(Ai=Vij|Ck)

2 and the quantity of values that can be 
inferred to an attribute A, given that this attribute belongs 
to a certain category C. Therefore, this expression indicates 
the inference ability of an attribute in a category, which we 
will treat as predictability (C,A). 

Concept formation using mixed attributes 
Many alternatives were proposed to solve the COBWEB 
problem of not dealing with continuous attributes. 
 CLASSIT (Gennari, Langley, and Fisher 1989), for 
instance, assumes that values of continuous attributes are 
distributed normally and it uses the Gauss curve to 
determine the occurrence probability of a certain value. In 
this case, the square sum of the probabilities of a discrete 
attribute becomes the square of the integral of the 
continuous attribute normal distribution. Category Utility 
transformed for continuous attribute treatment becomes the 
following: 
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Equation 2: Category Utility in CLASSIT. 
 

 Where k is the number of partition classes, i is the 
number of attributes, σik is the attribute i standard deviation 
in the class k, and σip is the attribute i standard deviation on 
the hierarchy root. When the standard deviation becomes 0, 
CLASSIT uses a parameter called acuity, which represents 
the smallest noticeable difference between two numeric 
values. Experiments (Li 1995), (Reich and Fenves 1991), 
and (Yoo and Yoo 1995) showed that the hierarchy quality 
strongly depends on the acuity value choice. Particularly, 
COBWEB/3 (McKusick and Thompson 1990), COBIT 
(Bond and Hine 1993) and CLASSITALL (Moller 1997) 
systems are part of the CLASSIT family because they are 
implementations of Gennari’s approach, with few 
modifications. 
  In ECOBWEB (Reich and Fenves 1991), for continuous 
attributes, the attribute value arithmetic mean of a category 
is determined by an interval around the mean value, 
calculated through the expected number of numeric 
intervals (n) of an attribute divided by the actual number of 
intervals for this attribute. The definition of the expected 
quantity of intervals (n) of an attribute has a significant 
interference in building the concepts hierarchy, similar to 
the acuity problem. 
 ITERATE (Li 1995) is another algorithm that adopts the 
approach based on the PARZEN WINDOW method (Duda 
and Hart 1973) to estimate the value for the attribute 
probability distribution used in the evaluation function. 
Even though it is an approach that can be used in domains 
in which numeric values have a distribution different from 
the normal one, ITERATE keeps using the acuity 
parameter, initially defined in CLASSIT, and the quality of 
the created hierarchy continues depending on it as well. 
 COBWEB95 (Yoo and Yoo 1995) also assumes that 
continuous values of an attribute are distributed according 
to a normal curve. The evaluation function for continuous 
attributes was modified using, as the probability density 
function, the probability to correctly infer a certain attribute 
value with some error tolerance. When the standard 
deviation becomes 0, the probability to correctly infer will 
be 1, not using the acuity. The next section details a 
problem that was found in the previously mentioned 
approaches. 

Problem characterization 
When working with probabilistic concepts, evaluation 
functions depend on probability distribution of attribute 
values (probability density functions, PDF for short). For 
discrete attributes, the probability distribution of its values 
can be estimated by counting the value occurrences for an 
attribute. This method is not applicable in continuous 
attributes because a numeric value is not frequently 

repeated, which would not be interesting for prediction 
purposes.  
 The basic problem in probabilistic concept formation 
systems is to make PDF for discrete and continuous 
attributes work together. It is important that their results are 
equivalent because the predominance of any of the 
functions can lead to undesirable results, in terms of 
predicting values. 
 In traditional Category Utility (COBWEB), the PDF will 
have results varying according to the number of values of 
an attribute. Suppose a discrete attribute with 2 values, the 
PDF result (�i�jP(Ai=Vij|Ck)

2) can vary between 0,5 and 1. 
When the attribute has 3(three) values, similar to the 
previous example, the limits are within [0,33 ... 1], for four 
values the limits would be [0,25 ... 1], and so on. The 
greater the number of values of a discrete attribute, the 
greater will be the amplitude of PDF possible results. 
 The evaluation function of continuous attributes has 
different behavior. Its PDF depends, in general, on some 
previous knowledge on how the attribute values are 
distributed. CLASSIT, for instance, according to its PDF 
for continuous attributes (2√π*1/σ), will have results that 
vary according to the standard deviation (σ) of the attribute 
values. In this case, the smaller the standard deviation of an 
attribute values is, the greater the PDF’s result is, and vice-
versa. Suppose the standard deviation of an attribute is 2, 
for instance, the PDF result would be 0,1410. Notice that 
the PDF result for continuous attributes has a domain of 
values wider than the one for discrete attributes. 
 The amplitude difference of attribute-oriented PDF 
means that continuous attribute function can have results 
that the discrete attribute ones would hardly assume. The 
algorithms of CLASSIT family, COBWEB95 and other 
approaches share the same problem: they use an evaluation 
function for continuous attributes with result amplitude 
different from the one used for discrete attributes. 
 Besides the amplitude difference between the two PDF, 
there is another behavior that must be presented: the 
convergence velocity toward the result limits. Consider a 
category with 2 distinct values for a discrete attribute. 
Suppose the insertion of a new observation in this category. 
The new observation has a third value for the discrete 
attribute; thus, the mentioned discrete attribute has 3 
distinct values for the category. The PDF result, using 
COBWEB, changes from 0,5 (calculated with 2 values) to 
0,33 (calculated with 3 values). Suppose the same scenario 
for continuous attributes. The continuous attribute has 
standard deviation equals to 2 for the category. A new 
observation inserted in the category has a value for the 
continuous attribute that changes the standard deviation 
from 2 to 10. In this case, the continuous attribute PDF in 
CLASSIT, for instance, changes from 0,1410 (standard 
deviation equals to 2) to 0,0282 (standard deviation equals 
to 10). 
 The previous example illustrates that with the insertion 
of one new observation, the PDF result for discrete 
attributes decreases in 34%. On the other hand, the function 
result for continuous attributes decreases, approximately, 



80%. This great change in the result of the occurrence 
probability function for continuous attributes related to 
discrete attributes ones makes the amplitude difference 
problem happen whenever a new observation is classified 
in the hierarchy. Following, we demonstrate an example 
related to the consequences of this fact in concept 
formation. 

Example 
Consider the concept hierarchy (Figure 1a) generated based 
on the data from table 1. In the mentioned hierarchy, in the 
level following the top node, two categories were created, 
C1 and C2. The “C1” category represents the concept of 
herbivorous animal and the  “C2” category represents the 
concept of carnivorous. 

Animal Offspring Food Height 
Cow 1 Vegetable 1,65 m 
Lion 4-5 Meat 1 m 
Buffalo 1 Vegetable 1,7 m 
Jaguar 4-5 Meat 0,9 m 
Antelope 1 Vegetable 1,68 m 
Tiger 4-5 Meat 1,1 m 

Table 1: Animals characteristics. 

  Suppose a new observation with the following 
characteristics: “OFFSPRING = 1” “FOOD = Vegetable”, 
and “HEIGHT = 0,95 m”. CLASSIT, for instance, would 
reorganize the concept hierarchy in figure 1a and it would 
form the hierarchy depicted in figure 1b, that is, inserting 
the new observation in category C2. Analyzing figure 1a, 
intuitively, one can notice that the new observation would 
be better represented if inserted in category C1 (herbivore, 
fig. 1c), because it has the same values for discrete 
attributes, offspring and food, as the values of these 
attributes in the category. However, CLASSIT inserts the 
new observation under the category C2 (carnivore), where 
only one value equals the value in the category, which is 
the height attribute because it is “closer” to the attribute 
values mean. 
 

Figure 1: Hierarchies that can be generated based on the data on 
Table 1. 

 We can affirm that the hierarchy illustrated in figure 1(b) 
is not the best option for future prediction because it had 
two discrete attributes with the occurrence probability 
decreased. Figure 1(c) exemplifies the situation in which 
only one attribute, the continuous attribute, would have its 
inference ability decreased.  This behavior is the amplitude 
difference consequence of the different evaluation 
functions results. Experiments showed (Rebouças and 
Furtado 2003) that this behavior happens in all algorithms 
presented in the previous section. Next section presents an 
approach for this problem. 

FORMVIEW2 
This section proposes an evaluation function related to both 
discrete and continuous attributes. This proposal was 
implemented in FORMVIEW (Furtado 1997).  
 FORMVIEW is a concept formation system that finds 
relations between different concept hierarchies, since these 
hierarchies were built upon the same entity but with 
characteristics from different point of view. This approach 
constitutes a way of linking different expertise. This was 
the key reason of using FORMVIEW. 
 FORMVIEW2 proposal, in dealing with mix data-type 
attributes, is based on the attributes inference ability gain, 
considering the number of discrete and continuous 
attributes in the domain. 

Variation of Inference Ability 
In the classification process on new entities, PCFS typically 
consider the execution of four operations (insertion, 
merging, splitting, and creation) to build a concept 
hierarchy. Among these operations, only the best (The best 
operation is determined according to the evaluation function) one 
will be chosen and effectively applied. 
 The application of the best operation means, besides the 
change in the hierarchy structure, an update on the 
information for attributes conditional probabilities 
calculation. In other words, this information update 
promotes a variation that directly affect attributes 
predictability in categories. 
 Cognitively, this variation defines a factor to measure the 
increase in attributes inference ability. Even though its 
cognitive appeal, this variation has been ignored until now 
by PCFS. 
 The approach presented here to measure the attribute 
inference ability variation is based on the predictability 
percent increase promoted by categories update during the 
classification process of a new observation. In other words, 
it is the quotient between the attribute predictability for a 
category after the insertion of the new observation, and the 
same predictability before the insertion, as demonstrated in 
equation 3. 
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Equation 3: Attribute inference ability variation of a category. 



 Where C represents a category after the insertion of the 
new observation, while CA represents the same category 
before the insertion. Therefore, Ω(C,A) is the attribute A 
predictability variation in category C. Based on this metric, 
we propose a solution to the problem caused by the 
predominance of continuous attributes evaluation function 
over discrete attributes one’s in PCFS, as we present as 
follows. 

Category Inference Ability Gain  
It is important to point that the greatest predominance 
damage is caused by the fact that: even though a new 
observation has two values for discrete attributes equals to 
these attributes values in a certain category, the algorithms 
evaluated in this paper choose the other category as the 
best choice, in which only one continuous attribute is best 
suited. This behavior decreases the system performance in 
terms of future attribute value prediction. 
 Applying the idea defined by inference ability variation, 
we can see the predominance issue by another perspective. 
The coincidence between two discrete values in a new 
observation and the category values can be seen as a 
positive variation of the predictability for these two discrete 
attributes in this category. Similarly, in the other category, 
there was a positive predictability variation of only one 
continuous attribute. 
 One can notice a relation between the continuous 
attributes predominance and the inference ability variation 
of these types of attributes. 
 The approach proposed in this paper indicates that 
systems should consider the inference ability variation for 
discrete and continuous attributes besides the quality 
measured through the traditional evaluation function. That 
is, the insertion preferred category should be the one with 
greatest positive inference ability variation beside only the 
evaluation function. 
 For this reason, we define a function to measure the 
inference ability gain of a category in terms of quantity of 
each attribute-type. This function is calculated through the 
addition of the inference ability variation of all attributes in 
the domain, even considering the proportion of each 
attribute-type in the domain. The proportion of each 
attribute (φ) is calculated by the number of attributes of a 
certain type divided by the total number of attributes in the 
domain. The equation 4 exemplifies this function. 
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Equation 4: Category inference ability gain. 

 Where P(C) is the probability of an observation 
belonging to the category C. φ(Ai) represents the proportion 
of the attribute-type Ai in the domain and Ω(C,Ai) is the 
inference ability variation of the attribute Ai in the category 
C.  

Evaluation Function 
The FORMVIEW2 approach implemented in this work was 
based on COBWEB95. That is, it uses an evaluation 
function for discrete attributes and another one for 
continuous attributes. For a better understanding, we 
remind you of the traditional evaluation function used by 
COBWEB95. 
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Equation 5: Evaluation function used by COBWEB95. 

 Where C represents the top node of a partition formed by 
the categories Ck. P(Ck) represents the probability of an 
observation being represented by the category Ck. The top 
part of the equation is the same one defined in COBWEB, 
used for discrete attributes. The bottom part is used for 
continuous attributes and constitutes the COBWEB95’s 
approach. Where P[|Xik - µik| < δ] represents the probability 
to correctly infer a value in a normal distribution with an 
error tolerance δ, since this value belongs to the category 
Ck. While the equation identified by P[|Xi - µi| < δ] 
represents the same probability without the knowledge of 
Ck. Both are defined in equation 6. 
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Equation 6: Integral to calculate the occurrence probability of 
continuous values in COBWEB95. 

 Where δ indicates the tolerance used, and σ and µ are, 
respectively, the standard deviation and the attribute value 
mean in Ck. Without the knowledge of Ck, these values, σ 
and µ, are taken from the root category.  
 Even though FORMVIEW practically uses the same 
approach as COBWEB95, it does not neglect the fact that 
the different evaluation functions have distinct behaviors, 
as shown in the previous section concerning the problem 
characterization.  
 To apply the category inference ability gain approach 
defined in this work, we identified the parts that represent 
the attribute predictability of an attribute A in a category C 
from the respective evaluation functions. These parts are 
illustrated on equation 7. 
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Equation 7: Equation to measure the attribute inference ability of 
“A” attribute in “C” category. 

The top part of the equation refers to the discrete attributes 
while the bottom part refers to continuous attributes. The 
following section presents the results of the FORMVIEW2 
application. 



Evaluating FORMVIEW2 
The learning model proposed by Dietterich and Michalski 
(Dietterich and Michalski 1983) motivated the experiments 
performed in this research work to evaluate FORMVIEW2. 
This model, in general, concerns learning under three 
aspects: knowledge base, learning ability and the 
environment. This article will focus on the learning ability 
aspect that evaluates systems in terms of prediction power. 
 The methodology used to measure this ability consists in 
modifying a test observation by ignoring an attribute and 
classifying this observation in a previously built concept 
hierarchy. From the concept found, the algorithm must 
suggest a value for the attribute based on the attribute value 
with higher predictability. This process is performed for 
each attribute of each test observation. The higher the 
number of correct suggestions, the better the concept 
hierarchy is, in terms of prediction. 
 The experiment results for FORMVIEW2 were 
compared with COBWEB95, COBWEB/3, and COBIT. In 
FORMVIEW2 and COBWEB95, the error tolerance used 
was 20%. The acuity value used in COBWEB/3 was 1, as 
suggested in (Gennari, Langley and Fisher 1989). 
 In a first evaluation, we used 35 artificial mixed-attribute 
datasets with 100 observations each. The number of 
attributes in each dataset ranged from 6 to 10, in such a 
way that each dataset have a different quantity of discrete 
and numeric attributes. The discrete attributes have from 2 
to 4 values. For continuous attributes, its values were 
randomly selected from a normal distribution. 

For the results analysis, we contrast (a) the percent of 
correct attribute values predictions of the algorithms, (b) 
the percent increase in correct predictions of 
FORMVIEW2 related to the other systems, and (c) the 
number of datasets in which FORMVIEW2 had better, 
worse or equal performance related to the others. 

Table 2 presents the averaged results on the 35 datasets. 
For the first two comparisons (a) (b), we also highlighted 
the minimum and the maximum values. The S.T. term in 
the first comparison (a) represents the correct prediction 
standard deviation.  

(a) (b) (c) 
% Correct Prediction % Increase Score (%) System 

Avg Min Max S T Avg Min Max Better Worse Equal 
COBIT 91,8 81,2 97,2 4,5 4 -2 17 27 5 3 

COBWEB/3 65,2 56,6 79,3 4,52 47 28 71 35 0,0 0,0 
COBWEB95 92,8 86,6 96,11 2,6 3 -2 8 32 3 0,0 
FORMVIE

W2 95,5 90 97,9 1,46 - - - - - - 

Table 2: Averaged results in 35 artificial dataset. 

Analyzing the data in table 2, one can notice that (a) 
FORMVIEW2 had better performance in terms of correct 
prediction than all other algorithms. The lowest correct 
prediction standard deviation means that FORMVIEW2 
also behaves more constant. 

 Contrasting FORMVIEW2 performance with COBIT, 
one can notice that FORMVIEW2 had a prediction 
increase of 4% in average. The better cases in relation to 
COBIT had an increase of 17%. On the other hand, in the 
worst cases COBIT out performs FORMVIEW2 in, at 
most, 2%. However, FORMVIEW2 had better performance 
in 27 cases against only 5 worse cases. The same analysis 
can be done with COBWEB/3 and COBWEB95, and 
FORMVIEW2 keeps having superior performance as well. 
 FORMVIEW2 also presented better results in other 
analysis where we tested the inference ability of systems 
also in terms of the number of training observations needed 
to get the maximum prediction performance. It was also 
analyzed the performance of the systems using different 
number of discrete and continuous attributes, different 
number of relevant continuous attributes (Furtado 1998), 
and different error tolerance for continuous attributes. In all 
of them FORMVIEW2 out performed the others. These 
experiments are detailed in (Rebouças and Furtado 2003). 
 For an analysis using public domain datasets, we used 3 
datasets from the UCI ML Repository to demonstrate 
FORMVIEW2 performance. For each dataset, 80% of the 
observations were used to train the algorithm, while the 
other 20% were used for testing. According to Quinlan 
(Quinlan 1983), the learning ability of a system can be 
verified through the evaluation of the correct inferences 
number with different training set size. On top of that, the 
training observations were divided in subsets with 
respectively, 25%, 50%, 75%, and 100% of the training 
observations. Each subset was used to build a hierarchy 
where the test observations set will be evaluated. 
 Table 3 shows the characteristics of these databases in 
terms of the number of discrete and continuous attributes, 
and the size of the training and test sets. 

Base Discrete Numeric Training Test 
BRIDGES 8 3 88 20 
AUTO-MPG 3 5 336 70 
HEART DISEASE 9 5 252 51 

Table 3: Data base information from the UCI ML Repository. 
 

The results from running the algorithms on these databases 
are depicted in figure 2 as graphics, where the vertical axis 
on the graphic indicates the correct inferences percent 
value, while the horizontal axis represents the quantity of 
observations used on the training set. 
 The graphics demonstrate satisfactory results from 
FORMVIEW2 related to other PCFS. 

Conclusion and future works 
FORMVIEW2 is an incremental algorithm of inductive 
learning that performs concept formation in domains with 
discrete and continuous attributes. The basic problem in 
approaches in these scenarios is the treatment of different 
attribute-types together because it is necessary to consider 
the equivalence of values in different evaluation functions 
for each attribute. 
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  Figure 2: FORMVIEW2 evaluation results. 

 We showed that the contribution from different 
evaluation functions in the general evaluation function 
happens due to the amplitude differences in the attribute-
oriented PDF results. The analysis of convergence velocity 
toward the PDF result limits demonstrated that the 
contribution difference could happen for each new entity 
submitted to the algorithms. 
 This article presents an approach that considers this 
disparity based on the inference ability gain that is different 
for each attribute type. Evaluation experiments with 
FORMVIEW2, showed satisfactory results related to the 
other approaches, demonstrating to be less prone to factors 
inherent to environments with mixed attributes.  
 The study on different evaluation functions, to the 
general heuristic, presented a different and unbalanced 
behavior in these functions, which was, up to know, not 
considered.  
Besides the initial satisfactory results, this proposal 
presents some limitations that must be considered when 
applied in an unknown domain. FORMVIEW2 assumes 
that continuous values are distributed according to the 
normal curve, which can be untrue in some cases.  
 The use of inference ability gain was possible because 
the functions are based on probabilistic concepts. The 
application of the same idea in environments with distinct 
functions requires a deeper study.  
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