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Abstract

We propose a new approach for learning Bayesian clas-
sifiers from data. Although it relies on traditional
Bayesian network (BN) learning algorithms, the effec-
tiveness of our approach lies in its ability to organize
and structure the data in such a way that allows us to
represent the domain knowledge more accurately than
possible in traditional BNs. We use clustering to parti-
tion the data into meaningful patterns, where each pat-
tern is characterized and discriminated from other pat-
terns by an index. These patterns decompose the do-
main knowledge into different components with each
component defined by the context found in its index.
Each component can then be represented by a local BN.
We argue that this representation is more expressive
than traditional BNs in that it can represent domain de-
pendency assertions more precisely and relevantly. Our
empirical evaluations show that using our proposed ap-
proach to learning classifiers results in improved classi-
fication accuracy.

interactions between attributes by using a tree structure.
TAN has been shown to outperform naive-Bayes classifier.

Consequently, and with the advances in developing al-
gorithms that learn BNs from data, many researchers have
explored unrestricted BN classifiers. These classifiers are
learned based on recent learning algorithms that can learn
multiply connected BNs. Among these classifiers is the
Bayesian network Augmented naive-Bayes (BAN) (Cheng
and Greiner 1999; Friedman, Geiger and Goldszmidt 1997)
which extends TAN by allowing the attributes to form an ar-
bitrary graph, rather than a tree, and the General Bayesian
Network classifiers (GBN) (Cheng and Greiner 1999; Fried-
man, Geiger and Goldszmidt 1997) which treats the classi-
fication node as an ordinary node and identifies a relevant
attribute subset around the classification node defined by its
Markov blanket. These two classifiers have been built and
examined based on two different BN learning algorithms.
Friedman et al. (1997) used the MDL score algorithm (Lam
and Bacchus 1994) while Cheng et al. (1999) used the CBL

learning algorithm (Cheng, Bell and Liu 1997). In both stud-
Introduction ies, the empirical evaluation of the two classifiers showed
that these classifiers perform better than naive and in many

Learning accurate classifiers from data continues to be an 5qeg outperform TAN. Friedman et al. (1997), however
active research area. Many algorithms have been developedya e mentioned that GBN classifiers learned via the score-

for learning classifiers of different functional representation p5caqg learning algorithms may result in relatively poor clas-
such as decision trees, neural networks, and Bayesian net-gjfication accuracy since a good score function does not nec-
works (Han and Kamber 2001). _ essarily lead to good classification accuracy. Cheng et al.
Bayesian network (BN) classifiers (Cheng and Greiner, (1999) have shown that GBN classifiers built based on non-
2001) have gained more attention from machine leaming gcqring learning algorithms (i.e., Cl-test algorithms), do not

and data mining researchers since the discovery of the g gter from this problem and that these algorithms can effec-
first BN classifier known as naive-Bayes (Langley, Iba and tively learn unrestricted BN classifiers.

Thompson 1992). This classifier is merely a very simple BN
with a strong assumption of independence among its vari-
ablesgiventhe classification variabl€’, though it has sur-
prisingly shown a competitive performance (i.e., classifica-
tion accuracy) with state-of-the-art non-Bayesian classifiers
such as C4.5 (Quinlan 1993).

The encouraging performance of naive classifiers has mo-
tivated researchers to build other BN classifiers that relax the
naive classifier’s strong independency assumption. The Tree
Augmented naive-Bayes (TAN) (Cheng and Greiner 1999;
Friedman, Geiger and Goldszmidt 1997) approximates the

The above earlier work suggests that unrestricted BN clas-
sifiers can capture the relationships among the domain at-
tributes better, therefore, leading to more accurate classi-
fiers. This fact motivates us to raise the question of whether
improving the capability of BNs as a tool for represent-
ing dependency assertions can further improve their perfor-
mance as classifiers. In this paper, we introduce a new type
of Bayesian classifier calle€Case-Based Bayesain Network
(CBBN)” classifiers. Although, this type of Bayesian clas-
sifier is learned from data using traditional BN learning al-
gorithms, we will show that our learning methodology or-
ganizes the data in such a way that allows more precise and
more relevant representation of the domain dependency re-
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lationships. In particular, we introduce the conceptazse- = oz

dependent relationshipsand show that while traditional
BNs are not suitable to represent this type of knowledge, ° °
our CBBNs can capture and encode them, hence improving

classification accuracy. ° °
CBBN Methodology @—@ °~°

Our approach to learning classifiers employs a clustering oo ity gl
technique to discover meaningful patterns in the training . propectine Higuarsntor X loan gt
data set represented by different clusters of data. Each clus-
ter is then characterized and discriminated from other clus-
ters by a unique assignment to its most relevant and descrip-
tive attributes. This assignment is called an index. As we
shall see, these indices provide a natural attribute selection
for the CBBN classifiers. Intuitively, each cluster represents
a piece of the domain knowledge described by the context
of its index. These clusters can also be viewed as a set of
conditionally independent cases with each case mapped to '~ .
an index that describes the context of the knowledge rele- but IS ca;e—dependent cyclic. . :
vant to that case. The knowledge associated with each case, 1his kind of knowledge cannot be represented in tradi-
can then be representeaiependentlyy a BN conditioned tional BNs. We argue that these relationships can be rep-
on its index. This independency of cases implies that the resented in our CBBN model and significantly improve 1ts
relationships among the corresponding attributes might be 2Ccuracy as a classifier. Moreover, our approach provides
different for different cases. Thus, instead of assuming fixed & NOVel procedure for selecting relevant attributes. In tradi-
relationships between attributes for the whole domain as in t!onal GBN classifiers, a Ma'rkov bIanke_t of the classifica-
traditional BNs, these relationships can vary according to tion node is used as an attribute selection procedure. Of-

each different context of each case in the same domain. This t€N: this selection is useful and discards truly irrelevant at-
conclusion is crucial. since it means that two variab)é.s tributes. However, it might discard attributes that are crucial

andY might be directly dependent (X Y) in caseC; and for classification (Friedman, Geiger and Goldszmidt 1997).

independent in cas@;. Moreover,X — Y might oCCUr in CBBN provides an alternative attribute selection procedure

caseC. while Y — X occurs in cas€.. Even if the rela- that better avoid discarding relevant attributes. The attributes
7 g

tionships in different cases are the same, the parameters thatthat constitute an index for a cluster have fixed values for all
Y objects in the cluster. We conclude that these attributes are

represent the strength of these relationships might be differ- . e b

ent. |rrelevant_t_o the classification t_ask in this cluster. Hence, the
As an example, consider a database of customers apply- BN cIaSS|_f|er learned from this cluster can safely exclude

ing to a loan in a bank. Such a database might have two these attributes.

different patterns (i.e., cases) where each pattern represents e

a group of customers. The first group includes those cus- CBBN Classification Model

tomers who have a good balance in their checking and sav- Constructing a CBBN classification model consists of the

ing accounts. The decision to grant a loan to these customersfollowing three phases:

might not be influenced by whether a customer has a guar-

antor, whether he/she has properties, or whether he/she is aClustering and indexing phase

citizen, but it might be highly affected by his/her residency

time and somewhat by his/her credit history. The second

group might include those people who do not have sufficient

balance in their checking account and with poor credit his-

tory. For this group the situation is different since the bank

decision will be highly affected by whether they have prop-

erties, whether they have a guarantor, whether they are cit-

izens, as well as their residency time. The bank decision

and its requirements may be considered as domain variables

in a BN that have case dependent relationships among them

Fig.(1).

Another example is cyclic knowledge. In a data set of
patients suffering from diabetes a doctor can distinguish be-
tween two groups of patients; those who have just started  11pjs attribute selection procedure might also be useful in sim-
taking a specific medication and found that it causes an im- piifying the structure of the classifiers, especially in BAN and
provement where the glucose level starts to decrease, andGBN, to avoid the overfitting problem reported by Cheng et al.
those who have been taking the medication for a while and (1999)

Figure 1: An example of case-dependent relationships

are excited by the improvement thus causing them to in-
crease the dose of that medication or even taking an addi-
tional one. In this example the relation between medication
level and health improvement is not purely unidirectional,

SupposeD is a training data set described by a set of cate-
gorical attributesA;, As, ..., A,,, C whereC is the classifi-
cation node. A clustering algorithm is used to partitibn
into a set of cluster€ = {Cy,Cy,...,C} characterized
by a set of mutually exclusive indicés= {I, I, ..., I}
respectively. This indexing scheme guarantees at most one
mapping per a data object to the ket

In order to generate such an indexing scheme, algo#thm
shown below begins by initializinjas set ok n-dimension
vectors with “don't care” (i.e. ‘x’) values for all elements
of each vectol;. For a particular clustef’;, the algorithm
computes the probability distribution for each attribute, (i.e.,



the frequencies of its possible values estimated from the data

in this cluster). The algorithm proceeds to determine the
value of each attribute that has the maximum frequency and
assigns this value to this attribute Inif its frequency ex-
ceeds an indexing threshatd The resulting assignment is
then used as a description of the object€’jnthus the algo-
rithm moves all objects that are not coveredhyirom C;

to the outliers cluster. The same procedure is repeated with
each cluster. The algorithm then visits the outliers cluster
to check for possible mappings of its objects back to the in-
dexed clusters. These objects are retrieved from the outlier
to be placed in a cluster if the objects are compatible to the
cluster’s description index.

In order to achieve mutual exclusion between the above
assignments, algorithnB checks each two assignments
for the mutual exclusion condition (at least one common
attribute is assigned differently). If they do not satisfy this
condition, it searches for the “don’t care” attribute in both
assignments that can be assigned differently in both of them
such that a minimum number of objects is rejected from
both clusters due to the new assignments. The algorithm
then updates the members of all clusters, including the
outliers, according to the new mutually exclusive assign-
ments. Finally, to produce the index of each cluster, the
algorithm simply discards any “don’t care” attributes in
each assignment.

Algorithm A: Clustering and Indexing
Input:
D: training data set
k: number of clusters
«: indexing threshold
Output:
C: set ofk clustersCy, Cs, ...,Ck
I: set of mutually exclusive indices, I, ...
Ouitliers: possible outliers cluster
Notation:
R(A;): the domain of the attributd ;
j.i(maz)- aj that maximizesP(A; = a;|Cy)
Pj,i(max): P(A] = aj,i(maac)|ci)

iy

Begin
Call clustering algorithm o to form the set of cluster€
For each clustet;
Initialize I; as an n-dimensional vector with ‘x’ values
For each attributel ;
ComputeRA; = a;|C;)Va; € R(4;)
F|nd ajyi(max) andeyi(mm)
If (P i(maz) > @) @SSIGN; j(ma) 10§ element ing;

Move the objects of’; not covered by; to Outliers
For each clustet;

Move from Outliersobjects covered by; back toC;
Call Algorithm B to get mutually exclusive vectors In
For each clustef’; and using its updatefy

Move objects of”; not covered byi; to theOutliers
For each cluste€’; and using its updatefj

Move fromOutliersthe objects covered h¥ back toC;
End

Algorithm B: check and fix
Input:
C: a set ofk data clusters
I: a set ofk n-dimensional vectors
Output:
I: a set of mutually exclusive indices (updatgd
Notation:
az,;: the value of the attribute; in I;
I1): the location of attributed, in I;
Qt,i(maz)- @t With the maximizesP(A; = a;|C;)
u;: no. of uncovered objects by in C;
u;: no. of uncovered objects by in C;

Begin
Fori=1tok -1
Forj=++1tok
If (I; andI; are not mutually exclusive) then
For each attributel, (t = 1,2, ...,n)
If (@t = ar,; =X') then
Find At i(max) andat,j(mar)
If (atﬂ’(mam)- = at,j(maw)) then
[z(t) = Qt,i(max) and[j(t) = Q¢ j(max)
Findu; andu;
Computes; = u; + u;
Retrieve the original state df and/;
Find the attribute4,, that minimizess;
PULLi(p) = ap,i(maz) BNALj(p) = Qp,j(max)
For eachi;
If an attributeAd; ="x’ then removeA; from I;
End

Learning Phase

We apply a BN learning algorithm to learn a local BN classi-
fier B;, wherei € {1,2, ..., k}, from the data objects in each
indexed cluster produced by algorithdsaandB. This local
classifier is defined over a sub3gtc V. If V(1) is the set

of the attributes in; thenV; =V — V(I;). We also learn a
BN classifier,B,, from the outliers cluster defined over the
whole setV. The set of local classifiers together with the
indecies constitute a CBBN classifier.

Testing Phase

We test the newly learned CBBN classification model on
the given test data sé@t. Basically, we map each test ob-
ject (ay, as, ..., ay) in T to an index inl by comparing the
attributes assignment in both of them. We then compute
P(Clay,as,...,a,) from the local BN classifier character-
ized by that index and assign @the value that maximizes
P. Because of the mutual exclusion property of our index-
ing scheme, an object can map to at most one local classifier
B;. If an object cannot be mapped to any index iwe map

itto B, as the default classifier. Finally, we compute the ac-
curacy by comparing the predicted valuesCdofiound above
with its true values ir{".



Experimental Results set to another depending on how good the chosen cluster-
. . ing scheme and how rich the original data set with case-
Experiment Settings dependent relationships. In the worst case, as we can see
We have learned classifiers of different structures (i.e., naive, from the experimental results, CBBN classifiers perform as
TAN, BAN, BAN*, GBN and GBN*) from a set of twenty- well as BN classifiers. When case-dependent relationships
five benchmark databases. These classifiers have beenmatter, as an example, in the german loan approval data
built based on BN approach and based on our CBBN ap- Se€t, we noticed a cyclic relationship between three variables
proach. Moreover, the structures of local classifiers have (balance, loan, and business). This relationship appears as
been learned using different learning algorithms. In partic- follows: in one case, (balanece loan— business) while in

ular, we used the MDL score algorithm to learn BAN and another case, (balanee business). The results have also
GBN, and CBL2 algorithm to learn BAN* and GBN*. For ~ shown that CBBN classifiers are either superior to or com-
TAN classifier, we used Chow and Liu (1968) algorithm to ~ petitive with ML classifiers.

learn a tree-like structure. When comparing CBBN classi-
fiers and BN classifiers, we do that for corresponding struc-
ture types.

The data sets were obtained from the UCI machine learn-
ing repository(www.ics.uci.eflu In all data sets, objects
with missing attribute values have been removed and nu-
merical attributes have been categorized. To avoid dif-
ferences in data cleaning, we had to recompute the re-
sults of BN classifiers instead of using results from pre- The min. average improvement (9.661%) in CBBN over
vious work. However, our recomputed results are still BN classifiers was recorded in naive classifiers. The rea-
close to the ones reported in (Cheng and Greiner 1999; son for that is the restricted structure of the naive BN. How-
Friedman, Geiger and Goldszmidt 1997). ever, the improvement is due to the ability of CBBN to esti-

For data clustering in CBBN model, we used the cluster- mate the parameters accurately from the relevant knowledge
ing algorithm k-modegHuang 1998), that extends the pop- to identify and get rid of irrelevant attributes. By contrast,
ular clustering algorithm, k-means, to categorical domains. BAN and GBN classifiers recorded higher average improve-
The biggest advantage of this algorithm is that it is scalable ments (15.562% and 13.714%) in CBBN over BN. We ar-
to very large data sets in terms of both number of records gue that these two classifiers allow unrestricted relationships
and number of clusters. Another advantage of k-modes al- between attributes, hence increasing the chance to capture
gorithm is that the modes provide characteristic descriptions case-dependent relationships.

of the clusters. These descriptions are important in charac- BAN and BAN* classifiers in CBBN have the min. aver-

teq_zr:zgk?#zféz 'ngg; tﬁ?’;ﬁ%ﬁ?gg stering algorithms age classification error (4.554% and 5.058%), which means
requires that the user spe’cify the number of clustersn ' that their general accuracy is better than other classifiers.
this work, we have determined an acceptable rangefof This is due to the fact that th_ese classifiers allow unre_strlcted
each data set. More specifically,can take integer values ~ GePendencies between attributes and at the same time con-
betweenk. - — 2 andk whicﬁ is the maximum num- siders the classification node as a parent for all other nodes.
men maz This is useful in some data sets when weak dependencies ex-

ber of clusters estimated such that each cluster has a UMt between attributes but cannot be captured unless the state
ber of objects sufficient to learn a BN classifier. We then o A P
of the classification node is given.

ran our experiments at three different values:dk,,,;,,=2,
kmaz, @Ndkary € Kmin, kmaz[) @and compare the accuracy GBN classifier learned using MDL approach has the max.
of CBBN classifiers in each case to that of BN classifiers and average error (12.137%) (i.e., the worst general accuracy).

machine learning (ML) classifiers (C4.5 and Instance-Based However, this accuracy is improved in GBN* using the ClI

In order to compare CBBN classifiers vs. BN classifiers
and ML classifiers, we considered theerage improvement
in accuracyand thewinning countover all data sets. Com-
parisons for all different structures have shown that CBBN
classifiers have considerable average improvement in accu-
racy over BN classifiers and ML classifiers, and they beat
them in most of the data sets.

(IB) classifiers). test algorithm since it has only (8.614%) average error. This
confirms that GBN classifiers built based on Cl test learning
Classification Accuracy algorithm perform better than those built based on search &

Tables (1, 2, and 3) show our classification accuracy for BN, score learning algorithms.

ML and CBBN classifiers. Because of space limitations, we  The indexing threshold affects the size of the outliers
only show the results fdr = k,,,,. Similar results have been  clusters in a CBBN model. A large value faris likely
obtained for other values @f(i.e., ki, andkyaz)- to lead to a small size for the outliers cluster, which is de-

The experimental results have shown that classifiers sirable, but will also make the descriptive attribute in the
learned using our CBBN approach are either superior to or indices rare. By contrast, a small valuewfwill probably
competitive with BN classifiers. This confirms our theoreti- simplify the classifier structure by assigning more attributes
cal intuition in that better representation of the dependency to the index, but is likely to increase the size of the outliers
relationships results in more accurate classifiers. However, cluster. So there is always a tradeoff. In our experiments, we
the amount of improvement in the classification accuracy adjusta such that the outliers do not exceed a predetermined
of CBBN models over BN models differs from one data percentage (10%) of the size of the training set.



Table 2: CBBN Classifiers vs. BN Classifiers (k=k,)

Table 3: CBBN Classifiers vs. ML Classifiers (k=k,)

Datasets ML naive TAN BAN BAN* GBN GBN*
no. |name train | test | k| o C4.5 1B BN CBBN BN CBBN | BN CBBN BN CBBN BN CBBN BN CBBN
1 [australian 690 | CV-5]3]0.80]85.217| 81.739 | 86.087 | 93.333 | 81.159 | 87.391 | 86.957 | 96.232 |87.246 | 97.101 | 86.232 | 94.493 | 88.986 | 95.652
2 [breast 683 | CV-5[310.80[94.436 | 96.047 | 97.218 | 96.779 | 95.900 | 95.608 | 96.633 | 98.682* | 96.779 | 98.682* | 96.925 | 97.804 | 95.022 | 97.657
3 |car 1728 | CV-5]4[0.85]69.329 | 66.204 | 85.185 [ 94.907 | 94.097 | 97.280 | 90.451 | 96.586 |94.039 | 96.933 | 86.400 | 92.882 | 86.111 | 93.403
4 |[chess 2130 | 1066 | 4 10.78199.390 | 95.028 | 87.054 | 96.623 | 92.495 | 95.872 | 94.090 | 96.998 |94.184 | 96.717 | 95.685 | 96.904 | 94.653 | 96.154
5 |cleve 296 | CV-5]210.90[73.986| 77.027 | 83.446 | 90.541 | 79.730 | 93.581 | 79.392 | 93.243 | 82.095| 95.608 | 81.081 | 93.581 | 84.459 | 92.905
6 |erx 653 | CV-5[1310.95[86.217 | 77.489 | 86.064 | 93.109 | 83.920 | 94.334 | 86.524 | 94.793 | 88.055] 95.100 | 85.758 | 93.415 | 86.217 | 94.181
7 |diabetes 768 | CV-5]3]0.75|76.172| 71.484 | 74.219 | 81.901 | 75.000 | 87.891 | 75.520| 87.500 |77.083 | 92.188 | 75.391 | 85.938 | 81.250 | 90.365
8 [DNA 2000 | 1186 |4 ]0.70]92.580 | 75.801 | 95.278 | 94.688 | 93.592 | 96.374 | 90.135| 97.218 | 88.533 | 96.121 | 73.946 | 82.125 | 79.089 | 93.086
9 |flare 1066 | CV-5]3[0.80]82.551 | 82.833 | 79.362 | 88.462 | 82.552 | 89.587 | 82.645| 94.090 |82.833 | 94.934 | 82.833 | 90.619 | 82.270 | 91.370
10 |german 1000 | CV-5]3[0.82]72.300] 69.700 | 74.500 | 82.800 | 72.200 | 91.500 | 73.200 | 92.400 |76.800 | 94.800 | 72.100 | 83.400 | 80.500 | 87.700
| 11 |glass 214 | CV-5[2]0.80)62.241 | 70.561 | 70.561 | 79.439 | 68.961 | 85.514 | 70.561 | 95.794 |71.028 | 96.262 | 56.075 | 71.495 | 64.019 | 84.579
12 |heart 270 | CV-5]2]0.87]80.471 ] 80.000 | 80.370 | 92.593 | 83.704 | 92.593 | 82.963 | 94.815 |86.296 | 95.185 | 81.481 | 93.333 | 85.276 | 96.667
13 |led24 200 | 3000 | 2 ]0.85[65.567 | 39.433 | 72.600 | 87.300 | 73.800 | 82.967 | 72.600 | 95.767 | 74.100 | 94.600 | 70.549 | 87.633 | 78.750 | 88.933
14 |liver 345 | CV-5[310.88[60.870 | 64.348 | 63.188 | 75.362 | 65.217 | 79.420 | 66.957 | 94.493 |67.246 | 95.072 | 53.333 | 75.072 | 66.667 | 84.058
15 [letter 15000 | 5000 [10]0.85|77.700 | 72.800 | 74.980 | 88.520 | 83.460 | 94.920 | 76.640 | 91.440 |79.300| 96.060 | 75.000 | 86.880 | 78.733 | 87.760
16 jmofn-3-7-10 300 | 1024 ] 3]0.90]85.449 | 89.355 | 86.328 | 93.945 | 91.797 | 94.727 | 86.328 | 95.508 |88.514 | 96.680 | 86.035 | 91.016 | 87.402 | 92.090
17 |nursery 8640 | 4320 | 6 10.80]68.241 | 66.157 | 90.301 | 92.824 | 91.713 | 95.255 | 91.296| 97.593 |93.079| 97.199 | 90.139 | 96.736 | 89.722 | 97.546
18 |pima 768 | CV-5]3]0.75]75.130 | 68.750 | 75.651 | 85.547 | 74.870 | 86.328 | 74.740 | 92.318 |79.297 | 93.359 | 75.000 | 88.932 | 76.042 | 85.938
19 |satimage 4435 12000 | 5 0.85]83.100 | 88.800 | 81.850 | 92.850 | 77.600 | 92.500 | 80.550 | 95.750 [84.450| 96.050 | 59.100 | 75.850 | 64.450 | 87.850
20 |segment 1540 | 770 | 3 {0.90]93.506 | 96.104* | 90.909 | 92.857 | 85.455 | 94.805 | 91.039 | 95.584 [90.390 | 96.104* | 93.636 | 94.156 | 91.948 | 93.506
21 |shuttle-small 3866 | 19341 50.77]99.121 | 99.586 | 98.242 | 96.381 | 98.914 | 97.156 | 98.910| 98.190 |97.208 | 96.794 | 99.121 | 97.880 | 97.001 | 97.466
22 |soybean-large 562 | CV-5]3]0.85]91.993| 90.747 | 91.637 | 92.527 | 58.363 | 71.174 [92.349 | 96.263 [92.865| 95.196 | 58.363 | 72.046 | 72.064 | 83.274
23 |vehicle 846 | CV-5]3]0.85]69.740 | 63.830 | 58.510 | 70.686 | 67.967 | 74.470 | 67.494 | 93.498 | 71.631| 87.589 | 60.875 | 73.286 | 78.369 | 90.189
24 |vote 435 |CV-5]3]0.80]95.172 ] 94.713 | 89.655 | 96.092 | 88.966 | 94.943 | 90.115| 94.253 |95.632 | 97.241 | 95.172 | 96.782 | 95.712 | 95.862
25 |waveform21 300 | 4700 | 210.90|74.787 | 75.766 | 77.872 | 85.213 | 75.383 | 92.553 | 77.723 | 94.553 | 78.787 | 94.574 | 69.447 | 84.319 | 71.340 | 86.468
best classification accuracy count 1 1 0 0 0 1 0 5 0 14 0 0 0 1
Table 1: Classification Accuracy (k=k,,)

CBBN - TAN | BAN | BAN* | GBN | GBN*

CBBN - | na TAN | BAN | BAN* | GBN | GBN* win/C4.5 | 88.000 | 84.000 | 88.000 | 92.000 | 80.000 | 88.000

win/BN | 88.000 | 92.000 | 96.000 | 96.000 | 96.000 {100.000 imp/C4.5 | 12.260 | 13.856 | 20.041 | 20.667 | 10.490 | 15.245

imp/BN | 9.661 | 11.756 | 15.562 | 13.729 | 13.714 | 12.080 win/IB | 92.000 | 84.000 | 88.000 | 96.000 | 84.000 | 84.000

error | 10.589 | 9.650 | 5.058 | 4.554 | 12.137] 8.614 imp/IB_| 17.826 | 19.265 | 25.987 | 26.555 | 16.095 | 20.955




Time Cost

SupposeN is the number of data objects in the training
set,r is the maximum number of possible values for an at-
tribute, and is the number of iteration required for k-modes
to converge. We are interested in the construction time of
the model. In BN models, the construction time is only
the learning time which i®(Nn*r™) for unrestricted BNs
and onlyO(Nn?) for tree-structure networks. In our CBBN
model, the construction time is the summation of the clus-
tering time, the total learning time, and the indexing time.

The clustering time i©(tknN) wheret, k,n << N. It
is obvious that we will not waste too much time in clustering
because of the linearity of the running time of the clustering
algorithm we chose with the size of the data set. The total
learning time is the summation of the learning times needed
to learn a BN classifier from each cluster. The repetition of
the learning process is time consuming in CBBN models.
However, as we can see the learning time in the algorithms
mentioned above is linear with the number of data objatts
and polynomial in number of attributes Since each cluster
is smaller in size than the original data set and represented
by a fewer number of nodes because of our indices, we con-
clude that the average time of learning from a cluster might
be much smaller than learning from a whole large training
set described by a large number of attributes. The only time
left is the indexing time. From algorithnsandB this time
can be estimated &(rnNk?) in the worst case.

Based on the above discussion, for sparse BNs, we would
expect a CBBN model to be expensive compared to a BN
model because of the indexing time and the repeated learn-
ing time. For dense BNs, we would expect some of the time
used in indexing and repeated learning in a CBBN model
to be compensated by the lengthy time to learn such a com-
plex BN model. For example, for the DNA data set with
60 attributes and 2000 data objects in the training set, it
takes 117 CPU seconds to build a BN-TAN, while it takes
374 CPU seconds to build a CBBN-TAN from four clusters.

For the same database, it takes 563 CPU seconds to build a

BN-BAN*, while it takes 957 CPU seconds to build CBBN-
BAN* which is only 1.7 times slower.

Conclusions and Future Work
In this paper, we have proposed a new approach to learn

Bayesian classifiers from data. This approach uses a cluster-

ing technique to organize the data into semantically sound
clusters, thereby representing the domain knowledge in a
more expressive and accurate way. In particular, using our
novel approach, we were able to learn Bayesian classifiers

that can capture finer levels of dependency assertions than

possible in traditional BNs. We have shown that being able

to represent such dependency relationships more accurately

can significantly improve the performance of our classifiers.
We plan to extend this work in the following directions:
We would like to study Bayesian multi-net classifiers since
we believe that they are a special case of our CBBN classi-
fiers.
We believe that the semantics of the case indices in
CBBNs are probabilistically sound. In fact, we will formally

demonstrate that CBBNs are a special case of Bayesian
Knowledge Bases (Santos Jr, Santos and Shimony 2003).

We will also explore multi-source data sets using our
CBBN classifiers. In such data sets, assuming fixed rela-
tionships among attributes for the whole domain is inappro-
priate. Different sources (i.e., experts) might have different
organizations for the domain, hence, they might allow dif-
ferent relationships among the corresponding attributes.

Finally, we suggested using the k-modes clustering algo-
rithm and ran our experiments with three different values of
k and with o adjusted by the user. Although we obtained
good results in all runs, there is no guarantee that these are
the best results possible. We would like to find a procedure
to optimizek anda for the best classification accuracy.
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