
Case-Based Bayesian Network Classifiers

Eugene Santos Jr. and Ahmed Hussein
Department of Computer Science and Engineering

University of Connecticut
Storrs, CT 06269-3155

eugene@engr.uconn.edu and ahussein@engr.uconn.edu

Abstract

We propose a new approach for learning Bayesian clas-
sifiers from data. Although it relies on traditional
Bayesian network (BN) learning algorithms, the effec-
tiveness of our approach lies in its ability to organize
and structure the data in such a way that allows us to
represent the domain knowledge more accurately than
possible in traditional BNs. We use clustering to parti-
tion the data into meaningful patterns, where each pat-
tern is characterized and discriminated from other pat-
terns by an index. These patterns decompose the do-
main knowledge into different components with each
component defined by the context found in its index.
Each component can then be represented by a local BN.
We argue that this representation is more expressive
than traditional BNs in that it can represent domain de-
pendency assertions more precisely and relevantly. Our
empirical evaluations show that using our proposed ap-
proach to learning classifiers results in improved classi-
fication accuracy.

Introduction
Learning accurate classifiers from data continues to be an
active research area. Many algorithms have been developed
for learning classifiers of different functional representation
such as decision trees, neural networks, and Bayesian net-
works (Han and Kamber 2001).

Bayesian network (BN) classifiers (Cheng and Greiner,
2001) have gained more attention from machine learning
and data mining researchers since the discovery of the
first BN classifier known as naive-Bayes (Langley, Iba and
Thompson 1992). This classifier is merely a very simple BN
with a strong assumption of independence among its vari-
ablesgiven the classification variableC, though it has sur-
prisingly shown a competitive performance (i.e., classifica-
tion accuracy) with state-of-the-art non-Bayesian classifiers
such as C4.5 (Quinlan 1993).

The encouraging performance of naive classifiers has mo-
tivated researchers to build other BN classifiers that relax the
naive classifier’s strong independency assumption. The Tree
Augmented naive-Bayes (TAN) (Cheng and Greiner 1999;
Friedman, Geiger and Goldszmidt 1997) approximates the

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

interactions between attributes by using a tree structure.
TAN has been shown to outperform naive-Bayes classifier.

Consequently, and with the advances in developing al-
gorithms that learn BNs from data, many researchers have
explored unrestricted BN classifiers. These classifiers are
learned based on recent learning algorithms that can learn
multiply connected BNs. Among these classifiers is the
Bayesian network Augmented naive-Bayes (BAN) (Cheng
and Greiner 1999; Friedman, Geiger and Goldszmidt 1997)
which extends TAN by allowing the attributes to form an ar-
bitrary graph, rather than a tree, and the General Bayesian
Network classifiers (GBN) (Cheng and Greiner 1999; Fried-
man, Geiger and Goldszmidt 1997) which treats the classi-
fication node as an ordinary node and identifies a relevant
attribute subset around the classification node defined by its
Markov blanket. These two classifiers have been built and
examined based on two different BN learning algorithms.
Friedman et al. (1997) used the MDL score algorithm (Lam
and Bacchus 1994) while Cheng et al. (1999) used the CBL
learning algorithm (Cheng, Bell and Liu 1997). In both stud-
ies, the empirical evaluation of the two classifiers showed
that these classifiers perform better than naive and in many
cases outperform TAN. Friedman et al. (1997), however,
have mentioned that GBN classifiers learned via the score-
based learning algorithms may result in relatively poor clas-
sification accuracy since a good score function does not nec-
essarily lead to good classification accuracy. Cheng et al.
(1999) have shown that GBN classifiers built based on non-
scoring learning algorithms (i.e., CI-test algorithms), do not
suffer from this problem and that these algorithms can effec-
tively learn unrestricted BN classifiers.

The above earlier work suggests that unrestricted BN clas-
sifiers can capture the relationships among the domain at-
tributes better, therefore, leading to more accurate classi-
fiers. This fact motivates us to raise the question of whether
improving the capability of BNs as a tool for represent-
ing dependency assertions can further improve their perfor-
mance as classifiers. In this paper, we introduce a new type
of Bayesian classifier called “Case-Based Bayesain Network
(CBBN)” classifiers. Although, this type of Bayesian clas-
sifier is learned from data using traditional BN learning al-
gorithms, we will show that our learning methodology or-
ganizes the data in such a way that allows more precise and
more relevant representation of the domain dependency re-

lationships. In particular, we introduce the concept of “case-
dependent relationships” and show that while traditional
BNs are not suitable to represent this type of knowledge,
our CBBNs can capture and encode them, hence improving
classification accuracy.

CBBN Methodology
Our approach to learning classifiers employs a clustering
technique to discover meaningful patterns in the training
data set represented by different clusters of data. Each clus-
ter is then characterized and discriminated from other clus-
ters by a unique assignment to its most relevant and descrip-
tive attributes. This assignment is called an index. As we
shall see, these indices provide a natural attribute selection
for the CBBN classifiers. Intuitively, each cluster represents
a piece of the domain knowledge described by the context
of its index. These clusters can also be viewed as a set of
conditionally independent cases with each case mapped to
an index that describes the context of the knowledge rele-
vant to that case. The knowledge associated with each case
can then be representedindependentlyby a BNconditioned
on its index. This independency of cases implies that the
relationships among the corresponding attributes might be
different for different cases. Thus, instead of assuming fixed
relationships between attributes for the whole domain as in
traditional BNs, these relationships can vary according to
each different context of each case in the same domain. This
conclusion is crucial, since it means that two variablesX
andY might be directly dependent (X→ Y) in caseCi and
independent in caseCj . Moreover,X → Y might occur in
caseCi while Y ← X occurs in caseCj . Even if the rela-
tionships in different cases are the same, the parameters that
represent the strength of these relationships might be differ-
ent.

As an example, consider a database of customers apply-
ing to a loan in a bank. Such a database might have two
different patterns (i.e., cases) where each pattern represents
a group of customers. The first group includes those cus-
tomers who have a good balance in their checking and sav-
ing accounts. The decision to grant a loan to these customers
might not be influenced by whether a customer has a guar-
antor, whether he/she has properties, or whether he/she is a
citizen, but it might be highly affected by his/her residency
time and somewhat by his/her credit history. The second
group might include those people who do not have sufficient
balance in their checking account and with poor credit his-
tory. For this group the situation is different since the bank
decision will be highly affected by whether they have prop-
erties, whether they have a guarantor, whether they are cit-
izens, as well as their residency time. The bank decision
and its requirements may be considered as domain variables
in a BN that have case dependent relationships among them
Fig.(1).

Another example is cyclic knowledge. In a data set of
patients suffering from diabetes a doctor can distinguish be-
tween two groups of patients; those who have just started
taking a specific medication and found that it causes an im-
provement where the glucose level starts to decrease, and
those who have been taking the medication for a while and

Figure 1: An example of case-dependent relationships

are excited by the improvement thus causing them to in-
crease the dose of that medication or even taking an addi-
tional one. In this example the relation between medication
level and health improvement is not purely unidirectional,
but is case-dependent cyclic.

This kind of knowledge cannot be represented in tradi-
tional BNs. We argue that these relationships can be rep-
resented in our CBBN model and significantly improve its
accuracy as a classifier. Moreover, our approach provides
a novel procedure for selecting relevant attributes. In tradi-
tional GBN classifiers, a Markov blanket of the classifica-
tion node is used as an attribute selection procedure. Of-
ten, this selection is useful and discards truly irrelevant at-
tributes. However, it might discard attributes that are crucial
for classification (Friedman, Geiger and Goldszmidt 1997).
CBBN provides an alternative attribute selection procedure
that better avoid discarding relevant attributes. The attributes
that constitute an index for a cluster have fixed values for all
objects in the cluster. We conclude that these attributes are
irrelevant to the classification task in this cluster. Hence, the
BN classifier learned from this cluster can safely exclude
these attributes.1

CBBN Classification Model
Constructing a CBBN classification model consists of the
following three phases:

Clustering and indexing phase
SupposeD is a training data set described by a set of cate-
gorical attributesA1, A2, ..., An, C whereC is the classifi-
cation node. A clustering algorithm is used to partitionD
into a set of clustersC = {C1, C2, . . . , Ck} characterized
by a set of mutually exclusive indicesI = {I1, I2, . . . , Ik}
respectively. This indexing scheme guarantees at most one
mapping per a data object to the setI.

In order to generate such an indexing scheme, algorithmA
shown below begins by initializingI as set ofk n-dimension
vectors with “don’t care” (i.e. ‘x’) values for all elements
of each vectorIi. For a particular clusterCi, the algorithm
computes the probability distribution for each attribute, (i.e.,

1This attribute selection procedure might also be useful in sim-
plifying the structure of the classifiers, especially in BAN and
GBN, to avoid the overfitting problem reported by Cheng et al.
(1999)

the frequencies of its possible values estimated from the data
in this cluster). The algorithm proceeds to determine the
value of each attribute that has the maximum frequency and
assigns this value to this attribute inIi if its frequency ex-
ceeds an indexing thresholdα. The resulting assignment is
then used as a description of the objects inCi, thus the algo-
rithm moves all objects that are not covered byIi from Ci

to the outliers cluster. The same procedure is repeated with
each cluster. The algorithm then visits the outliers cluster
to check for possible mappings of its objects back to the in-
dexed clusters. These objects are retrieved from the outlier
to be placed in a cluster if the objects are compatible to the
cluster’s description index.

In order to achieve mutual exclusion between the above
assignments, algorithmB checks each two assignments
for the mutual exclusion condition (at least one common
attribute is assigned differently). If they do not satisfy this
condition, it searches for the “don’t care” attribute in both
assignments that can be assigned differently in both of them
such that a minimum number of objects is rejected from
both clusters due to the new assignments. The algorithm
then updates the members of all clusters, including the
outliers, according to the new mutually exclusive assign-
ments. Finally, to produce the index of each cluster, the
algorithm simply discards any “don’t care” attributes in
each assignment.

Algorithm A: Clustering and Indexing
Input:

D: training data set
k: number of clusters
α: indexing threshold

Output:
C: set ofk clustersC1, C2, . . . ,Ck

I : set of mutually exclusive indicesI1, I2, . . . ,Ik

Outliers: possible outliers cluster
Notation:

R(Aj): the domain of the attributeAj

aj,i(max): aj that maximizesP (Aj = aj |Ci)
Pj,i(max): P (Aj = aj,i(max)|Ci)

Begin
Call clustering algorithm onD to form the set of clustersC
For each clusterCi

Initialize Ii as an n-dimensional vector with ‘x’ values
For each attributeAj

ComputeP(Aj = aj |Ci)∀aj ∈ R(Aj)
Findaj,i(max) andPj,i(max)

If (Pj,i(max) > α) assignaj,i(max) to jth element inIi

Move the objects ofCi not covered byIi to Outliers
For each clusterCi

Move fromOutliersobjects covered byIi back toCi

Call AlgorithmB to get mutually exclusive vectors inI
For each clusterCi and using its updatedIi

Move objects ofCi not covered byIi to theOutliers
For each clusterCi and using its updatedIi

Move fromOutliersthe objects covered byIi back toCi

End

Algorithm B: check and fix
Input :

C: a set ofk data clusters
I : a set ofk n-dimensional vectors

Output:
I : a set of mutually exclusive indices (updatedI)

Notation:
at,i: the value of the attributeAt in Ii

Ii(t): the location of attributeAt in Ii

at,i(max): at with the maximizesP (At = at|Ci)
ui: no. of uncovered objects byIi in Ci

uj : no. of uncovered objects byIj in Cj

Begin
For i = 1 to k − 1

For j = i + 1 to k
If (Ii andIj are not mutually exclusive) then

For each attributeAt (t = 1, 2, ..., n)
If (a t,i = at,j =‘x’) then

Findat,i(max) andat,j(max)

If (a t,i(max)! = at,j(max)) then
Ii(t) = at,i(max) andIj(t) = at,j(max)

Findui anduj

Computest = ui + uj

Retrieve the original state ofIi andIj

Find the attributeAp that minimizesst

put Ii(p) = ap,i(max) andIj(p) = ap,j(max)

For eachIi

If an attributeAj =‘x’ then removeAj from Ii

End

Learning Phase

We apply a BN learning algorithm to learn a local BN classi-
fier Bi, wherei ∈ {1, 2, ..., k}, from the data objects in each
indexed cluster produced by algorithmsA andB. This local
classifier is defined over a subsetVi ⊂ V. If V (Ii) is the set
of the attributes inIi thenVi = V − V (Ii). We also learn a
BN classifier,Bo, from the outliers cluster defined over the
whole setV. The set of local classifiers together with the
indecies constitute a CBBN classifier.

Testing Phase

We test the newly learned CBBN classification model on
the given test data setT . Basically, we map each test ob-
ject (a1, a2, . . . , an) in T to an index inI by comparing the
attributes assignment in both of them. We then compute
P (C|a1, a2, . . . , an) from the local BN classifier character-
ized by that index and assign toC the value that maximizes
P . Because of the mutual exclusion property of our index-
ing scheme, an object can map to at most one local classifier
Bi. If an object cannot be mapped to any index inI, we map
it to Bo as the default classifier. Finally, we compute the ac-
curacy by comparing the predicted values ofC found above
with its true values inT .

Experimental Results

Experiment Settings

We have learned classifiers of different structures (i.e., naive,
TAN, BAN, BAN*, GBN and GBN*) from a set of twenty-
five benchmark databases. These classifiers have been
built based on BN approach and based on our CBBN ap-
proach. Moreover, the structures of local classifiers have
been learned using different learning algorithms. In partic-
ular, we used the MDL score algorithm to learn BAN and
GBN, and CBL2 algorithm to learn BAN* and GBN*. For
TAN classifier, we used Chow and Liu (1968) algorithm to
learn a tree-like structure. When comparing CBBN classi-
fiers and BN classifiers, we do that for corresponding struc-
ture types.

The data sets were obtained from the UCI machine learn-
ing repository(www.ics.uci.edu). In all data sets, objects
with missing attribute values have been removed and nu-
merical attributes have been categorized. To avoid dif-
ferences in data cleaning, we had to recompute the re-
sults of BN classifiers instead of using results from pre-
vious work. However, our recomputed results are still
close to the ones reported in (Cheng and Greiner 1999;
Friedman, Geiger and Goldszmidt 1997).

For data clustering in CBBN model, we used the cluster-
ing algorithm,k-modes(Huang 1998), that extends the pop-
ular clustering algorithm, k-means, to categorical domains.
The biggest advantage of this algorithm is that it is scalable
to very large data sets in terms of both number of records
and number of clusters. Another advantage of k-modes al-
gorithm is that the modes provide characteristic descriptions
of the clusters. These descriptions are important in charac-
terizing clusters in our CBBN approach.

The k-modes algorithm, as many clustering algorithms,
requires that the user specify the number of clustersk. In
this work, we have determined an acceptable range ofk for
each data set. More specifically,k can take integer values
betweenkmin = 2 andkmax which is the maximum num-
ber of clusters estimated such that each cluster has a num-
ber of objects sufficient to learn a BN classifier. We then
ran our experiments at three different values ofk (kmin=2,
kmax, andkarb ∈]kmin, kmax[) and compare the accuracy
of CBBN classifiers in each case to that of BN classifiers and
machine learning (ML) classifiers (C4.5 and Instance-Based
(IB) classifiers).

Classification Accuracy

Tables (1, 2, and 3) show our classification accuracy for BN,
ML and CBBN classifiers. Because of space limitations, we
only show the results fork = karb. Similar results have been
obtained for other values ofk (i.e.,kmin andkmax).

The experimental results have shown that classifiers
learned using our CBBN approach are either superior to or
competitive with BN classifiers. This confirms our theoreti-
cal intuition in that better representation of the dependency
relationships results in more accurate classifiers. However,
the amount of improvement in the classification accuracy
of CBBN models over BN models differs from one data

set to another depending on how good the chosen cluster-
ing scheme and how rich the original data set with case-
dependent relationships. In the worst case, as we can see
from the experimental results, CBBN classifiers perform as
well as BN classifiers. When case-dependent relationships
matter, as an example, in the german loan approval data
set, we noticed a cyclic relationship between three variables
(balance, loan, and business). This relationship appears as
follows: in one case, (balance→ loan→ business) while in
another case, (balance← business). The results have also
shown that CBBN classifiers are either superior to or com-
petitive with ML classifiers.

In order to compare CBBN classifiers vs. BN classifiers
and ML classifiers, we considered theaverage improvement
in accuracyand thewinning countover all data sets. Com-
parisons for all different structures have shown that CBBN
classifiers have considerable average improvement in accu-
racy over BN classifiers and ML classifiers, and they beat
them in most of the data sets.

The min. average improvement (9.661%) in CBBN over
BN classifiers was recorded in naive classifiers. The rea-
son for that is the restricted structure of the naive BN. How-
ever, the improvement is due to the ability of CBBN to esti-
mate the parameters accurately from the relevant knowledge
to identify and get rid of irrelevant attributes. By contrast,
BAN and GBN classifiers recorded higher average improve-
ments (15.562% and 13.714%) in CBBN over BN. We ar-
gue that these two classifiers allow unrestricted relationships
between attributes, hence increasing the chance to capture
case-dependent relationships.

BAN and BAN* classifiers in CBBN have the min. aver-
age classification error (4.554% and 5.058%), which means
that their general accuracy is better than other classifiers.
This is due to the fact that these classifiers allow unrestricted
dependencies between attributes and at the same time con-
siders the classification node as a parent for all other nodes.
This is useful in some data sets when weak dependencies ex-
ist between attributes but cannot be captured unless the state
of the classification node is given.

GBN classifier learned using MDL approach has the max.
average error (12.137%) (i.e., the worst general accuracy).
However, this accuracy is improved in GBN* using the CI
test algorithm since it has only (8.614%) average error. This
confirms that GBN classifiers built based on CI test learning
algorithm perform better than those built based on search &
score learning algorithms.

The indexing thresholdα affects the size of the outliers
clusters in a CBBN model. A large value forα is likely
to lead to a small size for the outliers cluster, which is de-
sirable, but will also make the descriptive attribute in the
indices rare. By contrast, a small value ofα will probably
simplify the classifier structure by assigning more attributes
to the index, but is likely to increase the size of the outliers
cluster. So there is always a tradeoff. In our experiments, we
adjustα such that the outliers do not exceed a predetermined
percentage (10%) of the size of the training set.

D

atasets
M

L

naïve
T

A
N

B

A
N

B

A
N

*
G

B
N

G

B
N

*
no. nam

e

train

test
k

α
C

4.5
IB

B

N

C
B

B
N

B
N

C

B
B

N

B
N

C

B
B

N

B
N

C

B
B

N

B
N

C

B
B

N

B
N

C

B
B

N

1

australian

690
C

V
-5

3
0.80

85.217
81.739

86.087

93.333
81.159

87.391
86.957

96.232

87.246
97.101

86.232
94.493

88.986
95.652

2

breast

683
C

V
-5

3
0.80

94.436
96.047

97.218

96.779
95.900

95.608
96.633

98.682*
96.779

98.682*
96.925

97.804
95.022

97.657

3

car

1728
C

V
-5

4
0.85

69.329
66.204

85.185

94.907
94.097

97.280
90.451

96.586

94.039
96.933

86.400
92.882

86.111
93.403

4

chess

2130
1066

4
0.78

99.390
95.028

87.054

96.623
92.495

95.872
94.090

96.998

94.184
96.717

95.685
96.904

94.653
96.154

5

cleve

296
C

V
-5

2
0.90

73.986
77.027

83.446

90.541
79.730

93.581
79.392

93.243

82.095
95.608

81.081
93.581

84.459
92.905

6

crx

653
C

V
-5

3
0.95

86.217
77.489

86.064

93.109
83.920

94.334
86.524

94.793

88.055
95.100

85.758
93.415

86.217
94.181

7

diabetes

768
C

V
-5

3
0.75

76.172
71.484

74.219

81.901
75.000

87.891
75.520

87.500

77.083
92.188

75.391
85.938

81.250
90.365

8

D

N
A

2000
1186

4
0.70

92.580
75.801

95.278

94.688
93.592

96.374
90.135

97.218
88.533

96.121
73.946

82.125
79.089

93.086

9

flare

1066
C

V
-5

3
0.80

82.551
82.833

79.362

88.462
82.552

89.587
82.645

94.090

82.833
94.934

82.833
90.619

82.270
91.370

10 germ
an

1000
C

V
-5

3
0.82

72.300
69.700

74.500

82.800
72.200

91.500
73.200

92.400

76.800
94.800

72.100
83.400

80.500
87.700

11 glass
214

C
V

-5
2

0.80
62.241

70.561
70.561

79.439

68.961
85.514

70.561

95.794
71.028

96.262
56.075

71.495
64.019

84.579

12 heart
270

C
V

-5
2

0.87
80.471

80.000
80.370

92.593

83.704
92.593

82.963

94.815
86.296

95.185
81.481

93.333
85.276

96.667

13 led24
200

3000
2

0.85
65.567

39.433
72.600

87.300

73.800
82.967

72.600
95.767

74.100
94.600

70.549
87.633

78.750
88.933

14 liver
345

C
V

-5
3

0.88
60.870

64.348
63.188

75.362

65.217
79.420

66.957

94.493
67.246

95.072
53.333

75.072
66.667

84.058

15 letter
15000

5000
10 0.85

77.700
72.800

74.980

88.520
83.460

94.920
76.640

91.440

79.300
96.060

75.000
86.880

78.733
87.760

16 m
ofn-3-7-10

300
1024

3
0.90

85.449
89.355

86.328

93.945
91.797

94.727
86.328

95.508

88.514
96.680

86.035
91.016

87.402
92.090

17 nursery
8640

4320
6

0.80
68.241

66.157
90.301

92.824

91.713
95.255

91.296
97.593

93.079
97.199

90.139
96.736

89.722
97.546

18 pim
a

768
C

V
-5

3
0.75

75.130
68.750

75.651

85.547
74.870

86.328
74.740

92.318

79.297
93.359

75.000
88.932

76.042
85.938

19 satim
age

4435
2000

5
0.85

83.100
88.800

81.850

92.850
77.600

92.500
80.550

95.750

84.450
96.050

59.100
75.850

64.450
87.850

20 segm
ent

1540
770

3
0.90

93.506
96.104*

90.909

92.857
85.455

94.805
91.039

95.584

90.390
96.104*

93.636
94.156

91.948
93.506

21 shuttle-sm
all

3866
1934

5
0.77

99.121
99.586

98.242

96.381
98.914

97.156
98.910

98.190

97.208
96.794

99.121
97.880

97.001
97.466

22 soybean-large
562

C
V

-5
3

0.85
91.993

90.747
91.637

92.527

58.363
71.174

92.349
96.263

92.865
95.196

58.363
72.046

72.064
83.274

23 vehicle
846

C
V

-5
3

0.85
69.740

63.830
58.510

70.686

67.967
74.470

67.494
93.498

71.631
87.589

60.875
73.286

78.369
90.189

24 vote
435

C
V

-5
3

0.80
95.172

94.713
89.655

96.092

88.966
94.943

90.115

94.253
95.632

97.241
95.172

96.782
95.712

95.862

25 w
aveform

21
300

4700
2

0.90
74.787

75.766
77.872

85.213

75.383
92.553

77.723

94.553
78.787

94.574
69.447

84.319
71.340

86.468

best classification accuracy count
1

1
0

0
0

1
0

5
0

14
0

0
0

1
Table 1: C

lassifica tion A
ccuracy (k=k

arb)

C
B

B
N

 →

naïve
T

A
N

B

A
N

B

A
N

*
G

B
N

G

B
N

*

C
B

B
N

 →

naïve
T

A
N

B

A
N

B

A
N

*
G

B
N

G

B
N

*

win/C4.5
88.000

84.000
88.000

92.000
80.000

88.000

win/BN

88.000
92.000

96.000

96.000
96.000

100.000

im
p/C4.5

12.260
13.856

20.041
20.667

10.490
15.245

im
p/BN

9.661

11.756
15.562

13.729
13.714

12.080

win/IB
92.000

84.000
88.000

96.000
84.000

84.000

error
10.589

9.650

5.058

4.554
12.137

8.614

im
p/IB

17.826
19.265

25.987
26.555

16.095
20.955

 Table 2: C
B

B
N

 C
lassifiers vs. B

N
 C

lassifiers (k=k
arb) Table 3: C

B
B

N
 C

lassifiers vs. M
L C

lassifiers (k=k
arb)

Time Cost
SupposeN is the number of data objects in the training
set,r is the maximum number of possible values for an at-
tribute, andt is the number of iteration required for k-modes
to converge. We are interested in the construction time of
the model. In BN models, the construction time is only
the learning time which isO(Nn4rn) for unrestricted BNs
and onlyO(Nn2) for tree-structure networks. In our CBBN
model, the construction time is the summation of the clus-
tering time, the total learning time, and the indexing time.

The clustering time isO(tknN) wheret, k, n << N . It
is obvious that we will not waste too much time in clustering
because of the linearity of the running time of the clustering
algorithm we chose with the size of the data set. The total
learning time is the summation of the learning times needed
to learn a BN classifier from each cluster. The repetition of
the learning process is time consuming in CBBN models.
However, as we can see the learning time in the algorithms
mentioned above is linear with the number of data objectsN
and polynomial in number of attributesn. Since each cluster
is smaller in size than the original data set and represented
by a fewer number of nodes because of our indices, we con-
clude that the average time of learning from a cluster might
be much smaller than learning from a whole large training
set described by a large number of attributes. The only time
left is the indexing time. From algorithmsA andB this time
can be estimated asO(rnNk2) in the worst case.

Based on the above discussion, for sparse BNs, we would
expect a CBBN model to be expensive compared to a BN
model because of the indexing time and the repeated learn-
ing time. For dense BNs, we would expect some of the time
used in indexing and repeated learning in a CBBN model
to be compensated by the lengthy time to learn such a com-
plex BN model. For example, for the DNA data set with
60 attributes and 2000 data objects in the training set, it
takes 117 CPU seconds to build a BN-TAN, while it takes
374 CPU seconds to build a CBBN-TAN from four clusters.
For the same database, it takes 563 CPU seconds to build a
BN-BAN*, while it takes 957 CPU seconds to build CBBN-
BAN* which is only 1.7 times slower.

Conclusions and Future Work
In this paper, we have proposed a new approach to learn
Bayesian classifiers from data. This approach uses a cluster-
ing technique to organize the data into semantically sound
clusters, thereby representing the domain knowledge in a
more expressive and accurate way. In particular, using our
novel approach, we were able to learn Bayesian classifiers
that can capture finer levels of dependency assertions than
possible in traditional BNs. We have shown that being able
to represent such dependency relationships more accurately
can significantly improve the performance of our classifiers.

We plan to extend this work in the following directions:
We would like to study Bayesian multi-net classifiers since
we believe that they are a special case of our CBBN classi-
fiers.

We believe that the semantics of the case indices in
CBBNs are probabilistically sound. In fact, we will formally

demonstrate that CBBNs are a special case of Bayesian
Knowledge Bases (Santos Jr, Santos and Shimony 2003).

We will also explore multi-source data sets using our
CBBN classifiers. In such data sets, assuming fixed rela-
tionships among attributes for the whole domain is inappro-
priate. Different sources (i.e., experts) might have different
organizations for the domain, hence, they might allow dif-
ferent relationships among the corresponding attributes.

Finally, we suggested using the k-modes clustering algo-
rithm and ran our experiments with three different values of
k and withα adjusted by the user. Although we obtained
good results in all runs, there is no guarantee that these are
the best results possible. We would like to find a procedure
to optimizek andα for the best classification accuracy.

Acknowledgements
This work was supported in part by Air Force Office of Sci-
entific Research Grant No. F49620-03-1-0014.

References
Cheng, J., Bell, D., and Liu, W. 1997. Learning Belief
Networks from Data: An Information Theory Based Ap-
proach. InProceedings of the Sixth ACM International
Conference on Information and Knowledge Management.
Cheng, J., and Greiner, R. 1999. Comparing Bayesian Net-
work Classifiers. InProceedings of the Fifteenth Confer-
ence on Uncertainty in Artificial Intelligence.
Cheng, J., and Greiner, R. 2001. Learning Bayesian Belief
Network Classifiers: Algorithms and Systems. InProceed-
ings of the Fourteenth Canadian Conference on Artificial
Intelligence.
Chow, C.K., and Liu, C.N. 1968. Approximating dis-
crete probability distributions with dependence trees.IEEE
Trans. on Information Theory14:462-467.
Friedman, N., Geiger, D., and Goldszmidt M. 1997.
Bayesian Network Classifiers.Machine Learning29:131-
161.
Han, J., and Kamber, M. 2001.Data Mining Concepts and
Techniques. San Francisco:Morgan Kaufmann
Huang, Z. 1998. Extensions to the k-means Algorithm for
Clustering Large Data Sets.Data Mining and Knowledge
Discovery2(3):283-304.
Lam, W., and Bacchus, F. 1994. Learning Bayesian Be-
lief Networks: An Approach Based on the MDL Principle.
Computational Intelligence10(4)
Langley, P., Iba, W., and Thompson, K. 1992. Induc-
tion of Selective Bayesian Classifiers. InProceedings of
the National Conference of Artificial Intelligence, 223-228.
Menlo Park, CA:AAAI Press.
Quinlan, J. R. 1993.C4.5:Programs for Machine Learning.
San Mateo:Morgan Kaufmann
Santos, E. Jr.; Santos, E. S.; and Shimony, S. E. 2003. Im-
plicitly Preserving Semantics During Incremental Knowl-
edge Base Acquisition Under Uncertainty.International
Journal of Approximate Reasoning33(1):71-94

