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Abstract 
An authentication protocol was proposed in [11] for 

the generation of one time authentication identity, which 
can be used as one time passwords, generation of disposal 
credit card numbers. The proposed protocol was designed 
using a context free grammar and was in the learning 
theory domain. The protocol required that the context free 
grammar used for the authentication procedure be difficult 
to learn. The paper discusses the relationship between the 
learning theory and the number theory. Then based upon 
the experimental limitations to learn a context free 
grammar, we present an algorithm for the generation of 
context free grammar which is difficult to learn. There 
exists no theoretical study which states given a set of 
strings from a language L, how difficult it is to generate 
another string which belongs to the same language. 
Experiments were conducted to determine this empirically. 
A context free grammar from the proposed algorithm was 
used to generate the string. 

1.0 Introduction 
A representation class is a class of objects that can be 

represented by strings over some alphabet. The set of all 
context free grammar is a representation class. A learning 
algorithm is the one that tries to learn a representation class 
from positive and negative instances.   

 Let c and h be the two instances of some representation 
class, where c is the target class or the class to be learnt, 
while h is the output class.  Let A be the learning algorithm, 
which takes positive and negative instances as an input and 
outputs class h.  ec

+(hA) denotes that algorithm A errors on 
a positive instance of c and classifies them as a negative 
instance of h. Similarly ec

-(hA) represents the probability 
that A errors on negative instances of c, by classifying then 
as positive instances of h.  If , ec

+(hA) = ec
-(hA) = 0, then 

the classes c and h are identical. This is the ideal case of 
complete learning or the case where errors are zero can be 
classified as strong learning. There can be another case 

where the error is not zero, but it is small negligible value. 
This case can be defined as weak learnable. Formally 
defining a representation class c is weakly learnable if there 
exists a probabilistic polynomial time algorithm A that  on 
access to a set of positive and negative instances  of a target 
representation c � C, generates an output representation h, 
so that  ec

+(hA)  <  ½ - 1/O(|c|K) and  ec
-(hA)  <  ½ - 

1/O(|c|K)  and for some constant k.  |c| is usually taken as 
some polynomial in n, the length of the sample instance 

 For context free grammar, if ACFG is a learning 
algorithm for context free grammars, then for any given 
context free grammar G1, ACFG on having access to a 
small subset of positive and negative instances (i.e., strings 
that belong to G1 and are outside of G1 respectively) can 
implicitly construct a grammar G2 which is almost 
identical to G1.  Almost identical can either be a case of 
strong learn ability or it can be a case of weak learn ability. 
Strong learnability lies in un decidable domain. It can be 
proved as follows 

 Given a set of strings S1, S2, S3…Sn, Sn+1… Sm there 
can be infinite number of grammars that can  generate these 
strings. The exact context free grammar is a grammar, 
which can be generated by using S1, S2, S3…. Sn and 
which successfully accepts Sn+1, Sn+2… Sm.  Let’s 
assume that there exist an learning algorithm A which on an 
input set of string S1, S2, … Sn can predict the exact 
context free Grammar G which generated it. Now let us 
pick any context free grammar G1 and generate strings S1, 
S2.. Sn by randomly selecting rules from the grammar. 
These strings are passed through the learning algorithm A, 
which gives grammar G2 as the exact context free 
grammar. However, it is known that given two context free 
grammar G1 and G2, L(G1) = L(G2) is an undecidable 
problem [1]. Therefore there exist no way to verify if the 
language generated by G1 and G2 are equivalent. Hence 
there cannot be any algorithm, which can give  an exact 
context free grammar.  So the strong learn ability of context 
free grammar lies in the undecidable domain. 



  Strong learn ability implies learning the whole CFG. 
Since strong learnability requires false positives and false 
negatives to be zero, target class is same as the output 
class. Hence it classifies the instances with probability one. 
This makes strong learning is a very strong assumption.   
Either the output class is same as target class or it is 
different from the output class. Hence a random guessing 
would classify the output class correctly with probability ½. 
For cryptographic purposes it needs to be defined how 
much better a learning algorithm can learn a grammar 
compared to random guessing. To this end comes the 
notion of weak learnability. A representation class is 
weakly learnable  if there exists an algorithm that can do a 
little better as a classifier than random guessing.  Weak 
learnability expects an algorithm to do just slightly better 
than random guessing.  

 According to results of Kearns and Valiant [2], if ADFA 
n 

p(n) denote the class of deterministic finite automata of size 
at most p(n) that only accepts strings of length n, and 
ADFA 

p( n) = Un>1 ADFA n 
p( n)  , then for some polynomial 

p(n), the problem of inverting the RSA encryption function, 
recognizing quadratic residues and factoring blum integers 
are probabilistic polynomial-time reducible to weakly 
learning ADFAp(n).  They further state that any 
representation class whose computational power subsumes 
that of NC 1 is not weakly learnable.  Since CFG’s contains 
the computational complexity class NC1, they are also not 
weakly learnable under the similar cryptographic 
assumptions as that of ADFA. From the above mentioned 
discussion it can be inferred that it is tough to learn CFG. 
Factoring RSA, recognizing quadratic residues and 
factoring blum integers are reducible to weakly leaning 
CFG’s.   

An algorithm to generate one time authentication 
identity was proposed in [11]. This algorithm can be used 
to generate one time passwords, disposable credit card 
numbers or it can be used to provide heart beat in the case 
of sensor networks. Detailed description of generation 
protocol and authentication protocol and the other detailed 
analysis about the protocol have been published and will 
not be discussed due to the space limitations.  

  One of the main challenges was the choice of a context 
free grammar for the protocol. Theoretically even though it 
is tough to learn the context free grammar, empirically 
there have been several studies to learn context free 
grammars. Results of these studies and the theoretical 
limitation to learn CFG’s forms the foundation for the 
algorithm to generate context free grammars which are 
difficult to learn.   

Section 2.0 discusses the experimental limitations to learn 
the context free grammar. In section 3.0 we present the 
design considerations for the automatic generation of 
context free grammar.  In section 4.0 we present the 
empirical results which talks about the toughness to guess a 

string in a language from the given set of strings in the 
language. Finally in section 5.0 conclusions is presented.  

 

2.0 Experimental Limitations to learn Context 
Free Grammar. 

The earliest method for CFG learning was proposed by 
Solomonoff [3].  In this approach the learner is given a 
positive sample S+ from a language L and has access to a 
membership oracle for L. Solomonoff in his work proposed 
to find repeated patterns in a string: for every string w ∈ S+, 
delete sub-strings from w to create new string w’ and ask 
the oracle if w’ is in the language. If it is, then insert 
repetitions of the deleted sub-strings into the string and ask 
if the new string is also in the language. If so, then there 
must be a recursive rule. For example, if there are several 
strings of type an bn, then we can infer that A →aAb is in 
the grammar. This method is inefficient and does not 
include all the context free grammars. It has been shown 
[5] that this method fails if we have sequential embedding. 
For the same example, if we have A→ aAb | cAd then this 
method will not work. Another attempt for predicting 
context free grammars reported in [4]. It is assumed in [4] 
that there is a teacher that gives a set of strings to a learner 
or a program. The program first checks if the sample is 
already in the language.  If it is, then the program decides 
in consultation with the teacher if it is finished or if it 
should continue with more samples. If the string is not in 
the machine’s language, the program adds to the grammar a 
production that adds this sentence to the language, attempts 
to verify that this production does not lead to illegal strings, 
and requests the next sample from the teacher. This method 
heavily depends upon the order in which samples are 
presented. This algorithm may choose a grammar rule that 
is too general. At a later stage a new sample may come up 
and even the predicted grammar may generate text that is 
not in the language.   An example is when predicting the 
language of arbitrarily long strings of a’s or b’s, but not 
both a and b. If samples a and aa are given the algorithm 
will produce a partial grammar with the following rules 

S →a  | SS 

Now if sample b is given it produces S → b. This grammar 
can produce the string ab, which is not in the language. The 
algorithm has made use of only positive instances to predict 
the grammar.  However, from Gold’s theorem it is clear 
that both positive and negative instances are needed to 
predict the context free grammar. Neural networks were 
used to learn context free grammars in the work done by 
[7]. Neural networks were trained with both positive and 
negative instances. As in [7], the order of input was 
important. The network was trained first with shorter 
strings and then with longer instances. This scheme proved 
good only for small context free grammars having around 
four to five terminals. It failed to scale for larger context 



free grammars.Genetic algorithms are used to learn 
stochastic context free grammars from a finite sample in 
[8]. Genetic algorithms [9] are a family of robust, 
probabilistic optimization techniques that offer advantages 
over specialized procedures for automated grammatical 
inference. A stochastic context free grammar is a variant of 
ordinary context free grammars in which grammar rules are 
associated with a probability, a real number from the range 
of [0,1].  A genetic algorithm was used to identify the 
context free grammar. This algorithm took a corpus C as an 
input. This corpus C for a language L was a finite set of 
strings drawn from L where each strings α ∈ C is 
associated with an integer fα representing its frequency. As 
in [7] this only can be used for small grammars. The chief 
limitation of this approach is the cost involved in 
evaluating the fitness of each candidate solution, which 
required parsing every string in each possible way.  This 
number of parsing operations increased exponentially with 
the number of non-terminals. Hence, this scheme is 
prohibitively costly for more than 8 non-terminals. 

3.0 Design considerations for the Automatic 
generations of Context Free Grammar 

Based upon the experimental results to learn context free 
grammar, discussed in section 2.0, this section presents the 
design consideration for the context free grammar. Let Lmax 
denote the maximum length of a string generated by the 
grammar and Lmin denote the minimum length.  For 
example, for strings of size 15 – 30, Lmax will be equal to 30 
and Lmin will be equal to 15.   For a particular value of Lmax 
and Lmin the appropriate number of terminals, nonterminals 
and corresponding rules should be generated which should 
ensure that it will be tough to learn the context free 
grammar from the collected samples of strings. Let n 
denote the number of terminals in a language. Given Lmax, 
Lmin and n all the permutations of terminals to generate 
strings of size between   Lmax  and Lmin will be 

n P L max+ n P L max-1+………n P L min  

 With increase in n, the total number of permutations of 
all the terminals increases. Also from the experimental 
studies it can be seen that the probability that a learning 
algorithm can learn the grammar from given samples of 
strings decreases with the increase in the number of 
terminal n.  In addition if n > Lmax then this ensures that a 
string of length l generated by randomly calling rules will 
never have all the terminal symbols of a language. This will 
ensure that at no point of time the learning algorithm has all 
the terminals. The value of n is chosen such that Lmax < n < 
k Lmax where integer k ∈ 2,3.… Since this authentication 
scheme is being designed by considering not only high-end 
workstations but also small memory devices like PDAs and 
smart cards, there will be a limit on the appropriate value of 
n.  This is being investigated by implementing the 
authentication protocol on smart cards and on PDAs. 

 Another major design consideration is the number and 
format of rules in each grammar. Let us assume that the 
grammar rules are written in Chomsky Normal Form 
(CNF). In CNF (as shown in figure 1) the right side of each 
production is always of length two. An efficient method to 
automatically generate rules for the start symbol and other 
nonterminals is required in order to use the new 
cryptographic domain. 

 

 

 

 

Figure 1: Format of Rules for CNF  

 It is assumed that strings of length greater than two will 
be generated. So the start symbol will contain only rules (as 
shown in figure 1) from one to three. For the start symbol 
expansion, rule one, two or three is selected randomly. 
Terminals or non-terminals are selected to generate the 
specific rule. This process is repeated until all the 
nonterminals are used. During the random selection of rules 
it may happen that only the format of rule one (Non-
terminal → Terminal Non-terminal) is selected for all the 
rules. If this happens and the start symbol is using all the 
terminals then a learning algorithm can easily learn the first 
character of strings in a CFG. Having knowledge of the 
first character of all the strings in a language will reduce 
the complexity to learn CFG. Hence it becomes essential 
that all the terminals should not occur in the rules for the 
start symbol. Another problem while generating rules for 
the start symbol can occur due to the more frequent 
appearance of some of the non-terminals as compared to 
others. If some non-terminals appear more frequently than 
others, then it may happen that while generating strings by 
randomly calling rules, sub strings generated by frequently 
occurring non-terminals will appear more often as 
compared to the sub strings generated by other non-
terminals. Using the method discussed [3] in section 3 the 
CFG can be predicted from the tracking of the frequently 
occurring nonterminals. This can be avoided by ensuring 
that the probability of occurrence of all the non-terminals 
remains equal. To address this issue, while generating rules 
for the start symbol, each non-terminal is called only once 
as shown in the algorithm of figure 3. This makes all the 
combinations, which can occur due to each non-terminal, 
equally likely. As discussed in the previous section, with 
the increase in the number of non-terminals the complexity 
of identifying the grammar increases exponentially. If the 
number of non-terminals is higher than the number of 
terminals in a grammar, and considering the worst case of 
format of rule number one selected (S → Terminal Non-
terminal) for all the rules in the start symbol, then all the 
terminals will occupy the first character of the string. This 

Nonterminal → Terminal Nonterminal         Rule 1 

  Nonterminal Terminal         Rule 2             
Nonterminal Nonterminal     Rule 3  
Terminal Terminal                Rule 4 



makes the learning of the first character of all the strings 
generated by a CFG a trivial task. So in a grammar the 
number of non-terminals should be as high as possible, 
however it also should not exceed the number of terminals. 
Hence the number of non-terminals occurring in a grammar 
is chosen randomly as kn where 0<k< 1. For the 
experiments, the value of k is fixed to be 0.75. Another 
major consideration is the number of terminals, which 
should occur in rules for a non-terminal. As per the 
algorithm shown in figure 2, while generating a rule for a 
non-terminal, one format of the rule amongst the four 
formats of rules (as shown in fig 1) is chosen randomly. 
The appropriate number of terminals/nonterminals is 
selected to generate the rule, which follows the appropriate 
format. This process is repeated until the desired number of 
terminals is guaranteed in the rules for the non-terminal.  
Again considering the worst-case scenario, it may happen 
that while generating rules for a non-terminal, only the 
format of rule number one (Non-terminal → Terminal Non-
terminal) is selected for all the rules. In this scenario too, if 
a non-terminal uses all the terminals, then a learning 
algorithm can easily predict a few characters of the string 
and hence it can make a reasonable guess about the CFG. 
Taking a simple example, if there are two non-terminals A, 
B and there are 3 terminals a,b,c, considering the worst 
scenario, the  following rules are generated for the non-
terminal A → aB | bA| cb and B→ bA|aB|ca.  For such 
types of rules, learning the few characters is a trivial task. 
Two characters which will occur in a string generated by 
these rules can be ‘ab’,’aa’,’ba’,bb’ which is all the 
combinations of the terminals ‘a’ and ‘b’. This is because 
‘a’ and ‘b’ occur in all the nonterminals (A and B) in the 
format of rule number one. From this discussion it can be 
noticed that the two conditions are necessary to cause the 
mentioned weakness 

� All terminals should occur in every nonterminals 

� These terminals should be present in the form of rule 
number one. 

 If this happens, a learning algorithm has to make a 
reasonable guess only for the last few characters. In order 
to decrease the probability of such weakness to be present, 
the total number of terminals, which should occur in the 
rules for a non-terminal, is chosen randomly between mn 
and pn where (0<m<p<1). For the experiments, m was 
fixed to be 0.5 and p was fixed to be 0.75. As discussed in 
the previous section, rules must be written so as to 
accommodate sequential embedding [10]. Sequential 
embedding makes it difficult to identify the grammar from 
the captured strings. In sequential embedding, each non-
terminal should have at least two or more expansions. If r 
denotes the number of sequential embedding rules for a 
non-terminal X, then the value of r is chosen randomly  

 

 

 

 

 

 
Figure 2: Algorithm to generate rules for the 

nonterminals 
 

 

 

 

 

 

 
Figure 2 Algorithm to generate rules for the 

nonterminals 
 

between q*n < r < w*n. where (0<q<w<0.5). The algorithm 
presented in figure 2 is being used to generate the rules for 
the nonterminals. The nonterminal pool used in the 
algorithms shown in figures 2 and 3 is an array, which 
contains the nonterminals for a grammar. The same is true 
for the terminal pool. Selection of a nonterminal from the 
nonterminal pool involves choosing one of the nonterminal 
from the array. As soon as the element is chosen from the 
nonterminal pool it is deleted from it.  When the 
nonterminal pool becomes empty all the elements are 
reinserted in the nonterminal pool in a random fashion. A 
similar operation is performed on the terminal pool, which 
comprises the terminals. 

4.0 Experimental Results. 

 There exists no theoretical result which given a set of 
strings from a particular language, demonstrates how 
difficult is it to guess another string which belongs to the  

Procedure RuleforNonterminal()   
 Input: Number of Terminals, Terminal Pool, Nonterminal 
Pool, Nonterminal  
 Output : Rules for a Nonterminal     
Begin     
Select a Random Number rno such that  mn < rno < pn. 
(Where 0<m<p<1)                                   
 Select r for sequential embedding such that qn < r < wn 
(Where 0< q < w <0.5 
Begin While( r!=0) 
  Randomly select a format of rule from  rule 1-3 . 
Pick up nonterminal from the nonterminal pool if the selected 
format is of rule3.    
Pickup terminal from the terminal pool if selected format is of 
rule 1 or 2.                   
 Generate rule as per the selected format.                                                                        
If   nonterminal pool is empty reconstruct it.   
If terminal pool is empty reconstruct it.   
 End While           
 
 Begin While(rno!=0) 
Randomly select a format of rule from rule 1-4.   
Pick up nonterminal/nonterminals from the nonterminal pool 
as per selected format.  
Pick up terminal/terminals from the terminal pool as per the 
format of the rule.           
 If single terminal is picked then rno = rno –1  
If  two terminals are picked then rno = rno –2  Generate the 
rule as per the selected format.       
 If  nonterminal pool is empty reconstruct the nonterminal 
pool.              
 If terminal pool is empty reconstruct it.  
End while    
 End  
 



 

 

 

 

 

Figure 3.0 Algorithm to generate Rules for the start 
symbol 

same language.  Some experimental tests were conducted 
to determine it empirically.   A context free grammar was 
constructed using the algorithm discussed in section 3. The 
number of terminals was chosen to be 30, with 26 
nonterminals used, which is a random value between ¾ n 
and n. The number of sequential embedding for each rule 
was chosen between n/10 and n/30. This resulted in a value 
between 1 and 3. The rules were then used to generate 
strings on different ranges: 3 to 25, 3 to 50, 3 to 100, 3 to 
150. Four types of tests were performed on these strings 
based upon the starting terminal and ending terminal. These 
tests were named frontbreaking, backbreaking, 
allfrontbreakimg, allbackbreaking.  The frontbreaking test 
selects a string and breaks into different combinations such 
that the first terminal remains same. For example, different 
combinations of the string “abcdefg” by the frontbreaking 
rule are abc, abcd, abcde, and abcdf. The backbreaking 
rule selects a string and breaks it into different 
combinations such that the last terminal remains the same. 
Different combinations for the same example by back 
breaking rule are efg, defg, cdefg, bdefg . These strings 
were passed through the grammar. The allfrontbreaking 
type of rule involves collection of all the terminals, which 
start a string, followed by the selection of a string and 
parsing it to find out if any of the start terminals appears in 
it. In case of appearance of any of the start terminals at any 
position except at the starting of the string, the string is 
broken such that start symbol occupies the first position 
and the frontbreaking rule is applied. The allbackbreaking 
type of rule involves collection of all the terminals, which 
ends the strings, followed by the selection of a string and 
parsing it. In case of appearance of any of the end terminals 
at any position except at the end, string is broken such that 
the end terminal occupies the last position and the 
backbreaking rule is applied. Taking a simple example if 
there are two strings “abcdef” and “crafgd” we collect all 
the terminals which start the strings and all the terminals 
which end the string. For starting terminals we get “a” 
(starting terminals for “abcdef”) and “c” (starting terminal 
for “crafgd”).  A string is chosen and it is parsed to find out 

if any of the start symbols appear in it. In the current 
example “c” appears in “abcdef” so by the allfront breaking 
rule the strings “cdef” and “cde” are generated. Similarly 
all the end terminals are collected. For the given example 
the end terminals are “f” and “d”. Since end terminal “f” 
appears in “crafgd” strings  “craf” and “raf” are generated 
using the allbackbreaking rule. 

674 strings of length ranging from 3 – 25 were generated. 
By applying frontbreaking rule, the strings resulted in 4902 
combinations. Out of these 4902 combinations 390 strings 
were accepted by the grammar.  So for strings of length 
between  3 – 25, around 90% of time it can be ensured that 
the strings generated by applying frontbreaking rule will 
not be accepted by the grammar. 956 strings of length 
between 3-150, resulted in 20925 combinations by 
frontbreaking rule, out of which only 398 strings got 
accepted by the grammar. This gives an acceptance rate of 
1.9%.  For each range, a different set of strings was 
generated by randomly expanding the start symbol and 
nonterminals. This means that the 674 strings generated for 
the length-range 3-25 are totally different from 956 strings 
generated for the length-range 3-150. As the string-length  
increases, the front-breaking rule results in increasing 
number of output combinations. And at the same time, the  
number of strings accepted by the grammar decreases. By 
applying backbreaking rule, 674 strings of length between 
3- 25 resulted in 4902 combinations, out of which 195 got 
accepted by the grammar. 956 strings of length ranging 
from 3 – 150 resulted in 20925 combinations, out of which 
212 got accepted. For the backbreaking rule, string-length 
ranging from 3 – 25 resulted in 3.9% acceptance and of 
size between 3 – 150 results in 1.013% acceptance by the 
grammar.  By applying the allfrontbreaking rule, 724 
strings of length between 3-25, resulted in 4250 
combinations out of which 169 got accepted.  1203 strings 
of size ranging from 3 – 150 resulted in 19991 
combinations by using allfrontbreaking rule. Out of 19991 
strings, 213 got accepted giving an acceptance rate of 
1.06%.  Allbackbreaking rule for 724 strings of length 
ranging from 3 – 25 resulted in 3369 combinations out of 
which 125 strings got accepted by the grammar. This gives 
an acceptance rate of 3.7%.  1023 strings of length between 
3- 150, resulted in 16232 combinations by allbackbreaking 
rule. Out of 16232 combinations, 209 strings got accepted 
by the grammar. This gives an acceptance rate of 1.28% 

From the experiments, it can be concluded that the 
chance of acceptance of a string generated by breaking the 
strings of size ranging from 3 to 150 is only 1%. For 99% 
of the cases it can be ensured that the strings generated by 
breaking the strings will not belong to the language. It was 
also concluded that if the difference between maximum 
length and minimum length is very large then the 
acceptance probability of a string generated after breaking 

Procedure rulefortartSymbol()   
Input : Terminal Pool, Nonterminal Pool.  
Output:  Rules for Start Symbol in Chomsky normal 
form.       
Begin While (Nonterminal pool is empty){ 
1.Randomly select a format of a rule from rules 1-3 
2. Pick up nonterminal/nonterminals from nonterminal 
pool as per the requirement of the selected format.            
 3. Pick up terminal from terminal pool if selected format 
is of rule 1 or 2.                    
4. From the selected nonterminal/terminal generate the 
rule which follows the selected format.  
End while 

 



the string reduces. In all these tests the maximum length of 
strings generated was 150.  

5.0 Conclusion. 
 
 A context free grammar has been used for the first time 
for the design of an [11] authentication protocol.  Many 
details about the protocol have been omitted, since the 
protocol has already been published. The main contribution 
of this paper is to present the theoretical and experimental 
limitations to learning context free grammars, and, based 
upon these limitations, to present the design consideration 
for the context free grammar and an algorithm to generate 
context free grammars based upon the experimental 
limitations. Tests were then conducted to determine given a 
set of string from a language how difficult it is to generate 
another string which belong to the same language. For the 
best case chances of acceptance of strings generated after 
breaking the string is 1%. As the size of the string increases 
percentage of accepted strings generated after breaking the 
strings decreases.  Hence if the output of an authentication 
protocol comprises only the strings belonging to the shared 
secret language between Alice and Bob, then the length of 
the strings should be large enough to make it tough for Eve 
to guess the next string from the given set of strings. The 
output of [11] the proposed algorithm does not comprise 
the strings belonging to the shared language.  The chances 
of guessing the output of the protocol forms the focus of 
current investigation. Theoretical results to determine the 
hardness of guessing a string belonging to language from 
the given set of strings will be an interesting study  
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