
Context Free Grammar for the Generation of a One Time
Authentication Identity

Abhishek Singh, Andre L M dos Santos
Georgia Tech. Information Security Center (GTISC)

Center for Experimental Research in Computer Science (CERCS)
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

{abhi, andre}@cc.gatech.edu

Abstract
An authentication protocol was proposed in [11] for

the generation of one time authentication identity, which
can be used as one time passwords, generation of disposal
credit card numbers. The proposed protocol was designed
using a context free grammar and was in the learning
theory domain. The protocol required that the context free
grammar used for the authentication procedure be difficult
to learn. The paper discusses the relationship between the
learning theory and the number theory. Then based upon
the experimental limitations to learn a context free
grammar, we present an algorithm for the generation of
context free grammar which is difficult to learn. There
exists no theoretical study which states given a set of
strings from a language L, how difficult it is to generate
another string which belongs to the same language.
Experiments were conducted to determine this empirically.
A context free grammar from the proposed algorithm was
used to generate the string.

1.0 Introduction
A representation class is a class of objects that can be

represented by strings over some alphabet. The set of all
context free grammar is a representation class. A learning
algorithm is the one that tries to learn a representation class
from positive and negative instances.

 Let c and h be the two instances of some representation
class, where c is the target class or the class to be learnt,
while h is the output class. Let A be the learning algorithm,
which takes positive and negative instances as an input and
outputs class h. ec

+(hA) denotes that algorithm A errors on
a positive instance of c and classifies them as a negative
instance of h. Similarly ec

-(hA) represents the probability
that A errors on negative instances of c, by classifying then
as positive instances of h. If , ec

+(hA) = ec
-(hA) = 0, then

the classes c and h are identical. This is the ideal case of
complete learning or the case where errors are zero can be
classified as strong learning. There can be another case

where the error is not zero, but it is small negligible value.
This case can be defined as weak learnable. Formally
defining a representation class c is weakly learnable if there
exists a probabilistic polynomial time algorithm A that on
access to a set of positive and negative instances of a target
representation c � C, generates an output representation h,
so that ec

+(hA) < ½ - 1/O(|c|K) and ec
-(hA) < ½ -

1/O(|c|K) and for some constant k. |c| is usually taken as
some polynomial in n, the length of the sample instance

 For context free grammar, if ACFG is a learning
algorithm for context free grammars, then for any given
context free grammar G1, ACFG on having access to a
small subset of positive and negative instances (i.e., strings
that belong to G1 and are outside of G1 respectively) can
implicitly construct a grammar G2 which is almost
identical to G1. Almost identical can either be a case of
strong learn ability or it can be a case of weak learn ability.
Strong learnability lies in un decidable domain. It can be
proved as follows

 Given a set of strings S1, S2, S3…Sn, Sn+1… Sm there
can be infinite number of grammars that can generate these
strings. The exact context free grammar is a grammar,
which can be generated by using S1, S2, S3…. Sn and
which successfully accepts Sn+1, Sn+2… Sm. Let’s
assume that there exist an learning algorithm A which on an
input set of string S1, S2, … Sn can predict the exact
context free Grammar G which generated it. Now let us
pick any context free grammar G1 and generate strings S1,
S2.. Sn by randomly selecting rules from the grammar.
These strings are passed through the learning algorithm A,
which gives grammar G2 as the exact context free
grammar. However, it is known that given two context free
grammar G1 and G2, L(G1) = L(G2) is an undecidable
problem [1]. Therefore there exist no way to verify if the
language generated by G1 and G2 are equivalent. Hence
there cannot be any algorithm, which can give an exact
context free grammar. So the strong learn ability of context
free grammar lies in the undecidable domain.

 Strong learn ability implies learning the whole CFG.
Since strong learnability requires false positives and false
negatives to be zero, target class is same as the output
class. Hence it classifies the instances with probability one.
This makes strong learning is a very strong assumption.
Either the output class is same as target class or it is
different from the output class. Hence a random guessing
would classify the output class correctly with probability ½.
For cryptographic purposes it needs to be defined how
much better a learning algorithm can learn a grammar
compared to random guessing. To this end comes the
notion of weak learnability. A representation class is
weakly learnable if there exists an algorithm that can do a
little better as a classifier than random guessing. Weak
learnability expects an algorithm to do just slightly better
than random guessing.

 According to results of Kearns and Valiant [2], if ADFA
n

p(n) denote the class of deterministic finite automata of size
at most p(n) that only accepts strings of length n, and
ADFA

p(n) = Un>1 ADFA n
p(n) , then for some polynomial

p(n), the problem of inverting the RSA encryption function,
recognizing quadratic residues and factoring blum integers
are probabilistic polynomial-time reducible to weakly
learning ADFAp(n). They further state that any
representation class whose computational power subsumes
that of NC 1 is not weakly learnable. Since CFG’s contains
the computational complexity class NC1, they are also not
weakly learnable under the similar cryptographic
assumptions as that of ADFA. From the above mentioned
discussion it can be inferred that it is tough to learn CFG.
Factoring RSA, recognizing quadratic residues and
factoring blum integers are reducible to weakly leaning
CFG’s.

An algorithm to generate one time authentication
identity was proposed in [11]. This algorithm can be used
to generate one time passwords, disposable credit card
numbers or it can be used to provide heart beat in the case
of sensor networks. Detailed description of generation
protocol and authentication protocol and the other detailed
analysis about the protocol have been published and will
not be discussed due to the space limitations.

 One of the main challenges was the choice of a context
free grammar for the protocol. Theoretically even though it
is tough to learn the context free grammar, empirically
there have been several studies to learn context free
grammars. Results of these studies and the theoretical
limitation to learn CFG’s forms the foundation for the
algorithm to generate context free grammars which are
difficult to learn.

Section 2.0 discusses the experimental limitations to learn
the context free grammar. In section 3.0 we present the
design considerations for the automatic generation of
context free grammar. In section 4.0 we present the
empirical results which talks about the toughness to guess a

string in a language from the given set of strings in the
language. Finally in section 5.0 conclusions is presented.

2.0 Experimental Limitations to learn Context
Free Grammar.

The earliest method for CFG learning was proposed by
Solomonoff [3]. In this approach the learner is given a
positive sample S+ from a language L and has access to a
membership oracle for L. Solomonoff in his work proposed
to find repeated patterns in a string: for every string w ∈ S+,
delete sub-strings from w to create new string w’ and ask
the oracle if w’ is in the language. If it is, then insert
repetitions of the deleted sub-strings into the string and ask
if the new string is also in the language. If so, then there
must be a recursive rule. For example, if there are several
strings of type an bn, then we can infer that A →aAb is in
the grammar. This method is inefficient and does not
include all the context free grammars. It has been shown
[5] that this method fails if we have sequential embedding.
For the same example, if we have A→ aAb | cAd then this
method will not work. Another attempt for predicting
context free grammars reported in [4]. It is assumed in [4]
that there is a teacher that gives a set of strings to a learner
or a program. The program first checks if the sample is
already in the language. If it is, then the program decides
in consultation with the teacher if it is finished or if it
should continue with more samples. If the string is not in
the machine’s language, the program adds to the grammar a
production that adds this sentence to the language, attempts
to verify that this production does not lead to illegal strings,
and requests the next sample from the teacher. This method
heavily depends upon the order in which samples are
presented. This algorithm may choose a grammar rule that
is too general. At a later stage a new sample may come up
and even the predicted grammar may generate text that is
not in the language. An example is when predicting the
language of arbitrarily long strings of a’s or b’s, but not
both a and b. If samples a and aa are given the algorithm
will produce a partial grammar with the following rules

S →a | SS

Now if sample b is given it produces S → b. This grammar
can produce the string ab, which is not in the language. The
algorithm has made use of only positive instances to predict
the grammar. However, from Gold’s theorem it is clear
that both positive and negative instances are needed to
predict the context free grammar. Neural networks were
used to learn context free grammars in the work done by
[7]. Neural networks were trained with both positive and
negative instances. As in [7], the order of input was
important. The network was trained first with shorter
strings and then with longer instances. This scheme proved
good only for small context free grammars having around
four to five terminals. It failed to scale for larger context

free grammars.Genetic algorithms are used to learn
stochastic context free grammars from a finite sample in
[8]. Genetic algorithms [9] are a family of robust,
probabilistic optimization techniques that offer advantages
over specialized procedures for automated grammatical
inference. A stochastic context free grammar is a variant of
ordinary context free grammars in which grammar rules are
associated with a probability, a real number from the range
of [0,1]. A genetic algorithm was used to identify the
context free grammar. This algorithm took a corpus C as an
input. This corpus C for a language L was a finite set of
strings drawn from L where each strings α ∈ C is
associated with an integer fα representing its frequency. As
in [7] this only can be used for small grammars. The chief
limitation of this approach is the cost involved in
evaluating the fitness of each candidate solution, which
required parsing every string in each possible way. This
number of parsing operations increased exponentially with
the number of non-terminals. Hence, this scheme is
prohibitively costly for more than 8 non-terminals.

3.0 Design considerations for the Automatic
generations of Context Free Grammar

Based upon the experimental results to learn context free
grammar, discussed in section 2.0, this section presents the
design consideration for the context free grammar. Let Lmax
denote the maximum length of a string generated by the
grammar and Lmin denote the minimum length. For
example, for strings of size 15 – 30, Lmax will be equal to 30
and Lmin will be equal to 15. For a particular value of Lmax
and Lmin the appropriate number of terminals, nonterminals
and corresponding rules should be generated which should
ensure that it will be tough to learn the context free
grammar from the collected samples of strings. Let n
denote the number of terminals in a language. Given Lmax,
Lmin and n all the permutations of terminals to generate
strings of size between Lmax and Lmin will be

n P L max+ n P L max-1+………n P L min

 With increase in n, the total number of permutations of
all the terminals increases. Also from the experimental
studies it can be seen that the probability that a learning
algorithm can learn the grammar from given samples of
strings decreases with the increase in the number of
terminal n. In addition if n > Lmax then this ensures that a
string of length l generated by randomly calling rules will
never have all the terminal symbols of a language. This will
ensure that at no point of time the learning algorithm has all
the terminals. The value of n is chosen such that Lmax < n <
k Lmax where integer k ∈ 2,3.… Since this authentication
scheme is being designed by considering not only high-end
workstations but also small memory devices like PDAs and
smart cards, there will be a limit on the appropriate value of
n. This is being investigated by implementing the
authentication protocol on smart cards and on PDAs.

 Another major design consideration is the number and
format of rules in each grammar. Let us assume that the
grammar rules are written in Chomsky Normal Form
(CNF). In CNF (as shown in figure 1) the right side of each
production is always of length two. An efficient method to
automatically generate rules for the start symbol and other
nonterminals is required in order to use the new
cryptographic domain.

Figure 1: Format of Rules for CNF

 It is assumed that strings of length greater than two will
be generated. So the start symbol will contain only rules (as
shown in figure 1) from one to three. For the start symbol
expansion, rule one, two or three is selected randomly.
Terminals or non-terminals are selected to generate the
specific rule. This process is repeated until all the
nonterminals are used. During the random selection of rules
it may happen that only the format of rule one (Non-
terminal → Terminal Non-terminal) is selected for all the
rules. If this happens and the start symbol is using all the
terminals then a learning algorithm can easily learn the first
character of strings in a CFG. Having knowledge of the
first character of all the strings in a language will reduce
the complexity to learn CFG. Hence it becomes essential
that all the terminals should not occur in the rules for the
start symbol. Another problem while generating rules for
the start symbol can occur due to the more frequent
appearance of some of the non-terminals as compared to
others. If some non-terminals appear more frequently than
others, then it may happen that while generating strings by
randomly calling rules, sub strings generated by frequently
occurring non-terminals will appear more often as
compared to the sub strings generated by other non-
terminals. Using the method discussed [3] in section 3 the
CFG can be predicted from the tracking of the frequently
occurring nonterminals. This can be avoided by ensuring
that the probability of occurrence of all the non-terminals
remains equal. To address this issue, while generating rules
for the start symbol, each non-terminal is called only once
as shown in the algorithm of figure 3. This makes all the
combinations, which can occur due to each non-terminal,
equally likely. As discussed in the previous section, with
the increase in the number of non-terminals the complexity
of identifying the grammar increases exponentially. If the
number of non-terminals is higher than the number of
terminals in a grammar, and considering the worst case of
format of rule number one selected (S → Terminal Non-
terminal) for all the rules in the start symbol, then all the
terminals will occupy the first character of the string. This

Nonterminal → Terminal Nonterminal Rule 1

 Nonterminal Terminal Rule 2
Nonterminal Nonterminal Rule 3
Terminal Terminal Rule 4

makes the learning of the first character of all the strings
generated by a CFG a trivial task. So in a grammar the
number of non-terminals should be as high as possible,
however it also should not exceed the number of terminals.
Hence the number of non-terminals occurring in a grammar
is chosen randomly as kn where 0<k< 1. For the
experiments, the value of k is fixed to be 0.75. Another
major consideration is the number of terminals, which
should occur in rules for a non-terminal. As per the
algorithm shown in figure 2, while generating a rule for a
non-terminal, one format of the rule amongst the four
formats of rules (as shown in fig 1) is chosen randomly.
The appropriate number of terminals/nonterminals is
selected to generate the rule, which follows the appropriate
format. This process is repeated until the desired number of
terminals is guaranteed in the rules for the non-terminal.
Again considering the worst-case scenario, it may happen
that while generating rules for a non-terminal, only the
format of rule number one (Non-terminal → Terminal Non-
terminal) is selected for all the rules. In this scenario too, if
a non-terminal uses all the terminals, then a learning
algorithm can easily predict a few characters of the string
and hence it can make a reasonable guess about the CFG.
Taking a simple example, if there are two non-terminals A,
B and there are 3 terminals a,b,c, considering the worst
scenario, the following rules are generated for the non-
terminal A → aB | bA| cb and B→ bA|aB|ca. For such
types of rules, learning the few characters is a trivial task.
Two characters which will occur in a string generated by
these rules can be ‘ab’,’aa’,’ba’,bb’ which is all the
combinations of the terminals ‘a’ and ‘b’. This is because
‘a’ and ‘b’ occur in all the nonterminals (A and B) in the
format of rule number one. From this discussion it can be
noticed that the two conditions are necessary to cause the
mentioned weakness

� All terminals should occur in every nonterminals

� These terminals should be present in the form of rule
number one.

 If this happens, a learning algorithm has to make a
reasonable guess only for the last few characters. In order
to decrease the probability of such weakness to be present,
the total number of terminals, which should occur in the
rules for a non-terminal, is chosen randomly between mn
and pn where (0<m<p<1). For the experiments, m was
fixed to be 0.5 and p was fixed to be 0.75. As discussed in
the previous section, rules must be written so as to
accommodate sequential embedding [10]. Sequential
embedding makes it difficult to identify the grammar from
the captured strings. In sequential embedding, each non-
terminal should have at least two or more expansions. If r
denotes the number of sequential embedding rules for a
non-terminal X, then the value of r is chosen randomly

Figure 2: Algorithm to generate rules for the

nonterminals

Figure 2 Algorithm to generate rules for the

nonterminals

between q*n < r < w*n. where (0<q<w<0.5). The algorithm
presented in figure 2 is being used to generate the rules for
the nonterminals. The nonterminal pool used in the
algorithms shown in figures 2 and 3 is an array, which
contains the nonterminals for a grammar. The same is true
for the terminal pool. Selection of a nonterminal from the
nonterminal pool involves choosing one of the nonterminal
from the array. As soon as the element is chosen from the
nonterminal pool it is deleted from it. When the
nonterminal pool becomes empty all the elements are
reinserted in the nonterminal pool in a random fashion. A
similar operation is performed on the terminal pool, which
comprises the terminals.

4.0 Experimental Results.

 There exists no theoretical result which given a set of
strings from a particular language, demonstrates how
difficult is it to guess another string which belongs to the

Procedure RuleforNonterminal()
 Input: Number of Terminals, Terminal Pool, Nonterminal
Pool, Nonterminal
 Output : Rules for a Nonterminal
Begin
Select a Random Number rno such that mn < rno < pn.
(Where 0<m<p<1)
 Select r for sequential embedding such that qn < r < wn
(Where 0< q < w <0.5
Begin While(r!=0)
 Randomly select a format of rule from rule 1-3 .
Pick up nonterminal from the nonterminal pool if the selected
format is of rule3.
Pickup terminal from the terminal pool if selected format is of
rule 1 or 2.
 Generate rule as per the selected format.
If nonterminal pool is empty reconstruct it.
If terminal pool is empty reconstruct it.
 End While

 Begin While(rno!=0)
Randomly select a format of rule from rule 1-4.
Pick up nonterminal/nonterminals from the nonterminal pool
as per selected format.
Pick up terminal/terminals from the terminal pool as per the
format of the rule.
 If single terminal is picked then rno = rno –1
If two terminals are picked then rno = rno –2 Generate the
rule as per the selected format.
 If nonterminal pool is empty reconstruct the nonterminal
pool.
 If terminal pool is empty reconstruct it.
End while
 End

Figure 3.0 Algorithm to generate Rules for the start
symbol

same language. Some experimental tests were conducted
to determine it empirically. A context free grammar was
constructed using the algorithm discussed in section 3. The
number of terminals was chosen to be 30, with 26
nonterminals used, which is a random value between ¾ n
and n. The number of sequential embedding for each rule
was chosen between n/10 and n/30. This resulted in a value
between 1 and 3. The rules were then used to generate
strings on different ranges: 3 to 25, 3 to 50, 3 to 100, 3 to
150. Four types of tests were performed on these strings
based upon the starting terminal and ending terminal. These
tests were named frontbreaking, backbreaking,
allfrontbreakimg, allbackbreaking. The frontbreaking test
selects a string and breaks into different combinations such
that the first terminal remains same. For example, different
combinations of the string “abcdefg” by the frontbreaking
rule are abc, abcd, abcde, and abcdf. The backbreaking
rule selects a string and breaks it into different
combinations such that the last terminal remains the same.
Different combinations for the same example by back
breaking rule are efg, defg, cdefg, bdefg . These strings
were passed through the grammar. The allfrontbreaking
type of rule involves collection of all the terminals, which
start a string, followed by the selection of a string and
parsing it to find out if any of the start terminals appears in
it. In case of appearance of any of the start terminals at any
position except at the starting of the string, the string is
broken such that start symbol occupies the first position
and the frontbreaking rule is applied. The allbackbreaking
type of rule involves collection of all the terminals, which
ends the strings, followed by the selection of a string and
parsing it. In case of appearance of any of the end terminals
at any position except at the end, string is broken such that
the end terminal occupies the last position and the
backbreaking rule is applied. Taking a simple example if
there are two strings “abcdef” and “crafgd” we collect all
the terminals which start the strings and all the terminals
which end the string. For starting terminals we get “a”
(starting terminals for “abcdef”) and “c” (starting terminal
for “crafgd”). A string is chosen and it is parsed to find out

if any of the start symbols appear in it. In the current
example “c” appears in “abcdef” so by the allfront breaking
rule the strings “cdef” and “cde” are generated. Similarly
all the end terminals are collected. For the given example
the end terminals are “f” and “d”. Since end terminal “f”
appears in “crafgd” strings “craf” and “raf” are generated
using the allbackbreaking rule.

674 strings of length ranging from 3 – 25 were generated.
By applying frontbreaking rule, the strings resulted in 4902
combinations. Out of these 4902 combinations 390 strings
were accepted by the grammar. So for strings of length
between 3 – 25, around 90% of time it can be ensured that
the strings generated by applying frontbreaking rule will
not be accepted by the grammar. 956 strings of length
between 3-150, resulted in 20925 combinations by
frontbreaking rule, out of which only 398 strings got
accepted by the grammar. This gives an acceptance rate of
1.9%. For each range, a different set of strings was
generated by randomly expanding the start symbol and
nonterminals. This means that the 674 strings generated for
the length-range 3-25 are totally different from 956 strings
generated for the length-range 3-150. As the string-length
increases, the front-breaking rule results in increasing
number of output combinations. And at the same time, the
number of strings accepted by the grammar decreases. By
applying backbreaking rule, 674 strings of length between
3- 25 resulted in 4902 combinations, out of which 195 got
accepted by the grammar. 956 strings of length ranging
from 3 – 150 resulted in 20925 combinations, out of which
212 got accepted. For the backbreaking rule, string-length
ranging from 3 – 25 resulted in 3.9% acceptance and of
size between 3 – 150 results in 1.013% acceptance by the
grammar. By applying the allfrontbreaking rule, 724
strings of length between 3-25, resulted in 4250
combinations out of which 169 got accepted. 1203 strings
of size ranging from 3 – 150 resulted in 19991
combinations by using allfrontbreaking rule. Out of 19991
strings, 213 got accepted giving an acceptance rate of
1.06%. Allbackbreaking rule for 724 strings of length
ranging from 3 – 25 resulted in 3369 combinations out of
which 125 strings got accepted by the grammar. This gives
an acceptance rate of 3.7%. 1023 strings of length between
3- 150, resulted in 16232 combinations by allbackbreaking
rule. Out of 16232 combinations, 209 strings got accepted
by the grammar. This gives an acceptance rate of 1.28%

From the experiments, it can be concluded that the
chance of acceptance of a string generated by breaking the
strings of size ranging from 3 to 150 is only 1%. For 99%
of the cases it can be ensured that the strings generated by
breaking the strings will not belong to the language. It was
also concluded that if the difference between maximum
length and minimum length is very large then the
acceptance probability of a string generated after breaking

Procedure rulefortartSymbol()
Input : Terminal Pool, Nonterminal Pool.
Output: Rules for Start Symbol in Chomsky normal
form.
Begin While (Nonterminal pool is empty){
1.Randomly select a format of a rule from rules 1-3
2. Pick up nonterminal/nonterminals from nonterminal
pool as per the requirement of the selected format.
 3. Pick up terminal from terminal pool if selected format
is of rule 1 or 2.
4. From the selected nonterminal/terminal generate the
rule which follows the selected format.
End while

the string reduces. In all these tests the maximum length of
strings generated was 150.

5.0 Conclusion.

 A context free grammar has been used for the first time
for the design of an [11] authentication protocol. Many
details about the protocol have been omitted, since the
protocol has already been published. The main contribution
of this paper is to present the theoretical and experimental
limitations to learning context free grammars, and, based
upon these limitations, to present the design consideration
for the context free grammar and an algorithm to generate
context free grammars based upon the experimental
limitations. Tests were then conducted to determine given a
set of string from a language how difficult it is to generate
another string which belong to the same language. For the
best case chances of acceptance of strings generated after
breaking the string is 1%. As the size of the string increases
percentage of accepted strings generated after breaking the
strings decreases. Hence if the output of an authentication
protocol comprises only the strings belonging to the shared
secret language between Alice and Bob, then the length of
the strings should be large enough to make it tough for Eve
to guess the next string from the given set of strings. The
output of [11] the proposed algorithm does not comprise
the strings belonging to the shared language. The chances
of guessing the output of the protocol forms the focus of
current investigation. Theoretical results to determine the
hardness of guessing a string belonging to language from
the given set of strings will be an interesting study

Acknowledgement

The authors are grateful to the anonymous reviewers for
their constructive comments. The authors also wish to
acknowledge valuable discussions with Arnab Paul,
Aranyak S Mehta and Prof. H. Venkateswaran.

References

[1] Lewis H.R., Papadimitriou C. H., Elements of the
Theory of Computation, Prentice – Hall, 1998.

[2] Kearns Michael and Valiant Leslie, “Cryptographic
limitations on learning Boolean formulae and finite
automata”, Journal of ACM, 41(1): 67 – 95, January 1994.

[3] Solomonoff R. J., “A method for discovering the
grammars of phase structure language”, Information
processing, New York: UNESCO, 1959.

[4] Knobe Bruce and Knobe Kathleen, “A method for
inferring context free grammars”, Information Control 2(2),
pp 129

[5] Gold E Mark, “language Identification in a Limit”,
Information and Control, 10(5), pp 447 – 474, 1967.

[6] Angulin Dana, “Negative Results for equivalence
queries , Machine Learning 2(2), pp. 121 – 150, 1990.

[7] Das Sreeupa, Giles C. Lee, Sun Guo- Zheng, “ Learning
context free grammars : Capabilities and Limitations of a
Recurrent Neural Networks with an External Stack
Memory” , Fourteen Annual Conference of the Cognitive
Science Society, Morgan Kaufmann, San Mateo, CA, P
791 – 795, 1992.

[8] Keller, B. and Lutz R., “Learning Stochastic Context
free grammars from examples from corpora using a genetic
algorithm”, in ICANNGA 97.

[9] Holland, J.H, “Adaptation in Natural and Artificial
Systems”, University of Michigan Press, Ann Arbor, MI,
1975.

[10] Fu King-Sun and Booth Taylor R., “ Grammatical
Inference: Introduction and survey”, Parts I and II, IEEE
Transaction Systems, Man and Cybernetics, SMC- 5(1) and
(4), pp. 95 – 111 and pp. 409-423, 1975.

[11] Abhishek Singh, Andre L M dos Santos, “Grammar
based offline generation of Credit card numbers”,
Proceedings of 17th ACM Symposium on Applied
Computing SAC 2002, (Computer Security Track), March
10th – 14th , 2002, Madrid , Spain.

