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Abstract 
Modeling human behavior can be complicated and 
expensive. To be able to reduce costs, new methodologies 
and tools must be developed that automate the creation of 
human behavior models. In this paper we describe one way 
to accomplish this through the use of Genetic Programming 
in conjunction with Context-Based Reasoning (CxBR). 
Context-Based Reasoning is based on the concept that 
humans think and act in terms of contexts. Genetic 
Programming (GP) addresses computer programs that 
evolve new, better programs by themselves, i.e. automatic 
programming. This paper presents a new approach for 
automatically creating human behavior models through 
learning by observation. This strategy learns the behavior of 
a subject matter expert by merely observation his/her 
performance in a simulator. 

Introduction  
Building human behavior models is very complex and 
time-consuming. Extracting and processing tactical 
knowledge from the subject matter expert is a very 
intricate task. To get the expert to express the behavior in 
an articulate way, analyze the information, and then 
implement it in an agent are time consuming tasks and 
clear sources of misinterpretation. It is almost impossible 
to develop a mathematical formalism of human behavior, 
and the cost and effort to build good models can be very 
high. In the real world, there often exist problem domains 
where the knowledge might be incomplete, imprecise or 
even conflicting. Often, the models are built on inflexible 
doctrines. This can cause the entities to behave “too 
perfectly” wit1hout human similarities (Henninger et al., 
2000). It has also been shown that the manual routines 
taught by the experts, are not necessarily the routines used 
by the experts themselves (Deutsch, 1993). 

The use of a learning system that could automatically 
extract knowledge and construct a behavior model could 
reduce the problems mentioned above.  If the system 
would be able to observe a human’s behavior and 
automatically build a behavior model the development cost 
could be dramatically reduced.  
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This paper presents an approach to building human 
behavior models automatically. The approach employs 
Context-Based Reasoning (CxBR) and Genetic 
Programming (GP) to implement learning by observation, 
which will learn the behavior of a human merely by 
observation. First, the objectives of learning by 
observation are addressed. Then CxBR and GP are briefly 
presented. Finally, experiments and results are examined 
and the conclusions are presented.   

Learning by Observation 
Learning by observation has its roots in biology. Studies 
have shown that humans fully develop observational 
learning by the age of 24 months (Abravanel, Ferguson, 
1998). By that age, children can easily learn a simple task 
by observing another person performing the task. 

Inspired by how humans and other mammals learn by 
observation, the machine learning community has 
developed a number of theories on learning by 
observation, applied in different areas. The interest in this 
research is to investigate learning human behavior by 
observation. The intent is not only to use the observations 
to learn, but also to learn the behavior of the observed 
entity. Thus, interest herein is to observe a human in action 
to be able to model his behavior. A number of advantages 
could be gained by using learning by observation instead 
of traditional knowledge acquisition and development 
methods. 

• Reduce time and cost of development, debugging and 
maintenance. 

• Potential to incorporate learning from experience. 
• Potential to incorporate new features of humanness, 

such as emotions. 
• Relax operators programming skills. 
• Develop simulated entities in real time. 

The research described in this paper defines learning by 
observation as follows: 

The agent adopts the behavior of the observed entity only 
through the use of data collected through observation. 



Models of human behavior encompass several different 
features of humanness.  These features range from rather 
basic behavior such as goal-driven behavior and planning 
to more complex behavior such as overlapping of 
performance of multiple high-level tasks, multi-agent 
coordination, communication, temporal reasoning and 
maintaining episodic memory. To create a model with 
these features there must exist an efficient modeling 
framework. Context-Based Reasoning (CxBR) was 
proposed by Gonzalez and Ahlers (1993) to have many of 
these features. The Context-Based representation in CxBR 
is modeled from the pattern of human behavior. Using 
CxBR as a framework satisfies the prerequisites for 
implementation of tactical human behavior. If the model is 
to be created automatically, the CxBR architecture needs to 
be equipped with a learning paradigm that will work in 
conjunction with the architecture without disturbing the 
supported human features. The learning paradigm used in 
this research is Genetic Programming (GP). This paper 
shows that CxBR and GP have the right characteristics to 
automatically build human behavior models, very 
synergistically. 

Context-Based Reasoning 
Gonzalez and Ahlers (1993) presented Context-Based 
Reasoning (CxBR) as a technique that can efficiently 
model the behavior of humans in intelligent agents. Further 
results showed that it is especially well suited to modeling 
tactical behavior. CxBR is based on the idea that: 

• A recognized situation calls for a set of actions and 
procedures that properly address the current situation.  

• As a mission evolves, a transition to another set of 
actions and procedures may be required to address the 
new situation. 

• Things that are likely to happen while under the current 
situation are limited by the current situation itself.  

CxBR encapsulates knowledge about appropriate actions 
and/or procedures as well as compatible new situations 
into hierarchically-organized contexts.  

Mission Contexts define the mission to be undertaken by 
the agent. While it does not control the agent per se, the 
Mission Context defines the scope of the mission, its goals, 
the plan, and the constraints imposed (time, weather, rules 
of engagement, etc). The Major Context is the primary 
control element for the agent. It contains functions, rules 
and a list of compatible next Major Contexts. Identification 
of a new situation can now be simplified because only a 
limited number of all situations are possible under the 
currently active context. Sub-Contexts are abstractions of 
functions performed by the Major Context which may be 
too complex for one function, or that may be employed by 
other Major Contexts. This encourages re-usability. Sub-
Contexts are activated by rules in the active Major 
Context. They will de-activate themselves upon 
completion of their actions. 

One and only one specific Major Context is always 
active for each agent, making it the sole controller of the 
agent. When the situation changes, a transition to another 
Major Context may be required to properly address the 
emerging situation. For example, the automobile may enter 
an interstate highway, requiring a transition to an 
InterstateDriving Major Context. Transitions between 
contexts are triggered by events in the environment – some 
planned, others unplanned. Expert performers are able to 
recognize and identify the transition points quickly and 
effectively.  

CxBR is a very intuitive, efficient and effective 
representation technique for human behavior. For one, 
CxBR was specifically designed to model tactical human 
behavior. As such, it provides the important hierarchical 
organization of contexts. A full description of CxBR can 
be found in Gonzalez and Ahlers (1998). 

This concept has received significant interest from other 
researchers in the technical literature. Turner (1993, 1999), 
and Bass (1996) have all independently developed context-
based approaches to modeling human behavior. 

Genetic Programming 
Genetic Programming (GP) is developed from Genetic 
Algorithms and both are stochastic search algorithms. The 
search process looks for the best suitable program that will 
solve the problem at hand. The target system for the GP 
could be a CPU, compiler, simulation or anything else that 
could execute the pre-defined instructions. From now on 
we refer to these as a program. GP evolves source code 
representing a program that can address a specific 
problem. This makes it very suitable for use with CxBR. 
GP can build complete software programs that support the 
internal structure of the CxBR (i.e. the context-base).  

To make GP work, some basic requirements must be 
satisfied. First, we need to have a set of individuals (i.e. 
programs that represent different solutions to the problem). 
Furthermore, all the individuals need to be evaluated in 
some manner as to what degree they are able to solve the 
problem. Individuals with better suitability would 
preferably be preserved and survive or breed new 
individuals for the next generation. The next GP step 
would be to evolve the individuals (i.e. reproduction) in 
some manner to preserve the “good” features and develop 
even better individuals. The most common genetic 
operators are crossover and mutation. They will support 
the development and evolution of the individuals. 
Evolving a program with GP can be described in five 
steps: 

1. Create an initial population of programs (usually 
randomly generated). 

2. Evaluate the performance of each individual through a 
fitness function. 

3. Based on the evaluation, decide which individuals will 
survive, reproduce or be killed. 



4. Apply genetic operations to the individuals selected for 
reproduction. 

5. If the criterion of stopping the process is not met, 
return to step 2. 

The criteria for stopping the evolutionary process can be a 
maximum number of evaluations made, a maximum 
number of generations evolved, or the fitness reaching a 
certain level or other measurable criteria given. When the 
genetic process is finished in GP, there will exist a 
program that will solve the problem.  

Since GP creates source code, it could be used to 
incorporate knowledge in any context level or in any 
instances within CxBR where intelligent behavior is 
encoded. This means that we could choose to implement 
learning in any specific part of CxBR and construct the 
knowledge thereof. 

Towards automation 
To be able to build models automatically, CxBR needs to 
be equipped with learning capabilities. Intelligent 
behavior, within CxBR, can be categorized in two groups, 
actions and sentinel rules. At different Context levels, the 
sentinel rules determine which context will be active for 
that specific context level. The structure of these sentinel 
rules are similar in all contexts at all levels. Each context 
has its own set of sentinel rules that determine if this 
context should still be active or if it should turn over 
control to another context at the same level. This can be 
viewed as state transition rules where each state (i.e. 
context) has its own transition table. At the Major Context 
level, the action set tends to be more a collection of Sub-
Contexts and less of other functions, variables and 
constants. At lower context levels, the action set is less 
composed of Sub Contexts and at the lowest context level, 
there are no Sub Context calls. Experience has shown that 
three or at most four, levels of contexts, including the 
Mission Context, are normally sufficient. 

Figure 1. Learning by Observation: CxBR+GP 

From the discussion above, we can conclude that if we 
want to incorporate learning into CxBR, the learning 
paradigm must be able to learn the proper behavior in a 
specific context (i.e. actions) and also the appropriate 
context switches (i.e. sentinel rules). An extra learning 
feature would be if the system were able to optimize the 
number of appropriate contexts. This infers that the 
learning system be able to create new contexts if it seems 
to be appropriate, and also be able to prune less useful 
contexts. A learning paradigm that has those features is 
Genetic Programming (GP).   

Instead of creating the contexts by hand, we use the GP 
process to build the contexts. The GP’s evolutionary 
process provides the CxBR frame with appropriate context 
actions and rules. The individuals in the genetic population 
are context parts and a simulator is used to simulate the 
model’s behavior. The behavior from the simulator is then 
compared with the human performance, and a fitness 
measure is established to evaluate the models 
appropriateness (see figure 1). The evolutionary process 
will strive to minimize the discrepancies between the 
performances of the contexts created by GP and the human 
performance. The features of CxBR and GP show that 
their combination could be a feasible approach to learning 
tactical behavior by observation. By this combination, a 
system could be constructed that, by observing a human, 
builds a context base for simulated entities that exhibit 
human behaviors’.  

A positive feature of using GP as the learning algorithm 
is that it preserves many of the features of CxBR. The tools 
GP uses to store the knowledge learned is the same tools a 
programmer or knowledge engineer would have used in 
developing the knowledge base, source code statements. 
This implies that the knowledge is easy to interpret if we 
want to include communicative features in the agents. The 
agents are able to express their action in a way that is 
understandable. It is easy to interpret source code and 
convert it to written language. It also enables manual 
coding to be performed in conjunction with the learning 
algorithm, either before or after learning. 

Experiments 
The first experiments with this new approach to learning 
by observation were conducted to model human car 
driving behaviors. These models were designed to store the 
knowledge in contexts and be applied to simulated agents. 
Five different drivers were used to drive a commercial 
driving simulator in city traffic. Data was collected from 
30 minutes of driving from each driver in a realistic 
environment. The objective was to determine whether the 
new approach could model the drivers’ behavior during 
normal operation conditions merely from its observation, 
i.e. learning by observation. Hence, no single scenario was 
repeated during the run. These first experiments aim is to 
test the validity of the learning paradigm that combines 
CxBR and GP. The experiments are organized so that 1) 
the knowledge within the different context (i.e. action 

  

    GP       

Simulato    
CxBR   

Human
Data  

 
  Fitness       

Individual       

GP       

Observer 
Module 

-   



knowledge) and 2) the knowledge that determines the 
appropriate context to activate (i.e. situational awareness) 
were learned. If the model should cover the basic city 
driving, it must be able to handle traffic lights and 
intersections, besides normal driving on a straight road 
segment. The prerequisite for the learning is described in 
figure 2. The action within the context Urban Driving, the 
Sub-Contexts Traffic-Light-Driving and Intersection-
Driving and the Sub-Sub-Contexts Red-Light-Driving 
and Green-Light-Driving need to be evolved by the GP 
algorithm. Additionally, the rules controlling the activation 
of contexts (i.e. Sentinel Rules) need to be evolved by the 
GP. The environment for the experiments was set up to 
ensure that the behavioral patterns of the drivers were 
neither predictable nor trivial. An example of this 
unpredictable behavior is when a traffic light changes from 
green to yellow and then to red. If this change takes place 
at an appropriate distance from the car, the driver will 
make a decision on whether to stop when the light turns 
yellow or if they continue and pass the light while it still is 
yellow. The distance to trigger this diverse behavior 
among people seemed to be when the car is 30 meter prior 
to the light when driving in city traffic. The aim of these 
experiments was to show the validity of this new approach 
to automatically build context knowledge from 
observation. Hence, the aim is not to build the perfect 
model of a driver but to model the individual driver. So, 
five different driver models were built. If one of the drivers 
was a poor driver, there will be a model created of a poor 
driver. In other words, the experiments succeed when the 
deviation between the model and the driver observed is 
very small. 

 
Figure 2. The Context base 

Enabling evolution, this hierarchical structure of contexts 
and sentinel rules that together will represent the behavior 
pattern, enforces some learning strategy. A strategy in 
evolving a complex behavior with knowledge stored in a 
hierarchical structure has been used by Hsu and Gustafson 
(2001) and called Layered Learning GP (LLGP). The 
strategy is a bottom up approach where the evolution of 

the simple behavior in the lower layers takes place prior to 
evolving the behaviors of the higher layers. In these 
experiments the first task was then to evolve the behavior 
at red and green lights. At the higher level of contexts, the 
Traffic Light Driving context will conclude the combined 
behavior when a traffic light is approached.  

Here the Traffic Light Driving context will include the 
management of the activation of the lower level contexts 
within the action knowledge of the context. This way of 
determine context activation is very similar to the 
competing context strategy (Saeki and Gonzalez, 2000). 
The activation of the lower level context will be 
determined by the parent context’s action rule. By 
including the activation mechanism in the action rules of 
the higher level context the best fitting context will be 
activated. 

Another way of controlling the context activation is to 
let each context to be self aware and signal for a possible 
context switch. This type of context switching is called 
direct context transition. This type of context switching is a 
bit more complex for a machine learning algorithm to 
handle. If one context urges its own activation while 
another context is active at the same context level, the 
latter needs to release control before switching can be 
done. This is because contexts in the same level are 
mutually exclusive. Therefore, the knowledge in the 
sentinel rules of contexts at the same level is 
interdependent. Hence, these sentinel rules need to be 
evolved in a co-evolutionary fashion, since their behavior 
affects each other. 

The data used when the agent learned the driver’s 
behavior were not preprocessed in any way. To make the 
learning feasible, the data was reduced from 5000 usable 
samples per driver to less than 350 samples. These samples 
need to be complete enough to represent all possible 
situations within city driving with different state changes 
of traffic light, intersections and normal city driving.  

The data were partitioned to contain similar amount of 
data from the different scenarios to be used in training. 
This was done to ensure that the search pressure would not 
favor any particular situation. The data points were 
selected randomly from some typical scenarios (e.g. within 
100 meters before a traffic light or an intersection). The 
scenarios are further selected to complete the behavior in 
the context to be learning. As an example, if Traffic-Light-
Driving is to be learned, data from several different 
scenarios (e.g. stopping at light turning red, running yellow 
lights, passing traffic lights when making an intersection 
turn, etc.) need to be included in the training data. The data 
points for each scenario selected needs to be picked with a 
constant time frame (e.g. 0.4 seconds) so the algorithm 
know when to stop the simulation and compare the 
individual’s performance with the human’s performance. 

Note that the aim here is to get the agent to learn by 
observation (i.e. only by observing the drivers behavior). 
The agent is unaware of all traffic rules and regulations 
and the only way of learning is to mimic the driver’s 
behavior. As an example, the agent is never told to stop at 

 
Urban Driving 

Traffic Light 
Driving (TLD) 

TLD, Sentinel Rules 

Intersection 
Driving (ID) 

ID, Sentinel Rules

Red Light 
Driving 

Green Light 
Driving 



a red light but it will learn this by observing the driver’s 
behavior. 

Results 
The only type of driving conducted within these 
experiments was city driving. No learning was focused on 
turning the car. Examining the data shows that all the 
drivers keep the car close to the center of the lane. Trying 
to learn this task would be both trivial and uninteresting. 
The focus of the learning algorithm is to capture and 
generalize the behavior of the driver regarding how to 
apply brake and throttle pressure in the different situations 
experienced.  

To evaluate the results from the experiments, three 
different evaluation criteria were defined: 

• Learning capabilities 
• Generalization 
• Long term reliability 

The first set of tests, Learning capabilities, simply 
measures how well the agent has learned the driver’s 
behavior. This is simply the deviation between the agents’ 
and the drivers’ output when fed with the same data used 
during the training of the agents.  

In this research we evolved five autonomous agents. 
Therefore, it is necessary to test their ability to perform in 
normal environment (i.e. running in a simulation). It is not 
sufficient to only test input vectors and compare them with 
the anticipated output vectors since this will not tell us 
much about the agents’ accumulated errors and their long 
term reliability. We need to ensure that the agents are 
autonomous and that the agents’ performances in this 
simulated environment actually are comparable to the 
drivers’ performances even after minutes, hours and days. 
Except for the Learning Capabilities evaluation, the results 
are gathered when the agents operate autonomously within 
the simulated environment. At each simulator cycle, the 
performances of the agents are compared to the behavior 
of the drivers at the same position. The deviation in 
performance could primarily be measured in speed and 
time deviations. Since the comparison is made at specific 
locations, it would have taken the agent and the driver 
some time to get there from the start of the simulation. 
Hence, there will always be a time deviation between the 
agent and the corresponding driver at a certain location in 
the simulation environment, making time an inadequate 
standard for comparison.  

Generalization measures how well the agent can handle 
new situations not seen in the training data. The agent 
operates in the simulated environment as described above 
and is compared with the recorded driver’s performance. 
In this case, however, the driver’s recorded performance 
was not seen by the agent during its evaluation. During 
Long term reliability the agent is tested in a variety of 
situations during a long term scenario to examine if its 
behavior is consistent and stable. 

Learning Capabilities 
When testing learning capabilities of our evolved agents 
the same data used during training was fed into the learned 
model and the output is then compared to that of the 
corresponding driver. The only sound comparison to make 
here is to look at the speed output. Neither the time nor 
position will show any deviations of importance since the 
agent is not operating within a simulator. The results of 
training capabilities evaluation are shown in table 1. 

 Speed deviation Speed  
 [km/h] % Correlation 

Driver A/Agent A 1.92 3.14% 0.988 
Driver B/Agent B 2.03 3.53% 0.983 
Driver C/Agent C 1.85 3.41% 0.990 
Driver D/Agent D 1.69 2.93% 0.989 
Driver E/Agent E 3.81 6.25% 0.852 

Table 1. Training error 

The results from test of learning capabilities presents low 
discrepancies between the agents and their respectively 
driver. The speed deviation is low and the correlation is 
high. A high correlation, close to one, means that the agent 
increases and lowers its speed in the same manner as the 
real driver. Hence, GenCM show good learning 
capabilities. 

Generalization 
During the generalization test, the agents operate 
autonomously in a Context-Based Simulation environment 
with the same configuration in the simulated world as 
experienced by the corresponding driver during his 
simulator run. Even if the data used during training was 
collected from some sections of the training simulation 
environment, the agent will never experience the same 
input pattern as during learning, since the agent is 
autonomous and will by its action generate its own input 
state of the next simulator cycle. The agent will also 
experience at least four totally new traffic lights and three 
intersection turns never exposed to during training. This 
could be regarded as validation of the agents. Each agent 
will run the same route which will take between 140 to 170 
seconds to complete depending on the agent’s behavior. 
This equals 1400 to 1700 data samples to be compared to 
the drivers’ behavior. Remember that the agent was only 
trained with less than 350 data samples.  

The first comparison made was a qualitative comparison 
of the agents’ behavior at the traffic lights passed. Table 2 
shows the comparison of each agent to its corresponding 
driver at the different lights. Lights 2, 3, 6 and 7 change 
from green to red. S stands for stop and R for running the 
light while it’s still yellow. Lights 4, 8 and 4 (at the second 
pass) changes from red to green. Ok means that the agent 
performs in accordance with its corresponding driver (i.e. 
slows down when the light is still red and picks up speed 



when it turns green). When light 3 is passed the second 
time it is constantly green, and OK refers to the agent is 
performing in accordance with its corresponding driver. 
Here we see that all the agents perform in accordance with 
their corresponding drivers.  

 L 2 L 3 L 4 L 6 L 7 L 8 L3 L4 
A S/S R/R Ok R/R R/R Ok Ok Ok 
B S/S S/S Ok R/R R/R Ok Ok Ok 
C S/S S/S Ok S/S S/S Ok Ok Ok 
D S/S S/S Ok R/R R/R Ok Ok Ok 
E R/R S/S Ok R/R R/R Ok Ok Ok 

Table 2. Qualitative comparison of the drivers / agents 
performance 

Next, a quantitative comparison between the agents’ 
performance and their corresponding driver was 
conducted. Table 3 show the average deviations recorded 
in speed and time over the whole run. The speed 
correlation is also shown in Table 3.  

 Speed [km/h] Time [s] Speed 
 RMS Std.Dev RMS Std.Dev Corr 

A 5.81 7.35 4.27 4.11 0.825 
B 5.38 7.92 1.98 2.79 0.893 
C 4.79 6.72 1.48 2.07 0.920 
D 6.14 8.45 2.38 3.12 0.842 
E 7.43 8.42 3.06 3.72 0.783 

Table 3. Relationship between the agents and the drivers 

This first validation of the agents indicates that the 
algorithm is able to generalize the agent’s behavior. 

Long term reliability 
An additional test was conducted where the five agents 
operated in the simulated environment for 40 minutes, pass 
more than 60 traffic lights and 25 intersections. Now the 
agents were exposed to a variety of traffic light scenarios 
where none was similar to the other. Their behavior was 
recorded when the light in the agent’s proximity was either 
yellow or red.  

Since the traffic lights now change their states at 
different distances (i.e. the lights are time scheduled and 
not related agents distance) and agents might approach the 
lights at different speeds, it is difficult to make an 
exhausted statistical analysis of their behavior. Anyhow, 
Table 4 shows a simple compilation of the agents’ 
behavior when they approach lights that is either yellow or 
red. Two different events occur: the light turns from green 
to red or from red to green. 

A qualitative measure could be performed of the agents’ 
action when the lights turn red. The stopping column in 
Table 4 shows how many lights the agents stop at, 
compared to the total number of lights passed turning red. 
All the agents, except agent D, stop at all lights turning 
red. Agent D runs three lights when they turn red late (i.e. 
the light actually turns red before the agent pass the light). 
Investigating the results more it shows that if the lights 

turn red when the agent is further away than 27 meters the 
agent will stop and the occasions where the lights turn red 
when the agent is closer than 23 meters the agent will run 
it. Even if the agent some times runs the light, it is 
consistent and acts the same in similar situations. 

 Light turning Red 
Stopping  Avg.Dist  Std.Dev 

Light 
turning 
Green 

Agent A 20/20 34.7 12.9 20/20 
Agent B 22/22 8.04 1.95 22/22 
Agent C 25/25 5.89 1.03 8/8 
Agent D 31/34 4.50 1.31 6/6 
Agent E 22/22 13.5 0.551 11/11 

Table 4. Agent’s long term behavior 

As the agents come to a stop at the red lights, a comparison 
could be made on their different stopping distances. Table 
4 show that all the agents except agent A, stop at almost 
the same distance every time and therefore their standard 
deviation on the stopping distance is small. The surprising 
fact is actually that the other four agents manage to 
generalize so well that they stop at approximately the same 
distance, even if the time of light change is different. 
Remember that in the data presented to the agents during 
learning, lights changed their state when the driver was 30 
meter prior to the light. Hence, all the agents stopped at 
consistently at the same distance during training 
(approximately thirty meters after the light turns from 
green to yellow).  

The final observations on the agents’ long term behavior 
are their behavior when approaching traffic lights turning 
green. Two observations can be made as the agents 
approaching a red light about to turn green. The first thing 
that institutes correct behavior of the agents is that they do 
not stop at the red light when they are far from the light. 
The other behavior to investigate is that they lower the 
speed as they get closer and that they pick up speed when 
the light turn green. The column that describes the correct 
behavior at a light turning green in Table 4 compares the 
number of correct behaviors to the total numbers of lights 
turning green exposed to each agent. All the agents show a 
correct behavior all the time as they approach a red light 
about to turn green. 

This test has shown that the agents show consistent and 
stable performance at traffic lights throughout the long 
term stability test.  

Result Summary 
The training results show that the learning paradigm is able 
to successfully capture the behavior of the five drivers. 
The only agent that shows somewhat deficient 
performance is agent E. The data was not preprocessed in 
any way other than being reduced to a reasonable size. 
Hence, driver E shows some inconsistent behavior at some 
traffic lights. At one light turning from green to red when 
he approaches at low speed, he actually picks up speed and 



pass it while it is yellow. This occasion was not consistent 
with his behavior at other lights and was treated as an 
outlier. 

We conclude from Tables 2 and 3 that the agents have 
shown the ability to generalize their behavior. The 
qualitative comparison shows that they have the same 
behavior as their corresponding driver at all the traffic 
lights and the deviations in table 3 is fairly low and the 
speed correlation fairly high.  

The long term reliability test shows that the agents 
created are capable of learning and generalizing the 
behavior of the driver. They are also able in a stable 
fashion within the simulated environment. 

Conclusions 
Our research shows that the approach to learning by 
observation using GP and CxBR are able not only to learn 
but also to generalize the behavior pattern to be used in 
new situations. We have shown the ability to use Genetic 
Programming to automatically create context knowledge 
only by observing a subject matter expert. The algorithm to 
automatically build contextual knowledge also manages to 
produce agents with consistency and long term reliability. 
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