
Context-Based Reasoning: A Revised Specification

Brian S. Stensrud, Gilbert C. Barrett, Viet C. Trinh, and Avelino J. Gonzalez

Intelligent Systems Laboratory
University of Central Florida

Orlando, Florida
{brian, gilbarrett, vtrinh, gonzalez}@isl.ucf.edu

Abstract

This paper is an extension to and revision of Gonzalez
and Ahlers’ [6] definition of the Context-Based
Reasoning Paradigm. Included are rigorous definitions of
all terms and components applicable to CxBR models
along with a discussion on how and where these models
store and execute tactical knowledge. In addition, new
terms and concepts are introduced that justify the need for
a revised specification and reflect the research done to
and with CxBR over the past five years. Finally, this
paper includes a description of a physically implemented
CxBR model, with an emphasis on how the defined
components play a role in its functionality.

Introduction
We re-introduce here the technique of Context-based
Reasoning (CxBR) [6]. CxBR is a reasoning paradigm
that allows for intelligent agents to be modeled for use in a
variety of environments and scenarios where tactical
expertise is necessary. After providing an overview of the
paradigm and some related work in the field, each
component of CxBR is introduced and defined in detail.
An example CxBR model and interface is then given that
ties together each component mentioned. Concluding the
paper is a discussion on the intrinsic and extrinsic
knowledge representation properties of the CxBR
paradigm.

Motivation
The motivation for CxBR is the idea that people tend to
use only a fraction of their knowledge at any one given
time [6]. For instance, let us consider an auto mechanic on
his way to work. While he needs to keep in mind rules of
the road – following speed and caution signs, avoiding
pedestrians and other obstacles, being mindful of the other
drivers in the area – his knowledge of how to rebuild a
car’s transmission is irrelevant with respect to his need to
maneuver the road. In creating a model for this
mechanic’s behavior while driving to work, the
representation of his expertise in fixing cars can be
omitted. On the other hand, such knowledge would be

required for a CxBR representation of the mechanic’s day-
to-day activities. While driving, however, our mechanic
will not likely need to tap his technical knowledge.

This idea lead to the concept of dividing the knowledge
base into contexts is based on this idea. Given any
behavior to model, contexts represent exclusive behavior
classes relevant to that behavior. From that, the knowledge
required to execute a specific behavior is confined to its
representative context.

While this paradigm benefits from its apparent
intuitiveness, there are other advantages that make CxBR a
viable solution, especially within the realm of tactical
behavior. First, de-composing a model’s behavior space –
or behavioral capabilities – into contexts enables the model
to carry a very broad understanding of its task. While this
understanding might, at times, be only on a general level, a
context space representative of the entire domain in which
the model is to operate, all but guarantees that it will
operate on some level of intelligence at any point during its
mission.

There are many times where a certain skill may be
helpful in more than one situation. Furthermore, a certain
behavior might be needed in a variety of tactical tasks.
CxBR models, in this sense, are modular. Contexts, which
may have been constructed for one specific task, can be
extracted from its model and inserted into a model for a
new task in which that context is relevant. Because of this
feature, CxBR models greatly benefit from an object-
oriented software engineering approach.

Overview of Context-Based Reasoning
CxBR is a reasoning paradigm from which autonomous
agents can be modeled to execute a specifically defined
task in either a simulated or real-world environment. The
task assigned to the agent is encapsulated within a CxBR
mission. This mission provides for the agent both a set of
goals, which represent the criterion for completing the task,
and a set of constraints specific to that task. Also present
within a mission is a list of contexts that serve to partition
the agent’s task-related knowledge by the situations under
which it applies.

A context represents a situation, based on environmental
conditions and agent stimuli, which induces a certain agent
behavior specific to that mission. When an agent is
executing a mission within CxBR, its behavior is
controlled by the current active context, a determination
made by context-transition logic. At each time step, this
transition logic examines the current stimuli on the agent
and makes a determination of the active context for the
subsequent time step. This logic is often in the form of
sentinel rules that contain the conditions for a specific
context-to-context transition; however the transition logic
is not required to be rule-based.

Related Work
Context Mediated Behavior (CMB) [14] is based on early
work done in Context-sensitive Reasoning [15]. Contexts
are captured and represented as context schemas (c-
schemas). These c-schemas contain information regarding:
important features to cause the c-schema to be active,
standing orders, events, goals, and actions. In addition to
c-schemas, procedural schemas, p-schemas, are used to
define actions for agents. A context manager (CM) is used
to reason about which c-schemas should be active for a
given context.

 Many of the concepts involved with CMB are parallel to
that of CxBR. One notable exception is the way that
multiple c-schemas can be active or merged to create a new
c-schema. Also different is that c-schemas are used in
much the same manner as cases in Case Based Reasoning
(CBR). This differs from CxBR in that Contexts in the
implementation of CxBR provide a more active
functionality.

 There are many parallels between the design of SART’s
[2] contextual reasoning and that of CMB and CxBR.
Brézillon describes three major areas of knowledge
representation: external knowledge, contextual knowledge,
and procedural knowledge [3]. This is not different than
the knowledge represented by CMB or CxBR except as a
matter of semantics. Procedural context knowledge is
where an agent’s actions are defined. Contextual
knowledge includes what is analogous to transition criteria
in CxBR and any knowledge necessary to reason about
what procedural context should be used. Brézillon [3]
explains, “Proceduralized context defines what the focus of
attention is, and contextual knowledge defines the context
of the focus of attention.” External knowledge is implied
to be the knowledge known outside of contextual
knowledge and procedural knowledge, such as particular
elements of events or characteristics regarding the
environment.

CxBR Components
The following subsections define each component modeled
within CxBR, its function, and its relevance within the
paradigm.

Missions
A mission, or mission context, is an abstraction defined
within the model and assigned to a specific agent prior to
run-time. Included within a mission is the goal, any
imposed constraints, and the context topology that will
dictate the high-level behavior of the agent.

The goal provides the agent with the criterion for
mission termination – end-game conditions for the agent’s
behavior. For example, consider the assignment of a
mission X in which the criterion for completing X would be
to satisfy conditions a, b, and c. Obviously, that goal can
be represented formally using a Boolean function (e.g.
goal_x = (a∩b∩c)) and embedded within a CxBR model
to indicate whether or not the agent has satisfied the
requirements of X. While this expression can certainly
encompass more exotic end-game criteria for a mission
than the example above, the variables relevant to
computing this goal state can certainly be reduced to a set
of stimuli on and the current state of the agent performing
X. Because of this, the mission goal can be formally
defined as a Boolean function g of a set of environmental
and physical conditions E and P that exist at the time of
query.

goal = g(E(t0), P(t0))

In tactical missions, it is often the case where a ‘goal’
cannot be defined or is not applicable. More specifically, it
is not uncommon to assign an AIP with the mission of
performing a certain task or behavior for an indefinite
amount of time. In this case, the goal can be construed as
an end-game condition for the simulation or scenario. If,
for example, an agent representing a scout plane is
assigned the mission of performing general reconnaissance
on a particular area, the ‘goal condition’ might be defined
as the point where the agent has either been shot down or is
ordered to discontinue the mission and return to base.

The constraints on the mission provide the AIP with a
set of guidelines for operation. These constraints can be in
the form of physical limitations placed on the sensing
faculties of the agent, maximum and minimum counts for
scenario-specific entities such as obstacles or enemies, or
even map boundaries within which the AIP is required to
operate. We can consider the constraints on the mission M
to be the union of the set of physical, environmental, and
logistical constraints (denoted Tp, Te, and Tl) placed on the
agent as required by its mission. In this definition, a
constraint c provides the AIP with either a constant value
or a range of valid values for a certain variable within the
simulation.

constraints = { Tp, Te, Tl }

While the notion of a context will be formally introduced
in the following section, it is important to mention it here,
as it is an essential part of the mission. It was mentioned

earlier that to model a behavior with CxBR, that behavior
must have the quality that it can be partitioned into sections
representing all possible situations; these sections in sum
represent completely that behavior. The reason for this
requirement is that the behavior or task, as represented by
any CxBR model, must be defined completely by the
contexts that constitute it. It is because of this that the
mission is also responsible for listing the contexts that are
required to correctly execute the model’s behavior in that
mission. A default context is also listed within the
mission, which is a behavior that the model can execute
when it is unsure of a behavior to use for a certain
situation. This context is also used as the initial context for
the agent when it begins a scenario unless a more
applicable context can be selected.

The mission defines the high-level behavior of the agent
by assigning it both a set of contexts and context-transition
pairs, which indicate the specific context switches that will
be allowed during the scenario. For example, consider the
following two sets. The set Cx represents a set of five
distinct major contexts present in a mission Mx, while set
Tx includes all possible context-transition pairs applicable
while executing Mx.

Cx = {c1, c2, c3, c4, c5}
Tx = {<c1,c4>,<c2,c3>,<c3,c1>,<c4,c2>,<c4,c5>,<c5,c1>}

Since the context-transition pair <c1, c4> is a member of
Tx, context c4 is an applicable transition from context c1.
In other words, if the agent is currently operating in
context c1, it is possible to switch contexts at a given time-
step t0 to context c4, if certain conditions exist at t0. The
logic used to trigger these pairs is known as context-
transition logic, and will be defined in the next section.

A CxBR model’s context topology CTx consist of a set of
contexts Cx, along with the set of context-transition pairs
Tx, the Default Context (cDX), and the scenario’s universal
transition criteria UTCx. CTx, along with the goal
conditions and constraints, comprises mission Mx.

CTx = <Cx, Tx, cDX, UTCx >
Mx = <goalx, constraintsx, CTx >

Contexts
A context is a set of environmental and physical conditions
that may suggest a specific behavior or action [6]. Within
a CxBR model, however, a context is a functional state
induced as a result of these conditions. Contexts are
inserted within a mission to represent all possible
conditions that can arise during the course of that mission.
This ensures that a model can exhibit intelligent behavior
no matter what occurs during mission execution.

CxBR models are constructed such that a single context
is active at any one point during a scenario. It is said that a
context within the model is ‘active’ if the conditions

implying its validity exist and the agent is using its
included knowledge to make decisions within a scenario.
That context is then denoted the current active context.

The knowledge engineer responsible for creating the
model is in charge of defining and creating each context.
Because of this, contexts themselves are often intuitive
subsets of the behavior to be modeled. When encoding the
knowledge for these contexts, the idea is to achieve a
model that can take the same actions that an expert might
take when in the same situation. Consider a mission M
with context set C = {c1, c2…cn}. While the division of
knowledge represented by these contexts is in the extreme
case arbitrary, the knowledge engineer responsible for
constructing the model will likely partition each context in
a manner consistent with his understanding of the mission.
Furthermore, the context-space might also be partitioned so
that each context is coupled with a specific task or
behavior that is necessary for the mission. This technique
is often used for tactical models in which the sequence of
activities and behavior is well known and bounded, and
also where the mission itself entails the execution of a
series of sub-tasks. It is important to note here, however,
that the context-space must partitioned in order to represent
all possible situations that may exist for the agent during a
scenario – not simply to divide all possible actions that the
agent might take. This is to ensure that the behavior space
of the agent is completely spanned by the set of contexts
and no situation within a scenario leaves the agent without
an appropriate contextual response.

Within a CxBR model, individual contexts are nothing
more than conduits between the current set of stimuli
facing the agent and the behavior that will be executed in
response. When a CxBR context is declared active, it
references the appropriate behavior modules and fact-
bases, which in turn provide it with the correct course of
action. The command for that action is then passed from
the context to the agent’s interface for execution. The
context will continue to repeat these steps until a different
context is denoted as active.

An active context controls the agent by referencing
various knowledge and action modules. These modules
are not restricted to a specific form – inference engines,
neural networks, and expert systems are all valid modules.
Using these modules along with a local fact base present
within the agent interface, the active context derives an
appropriate action. Restated, the context logic for a
context is composed of the control functions, knowledge
and action rules that constitute the AIP’s ‘behavior’ within
that context. We define FMC as the set of functions that
control the AIP under a specific active context, such that

CFMC = {cf1, cf2, c3, …, cfn}

Furthermore, we define the set of action rules for a

specific context as ARMC. Action rules are general purpose

productions used for among other things, Sub-Context
activation. They can use facts located in the agent’s local
fact base, or local variables in the functions that form part
of FMC. Some implementations of CxBR may additionally
contain a global fact base upon which facts accessible to all
models may reside. Action rules may also use facts on the
global fact base as antecedents. Thus, we can define
ARMC as:

ARMC = {ar1, ar2, ar3, ar4… ark}

Lastly, we define the knowledge contained by the Major

Context as a set of frames or classes whose attributes and
methods/daemons are essential elements of the tactical
knowledge required to successfully navigate the current
situation. We refer to this knowledge, for lack of a better
name, as Knowledge Frames or KFMC.

Therefore, the Context-logic which controls the actions
of the AIP while under the control of a Major Context is
formally defined as:

Context-logic = < CFMC, ARMC, KFMC>

Sub-Contexts. CxBR supports the use of context-like
structures, known as Sub-Contexts, which encompass a
small functional section of a context not directly critical to
the mission objectives. These structures share logical
similarities to contexts, but lack many of their attributes. A
Sub-Context is called upon, like a function, to perform a
subtask deemed necessary in the logic by a context.
Unlike contexts, however, one Sub-Context does not need
to be active at any given moment. Furthermore, when a
Sub-Context has finished executing, it is immediately
deactivated and control shifts back to the Major Context
that called it. In terms of its role, it is more convenient to
think of Sub-Contexts as user-defined functions that are
slightly more complex and specific to the model’s mission.
However, unlike user-defined functions - whose scope is
typically the context that uses it – Sub-Contexts can be
used by any context present within the model. This
enhances re-usability of components in the model.
Nevertheless, we can represent the Sub-Context by a
vector function - whose input is an action rule of the
calling context.

theSubContext0 = f0 (ARMCi)

Context Moderators. A context moderator is an abstract
operator that can be applied as a parameter to either a
CxBR model’s context transition logic or to the functions
and actions called upon by the active context selected.
As a result, these moderators have the ability to either
affect decision-making after an active context has been
selected (functional moderators) or to affect the context-

transition logic itself (context-transition moderators).
These moderators are often embodiments of stimuli not
directly associated with the assigned mission but
nevertheless have an affect on an agent’s behavior. An
example of such moderators are human moods and
emotions, which were integrated into a CxBR model as
both functional and context-transition moderators in [10].

Context-Transition Logic
The selection of an active context during a scenario is
controlled by the context-transition logic. Knowing the
active context and the recent stimuli on the AIP, the
context-transition logic selects the appropriate context
transition amongst the pairs listed by the mission.

Context-transition logic is permitted to take any form
within a CxBR model, so long as a context is chosen at
each time step. The most popular representation of
context-transition logic is through the use of sentinel rules
and universal sentinel rules.

Sentinel Rules. With this implementation, the knowledge
containing conditions under which a context transition is
required are called sentinel rules, or transition sentinel
rules. Sentinel rules indicate when the appropriate
conditions for each applicable transition (each context-
transition pair provided by the Mission) hold true. If, for
instance, the mission provides a context-transition pair for
context c1 to c3, a sentinel rule will be present within c1 that
monitors for the conditions warranting a transition from c1
to c3. If that condition arises, the transition sentinel rule
corresponding to that pair will fire, and a transition will be
instantiated.

Sentinel rule antecedents may include the fact-base of
the current context and the current status of the agent (e.g.
inputs, physical state and location). While often there are
fixed conditions for transitioning to a given context,
sentinel rules are unique to the context where they exist.
This feature allows the agent to function in more complex
tactical domains where transitions to a context might be a
consequence of two entirely different motivations.

When sentinel rules are implemented within a mission
Mx, the CxBR model provides a set Sx of transition criteria
that represent the conditions necessary for each transition
listed in Tx (the set of legal context-transitions).
Representing the rule defining the transition criteria from
context ci to cj as sij, we can define the set of sentinel rules
Sx as the combination of all sij where <i, j> is a member of
Tx (i.e. if <i,j> is a valid transition within mission Mx).

Sx = U
xMjiji

ji
ij

>∈∋<

=

,,

1,

S

In many tactical scenarios, there exist conditions that

require the agent to perform a certain task or behavior

without considering its current context. To account for
such conditions, universal sentinel criteria are encoded
within the mission. These criteria dictate whether the
agent should shift to a certain context regardless of its
current active context, and hold precedence over all other
transition criteria. When sentinel rules are used to
represent a model’s transition logic, universal sentinel
criteria are encoded by a set of universal sentinel rules.
Universal sentinel rules define conditions under which the
model must transition to a certain context irrespective of
the current active context.

USj = U

j

 usrxj

Transitional Fuzzy-ART Templates. While sentinel
rules are the most popular form of context-transition logic
within CxBR models, there are other ways to achieve a
similar functionality. Stensrud [8] describes a learning
algorithm by which context-transition logic can be
constructed automatically by observing an expert’s
behavior in a simulation. More specifically, the actions
and stimuli of an expert are fed into a Fuzzy ARTMAP
neural network in order to create a mapping between the
stimuli on the agent and the specific high-level decision
made by the expert in response. CxBR contexts are
created a priori and are designed to correspond to a set of
actions that may be necessary to complete a task. The
decision of the expert to change his action is identified as a
possible context transition and fed into the neural network
along with the inputs that prompted the expert’s decision.
After the completion of the observational phase, the set of
Fuzzy ARTMAP templates created within the neural
network represent the context-transition logic used by the
expert. That logic is then plugged-in to the CxBR model (a
model designed to imitate the observed expert) along with
the other pre-existing contexts. When this model is
executed, context transitions can be determined simply by
supplying applicable inputs to the neural network.

Agent Interface
CxBR models represent low-level functional intelligence
through an agent interface that serves as a medium
between the model and the physical or simulated agent.
This low-level intelligence represents the physical
capabilities of the agent it models – moving, turning,
stopping, firing, etc. While these functions are used to
carry out the assigned mission, they are not considered
tactical intelligence and are therefore stored externally to
the model.

When an autonomous agent is executing a scenario, its
controlling CxBR model is continuously determining an
appropriate course of action based on its current active
context and relative stimuli. The actions selected by the

model are represented in terms of the low-level commands
represented in the interface.

Also present within the agent interface is the raw data
representative of the states of both the agent and the
surrounding environment. For example, for a mission
defined to drive a vehicle to work, data representing the
agent’s speed, location, and distance to work would be
stored in the interface module as well as any information
on the current traffic environment, nearby pedestrians, and
the like.

A CxBR Model. Figure 1 is a block diagram of a generic
CxBR model that can be generated using the current
framework created by Norlander [11]. This framework
serves as both an engine for CxBR models as well as a
foundation on which they are constructed.

The agent interface module stores any sensor data that is
read-in by the agent, and includes any necessary low-level
functionality needed to implement the actions indicated by
a context. When a model is run, this module is instantiated
and assigned a mission. The CxBR model controls the
agent by calling for actions in terms of the functions
defined within this interface.

Figure 1 - Block diagram of a CxBR model

As illustrated, CxBR missions define a context topology

for the model as well as valid context-transition pairs
(illustrated by the dashed lines); agent constraints,
universal sentinel rules, and mission objectives (goals).
They are also responsible for identifying the Default
context, which is the context that the agent will operate in
at the start of the scenario. If no sentinel rules fire within
the current context and it is also found that the current
context is not valid, the model will revert to this default
context.

As an example of a CxBR model, we present the iRobot
Scenario developed in [14]. This scenario was an exercise
in implementing a CxBR model on a physical platform. In
this scenario, the mission is to maneuver an iRobot around

Mission M

context c0

context c2
context c1

context c3

S
tim

uli from
 environm

ent

AIP data to
Fact-bases

 AIP

 Context Topology

AIP Action
to perform

 action

Inference engine

an open area looking for a single enemy entity. Upon
detection, determine the hostility level of the enemy. If it
approaches, consider it hostile and retreat. If the enemy
retreats, follow it at a close distance. If the enemy is not
responsive (i.e., stationary), execute an end of mission
signal and retreat to the original starting position. The
context topology for this scenario is provided as Figure 2.
The agent interface connects the CxBR model to the
iRobot and defines its low-level functions (move, turn,
activate sonar).

Figure 2 – Context Topology for iRobot Scenario

Knowledge Representation in CxBR
As alluded-to in the previous sections, the CxBR paradigm
itself provides a way of representing knowledge through
the use of the agent, mission, context, and context
moderator objects.

At some level, knowledge is contained in all CxBR
components. Some of this contained knowledge is directly
responsible for the action of the agent, such as the high-
level behavioral knowledge represented within Contexts.
Other knowledge contained in these CxBR Objects is
concerned with the dynamics of the paradigm itself, such
as the context topology contained in the Mission Object.
Regardless of whether the knowledge is used for directly
controlling the agent or the dynamics of the paradigm,
CxBR does not constrain nor specify the use of any
particular type of knowledge representation paradigm.

The importance of not demanding a specific knowledge-
representation paradigm is in the flexibility offered to the
modeler. Any knowledge or associated reasoning
mechanisms employed must be determined by the
knowledge engineer responsible for model construction.
For simple systems, a rule-based structure may prove to be
the most efficient. However, if learning is to be
incorporated or the details of decision-making are not
easily classified in terms of rules, a structure such as a

neural network may be employed. Both of these
paradigms have been successfully integrated with CxBR
models in the past (see [7], [11], [12]). Again, the CxBR
paradigm itself does not limit the type or types of
knowledge representation used; rather it is a decision to be
made based on the requirements of the model being
constructed.

Agent’s Extrinsic Knowledge
Each agent is aware of its current Mission at any given
time. Missions, contexts, and context moderators are
objects in CxBR that support the autonomous behavior of
an agent. Their interrelated nature and interdependencies
are depicted in Figure 1. As a brief oversimplification, a
mission is composed of a set of contexts, which themselves
can be modified by one or more sets of context moderators.

As shown in Figure 3, a Mission contains the following
knowledge: the agent’s high-level goal, mission
constraints, and the context topology. Contexts contain
high-level behavior representation, sub-goals, context
transition topology, context transition criteria, and context
moderator affects. Context moderators are new to CxBR
and provide an optional way of expanding the richness of
agent behavior through influencing context transition logic
and intra-context behavior.

Figure 3 – Knowledge Schema for a CxBR Agent

Locate Enemy
Context

Determine Enemy
Hostility Context

Retreat from
Enemy Context

Approach Enemy
Context

Stationary Enemy
Signal Context

Agent’s Intrinsic Knowledge
We define low-level behaviors as behaviors closely

related to dynamic physical and behavioral characteristic
of the agent. Such behaviors may include motor skills,
sensory data, what the agent perceives about its world,
environmental knowledge, or even what the agent
remembers with regard to its historical perception of the
world These low-level behaviors are fundamental in
defining the agent. This is true in the sense that the agent
is defined by the low-level behaviors of which it is capable
and, also, in the sense that the constraints of the behaviors
themselves further define the agent. Consider a behavior
such as movement and a corresponding function move() to
represent this behavior. Different agent types should be
characterized in distinctly different ways by how move()
defines them. For example, move() to a helicopter allows
for three dimensional movement through space, but there
are certain constraints that must be adhered to regarding
maximum velocity, maximum altitude, attitude of the
aircraft, etc. A fish would also have a low-level behavior
defined by move(). However, the maximum velocity or
maximum altitude of a fish will obviously differ from that
of a helicopter.

In addition to low-level behaviors, in CxBR each agent
has some perception of and knowledge about its
surrounding world. What is of particular importance here,
as in the other areas of knowledge representation employed
by CxBR agents, is the flexibility the modeler is permitted
in choosing knowledge representation paradigms. The
method in which memory is implemented for a model is
not constrained by the CxBR paradigm. A set of data
structures stored in memory could be used to allow fast
retrieval of information. Alternatively, a database could be
interfaced with the model to allow storage and retrieval of
large quantities of data.

Conclusion
Context-Based Reasoning is an intuitive and effective
means by which to model tactical behavior in either
simulated or real-life scenarios. Introduced in this paper is
a formal definition of the CxBR paradigm as it applies to
creating CxBR models for use on autonomous agents.
Both the paradigm and the current modeling framework
have proven to be compatible with expansion and change,
which will allow CxBR to remain a viable and effective
human-behavioral modeling paradigm throughout the years
to come.

References
[1] Barrett, G.B. and Gonzalez, A.J., “Modeling
Collaborative Behaviors in Context-Based Reasoning,”
Proceedings of the Swedish-American Workshop on
Modeling and Simulation (SAWMAS), 2002.

[2] Brézillon, P., “Context in Artificial Intelligence”,
Computer and Artificial Intelligence, Vol 18, Number 4,
1999, pp. 321-340.
[3] Brézillon, P., “Modeling and Using context in
Applications”, International Journal on Human-Computer
Studies, vol. 48 (3), 1998.
[4] Fernlund, H.K. and Gonzalez, A.J., “An
Approach towards Building Human Behavior Models
Automatically by Observation,” Technical Report,
Intelligent Systems Laboratory, Orlando, FL, 2002.
[5] Gonzalez, A. J., and Dankel, D. D., The
Engineering of Knowledge-Based Systems: Theory and
Practice, Englewood Cliffs, N. J.: Prentice Hall, 1993.
[6] Gonzalez, A. J. and Ahlers, R. H., "Context-
Based Representation of Intelligent Behavior in Training
Simulations", Naval Air Warfare Center Training Systems
Division Conference, 1998.
[7] Henninger, A.E., “Neural Network Based
Movement Models to Improve the Predictive Utility of
Entity State Synchronization Methods for Distributed
Simulations”, Doctoral Dissertation, University of Central
Florida, Orlando, FL, 2001.
[8] Norlander, Lars, “A Framework for Efficient
Implementation of Context-Based Reasoning in Intelligent
Simulation”, Master’s Thesis, ECE Dept., University of
Central Florida, Orlando, FL, 1999.
[9] Saeki, S. and Gonzalez, A. J., "Soft-Coding the
Transitions Between Contexts in CGF's: The Competing
Context Concept", Proceedings of Computer Generated
Forces and Behavior Representation Conference, 2000.
[10] Stensrud, B.S., Barrett, G.B., Lisetti, C.L. and
Gonzalez, A.J., “Modeling Affect in Context-Based
Reasoning”, Proceedings of the Swedish-American
Workshop on Modeling and Simulation (SAWMAS), 2002.
[11] Stensrud, B.S., “An Algorithm for Learning
Context-Transition Logic from Observation," Technical
Report, Intelligent Systems Laboratory, Orlando, FL, 2003.
[12] Stensrud, B.S., Barrett, G.B., and Gerber, M., “A
Functional Comparison of Context-Based Reasoning and
Native Behaviors Within OneSaf Test Bed,” Technical
Report, Intelligent Systems Laboratory, Orlando, FL, 2003.
 [13] Turner, R.M., Context-Mediated Behavior for
Intelligent Agents, International Journal of Human-
Computer Studies: “Using context in Applications”',
Volume 48, Number 3, March, 1998, pp. 307-330.
[14] Turner, R.M., “A Model of Explicit Context
Representation and Use for Intelligent Agents”,
Proceedings of the Second International and
Interdisciplinary Conference on Artificial Intelligence
(CONTEXT'99), Trento, Italy, September 9-11, 1999.
[15] Trinh, V.C., Stensrud, B.S. and Gonzalez, A.J.,
”Implementation and Analysis of a Context-Based
Reasoning Model on a Physical Platform,” Technical
Report, Intelligent Systems Laboratory, Orlando, FL, 2003

