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Abstract

ABSURDIST II, an extension to ABSURDIST, is an al-
gorithm using attributed graph matching to find transla-
tions between conceptual systems. It uses information
about the internal structure of systems by itself, or in
combination with external information about concept
similarities across systems. It supports systems with
multiple types of weighted or unweighted, directed or
undirected relations between concepts. The algorithm
exploits graph sparsity to improve computational ef-
ficiency. We present the results of experiments with
a number of conceptual systems, including artificially
constructed random graphs with introduced distortions.

Introduction
The problem of translating between conceptual systems is
of substantial interest in cognitive science. It asks the fol-
lowing question: given two conceptual systemsA andB,
each one consisting of some concepts and relations between
them, how can correspondences across the systems be estab-
lished? A general system for translating between conceptual
systems would be valuable in many domains. We would like
a method for translating between two individuals who have
been acculturated with different languages or terminologies,
between two time-slices of the same individual to track their
cognitive development, between two scientific communities
committed to fundamentally different theoretical ontologies
to determine potential continuities across historical change,
between related databases using different XML representa-
tions, and between different knowledge structures within the
same individual to identify useful analogies for induction.

There are two major strategies to establish corresponding
concepts across conceptual systems. The first approach of
External Grounding establishes correspondences by finding
common external referents for conceptual elements across
two systems. The second approach uses purely internal in-
formation within the systems to establish correspondences.
John’s and Jane’sCat concepts can potentially be placed
into correspondence with each other because they play sim-
ilar roles within their respective conceptual networks, in-
cluding matchingis-a relations toAnimal , eats relations
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to Friskies, andhas-a relations toPaw. Some argue that
this account is hopelessly circular (Fodor, 1998). Jane’s and
John’sCat concept can only be placed into correspondence
if one already knows that theirFriskies concepts match,
and this is just as much in need of explanation as how to
matchCat concepts. However, other researchers (Lenat &
Feigenbaum 1991) have argued that the circularity, while
certainly present, is not hopeless. With proper algorithms,
cross-system correspondences can mutually and simultane-
ously constrain one another (Goldstone & Rogosky 2002).
The current work explores a method for integrating internal
and external determinants of conceptual translation.

A conceptual system can be formalized as adirected
weighted labeled graph(discussed below), also known as
anattributed graph. Thus, matching two conceptual systems
can be formalized as finding a match between two attributed
graphs and evaluating the quality of this match.

Graph matching is a mature computer science research
area. While the original research focus was on finding ex-
act isomorphisms between two graphs, a substantial amount
of work has been done on finding approximate, or “error-
correcting” isomorphisms as well. Those latter efforts are
directed at finding, for two graphsG1 andG2, an isomor-
phisms(·) such that the “distance” betweens(G1) = S and
G2 is minimized. The definition of distance is application
specific. It can be based, for example, on the number of
editing operations needed to convertS into G2, or on the
Euclidean norm of the difference between the matrices de-
scribingS andG2.

A detailed bibliography on the approximate isomorphism
problem can be found in (Messmer 1995). There have
been three main lines of research. First, the classic struc-
ture matching algorithms first developed for finding exact
isomorphism can be extended to the case of approximate
matching. Messmer’s own work is in this tradition. Sec-
ond, one can approach the approximate isomorphism prob-
lem as the problem of minimizing a certain error function
on the space of correspondence matrices subject to struc-
tural constraints, and solve the problem using the full ar-
senal of optimization methods (Gold & Rangarajan 1996;
Rangarajan & Mjolsness 1994; Pelillo 1998). Third, a num-
ber of neural-net and related iterative approaches have been
presented (Schadler & Wysotzki 1997; Schädler & Wysotzki
1999; Melnik, Garcia-Molina, & Rahm 2002).



This paper continues work on the simple approach of
(Goldstone & Rogosky 2002) that was originally inspired
by constraint propagation neural networks for consistent vi-
sual interpretation or analogical reasoning. We begin with
graph representation of conceptual systems, and an extended
and improved translation algorithm based on ABSURDIST,
using only internal, within-system information. Then we
present experiments showing interaction of internal and ex-
ternal sources of information when both are available.

Graph Representation and Matching
Algorithm

ABSURDIST II is based on the ABSURDIST algorithm de-
scribed in (Goldstone & Rogosky 2002). The essential pro-
cess in the algorithm creates a correspondence matrix of pos-
sible cross-system translations, updating it at each iteration
using a net input including external similarity, excitation,
and inhibition components. After a fixed number of itera-
tions, the values in the correspondence matrix are used to
select the mapping between the two graphs. ABSURDIST
II introduces a number of improvements over the original al-
gorithm: the input representations can be arbitrary combina-
tions of binary relations; sparsity in the systems’ representa-
tions is exploited to decrease computational complexity; the
overall activity in correspondence units is dynamically ad-
justed to assure appropriate patterns of connectivity across
systems; a post-iteration process is introduced to assure a 1-
to-1 mapping selection based on the correspondence matrix.

Graph Representation of Conceptual Systems

A conceptual system withN concepts{A1, . . . , AN} can be
represented as anN×N matrixG ∈ ({0}∪S)N×N . In this
matrix each elementgij ∈ ({0} ∪ S) describes the totality
of the relations existing between conceptsAi andAj . The
setS is chosen to be suitable to represent all possible non-
empty combinations of relations that may exist between a
pair of nodes. (The value 0 is used to describe the absence
of any relations between the two concepts).

Alternatively, the conceptual system can be represented as
a directed graph withN concepts, with each concept repre-
sented by a node. Concepts are connected by edges carrying
labelsfrom the same setS. Its value is the same as the value
of the matrix elementgij , and describes the totality of the
relations between conceptsAi andAj .

Depending on the complexity of the conceptual system,
various types of graph representations can be chosen. First,
consider a system with only binary valued relations between
the concepts. Such a system can be described by an undi-
rected or directed graph with no explicitly stored labels as-
sociated with edges.

In more complex systems, the relation may have some
kind of strength or weight associated with it. For example,
the Cooccurrencerelation in a conceptual system describ-
ing the vocabulary of a corpus may have a weight corre-
sponding to the degree of cooccurrence of the terms it links.
In some systems based on human perception of facts, a re-
lation may have a probability- or likelihood-related weight.

For such a system we would want to use a graph where real-
valued labels are associated with the edges.

Finally, in an even more general case whenM possibly
weighted relation typesR1,R2, . . . , RM exist in the system,
the system can be represented by a directed graph whose
labels are vectors from theM -dimensional spaceS = RM .
We use the notation~aqr for the label associated with the edge
going fromAq to Ar in the graph. Thei-th component of
this vector,aiqr, is the weight of the relationRi on this edge.
If no edge goes fromAq toAr, then the value of~aqr will be
a zero vector,~aqr = ~0.

For convenience, our implementation of ABSURDIST II
assumes that all relations are directed. If the conceptual
system involves an undirected (symmetric) relation, such as
Similar-to , existing between conceptsA1 andA2, then we
simply store it twice, asSimilar-to(A1, A2) and Similar-
to(A2, A1). We also assume that all relation weights are in
the [0; 1] range, which means that all edge labels in fact be-
long to[0; 1]M .

The original ABSURDIST algorithm uses the
concept of “similarity of psychological distances”
S(D(Aq, Ar), D(Bx, By)) which measures how simi-
lar relation between the conceptsAq and Ar in system
A is to the relation between the conceptsBx andBy in
systemB. To extend it to directed graphs with labels from
[0; 1]M , we first define thedirected edge similarity function
Sd(~aqr,~axy) as

Sd(~aqr,~axy) = 1−Dd(~aqr,~bxy). (1)

The directed edge difference functionDd(~a,~b) used above
is simply the normalized 1-norm of the vector difference of
the edge labels, viz.

Dd(~aqr,~bxy) = ‖~aqr −~bxy‖1 =
1
M

M∑
i=1

|aiqr − bixy|. (2)

It is possible, of course, to define the edge difference using
the 2-norm or the∞-norm of the vector difference, instead
of the 1-norm.

To compute the excitation matrix in ABSURDIST II, we
will use, in place of the “similarity of psychological dis-
tances”,undirected, or symmetrized, edge similarity:

S(~aqr,~axy) = 1−D(~aqr,~axy) (3)

with D(~aqr,~axy) = D(~arq,~ayx) defined via the sym-
metrized formula:

D(~aqr,~axy) =
1
2

(Dd(~aqr,~axy) +Dd(~arq,~ayx)). (4)

Exploiting Sparsity to Reduce Computational
Complexity
At every iteration step in the original ABSURDIST
algorithm, the excitation R(Aq, Bx) is computed
for each concept pair as follows: R(Aq, Bx) =∑
r 6=q

∑
y 6=x S(D(Aq, Ar), D(Bq, By))C(Ar, By)/(N −

1). Computing theN2 values ofR(·, ·) by this formula
requiresO(N4) operations at each iteration. Fortunately,



the matrix or graph describing a typical conceptual system
is rather sparse. The average degreeD of a node is much
smaller thanN . Moreover, in many domains, asN grows,
D does not grow as fast asO(N). We will show how to use
this sparsity to carry out each iteration inO(N2D2) time
instead ofO(N4).

For simplicity, we will use the symbolA to refer to the set
of all subscripts{1, 2, . . . , NA}, as well as to the conceptual
systemsA itself, and use the following notation:

C(S1, S2) =
∑
q∈S1

∑
r∈S2

C(Aq, Br);

Ω(q) = set of all indices of all nodes ofA connected toAq;
Ω′(q) = Ω′(q) ∪ {q}; Φ(q) = A\Ω′(q).

Analogout notation is used for subsets ofB.
BecauseA\{q} = Ω(q) ∪ Φ(q), andS(~0,~0) = 1, we can

decompose the excitation as follows:(N − 1)R(Aq, Bx) =∑
r∈Ω(q)∪Φ(q)

∑
y∈Ω(x)∪Φ(x) S(~aqr,~axy)C(Ar, By) =

Z11(q, x) + Z12(q, x) + Z21(q, x) + Z22(q, x), with

Z11(q, x) =
∑

r∈Ω(q)

∑
y∈Ω(x)

(S(~aqr,~axy)C(Ar, By));

Z12(q, x) =
∑

r∈Ω(q)

(S(~aqr,~0)C({r},Φ(x));

Z21(q, x) =
∑

b∈Ω(x)

(S(~0,~axy)C(Φ(q), {y}));

Z22(q, x) = S(~0,~0)C(Φ(aq),Φ(bx)) = C(A,B) −
C(Ω(q), B)−C({q}, B)−C(A,Ω(x))+C(Ω(q),Ω(x))+
C({q},Ω(x))−C(A, {x})+C(Ω(aq), {x})+C({q}, {x}).
This decomposition allows us to compute the matrix of
R(aq, bx) as follows:

1. Each valueZ11(q, x) is computable inO(D2) operations,
making the cost for the full set of themO(N2D2)

2. The full set of row sumsC({q}, B) for all q, column sums
C(A, {x}) for all x, and then the total sumC(A,B), can
be computed inO(N2) operations.

3. SinceC({q},Φ(x)) = C({q}, B)−C({q},Ω′(x)), each
of the valuesC({q},Φ(x)) can be obtained, using the pre-
computed sumsC({q}, B), in O(D) operations, making
the cost for the entire matrix of themO(N2D).

4. Using the pre-computed sumsC({q},Φ(x)), each value
Z12(q, x) can be computed inO(D) operations, with the
O(N2D) cost for the entire matrix. SumsZ21(q, x) are
computed similarly.

5. Once the row and column sums from step 2 are available,
computing each of the nine added values inZ22(q, x) will
cost no more thanO(D2), making the cost of the entire
matrixO(N2D2).
None of the steps above costs more thanO(N2D2),

which means that the total cost of computing the matrix of
excitation valuesR(Aq, Bx) isO(N2D2).

The formulas above are significantly simplified in the
case of an unweighted unlabeled graph (a conceptual sys-
tem with a single binary-valued relation type). In such

a systemS(~aqr,~0) = 0 for any r ∈ Ω(q), and
S(~aqr,~axy) = 1 for any pair (r ∈ Ω(q), y ∈ Ω(x)).
Therefore,Z12(q, x) = Z21(q, x) = 0, andZ11(q, x) =∑
r∈Ω(q)

∑
y∈Ω(x) C(Ar, By).

We use a similar transformation to compute the inhibition
matrix I(Aq, Bx) in O(N2) operations at each iteration.

Dynamic Adjustment of Coefficients for Excitation
and Inhibition
One problem we observed with the original ABSURDIST
algorithm is that, for many systems, especially sparse
weighted systems, the correspondence matrix tends to con-
verge to a matrix of all 1s. This is not surprising, considering
that in a sparse graph most of the psychological similarities
S(~aqr,~axy) are equal toS(~0;~0) = 1, and therefore, most el-
ements of the excitation matrix are close to a positive num-
ber,

∑
a

∑
x C(a, x). Thus positive values tend to strongly

predominate at each step in the net input matrix

N(Aq, Bx) = αE(Aq, Bx) + βR(Aq, Bx)− χI(Aq, Bx).

To prevent the correspondence matrix from becoming sat-
urated, we adjustχ at each step so that the average value of
αE(Aq, Bx) + βR(Aq, Bx) − χI(Aq, Bx) is always zero.
This is done as recomputingχ at each step as

χ =
α
∑
q

∑
xE(Aq, Bx) + β

∑
q

∑
xR(Aq, Bx)∑

q

∑
x I(Aq, Bx)

. (5)

Final mapping selection
To produce a 1-to-1 mapping between the two conceptual
systems based on the correspondence matrixC(aq, bx), we
use the following procedure:

1. Create setsUA = ∅, UB = ∅. They will be used to store
indices of already mapped variables.

2. If UA covers all concepts fromA, or UB covers all con-
cepts fromB, terminate.

3. Select the largest elementC(aq, bx) in the correspon-
dence matrix such thatq does not appear inUA andx
does not appear inUB . Use random tie-breaking if there
are several elements with the same value.

4. Mapx to q. Add q toUA; addx toUB .

5. Go to step 2.

If the two systems have the same number of concepts
(NA = NB = N ), the above algorithm will find a 1-to-1
mapping for all concepts, providing an inexact isomorphism
between the two graphs. IfNA < NB , the mapping will
be found for all concepts fromA, providing an isomorphism
betweenA and anNA-node subgraph ofB. The situation
whenNB < NA is analogous.

Assessing mapping quality
To see how far our mappingP is from an exact isomorphism,
we use therelations mismatch measureµ(A,B, P ), some-
what similar to the edit distance measure used elsewhere



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

E
rr

or
 m

ea
su

re

Noise level

Mapping quality vs. graph size and noise level (F = 0.5)

N=8
N=10
N=12
N=15
N=20

Figure 1: Test 1(a):ε vs. noise levelν and graph sizeN for
fixed graph densityF = 0.5.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

E
rr

or
 m

ea
su

re

Noise level

Mapping quality vs. graph density and noise level (N = 12)

f=0.20
f=0.30
f=0.40
f=0.50

Figure 2: Test 1(b):ε vs. ν andF for fixedN = 12.

(Messmer 1995).

µ(A,B, P ) = 0.5
N∑
q=1

N∑
r=1

Dd(aqr, bP (q)P (r)) (6)

In the case of an unweighted, unlabeled, undirected graph
this measure can be visualized as the “mismapped edge
count”, i.e. the number of edges that are present inP (A) but
absent in the corresponding positions inB, plus the number
of edges that are present inP (B) but absent inA.

Performance Evaluation of ABSURDIST II
We have implemented ABSURDIST II in Java. This sec-
tion describes several experiments carried out on randomly
generated graphs. In each experimentNR = 100 runs was
performed. In each run, a random conceptual system (the
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Figure 3: Test 2(a):ε vs. iteration count and graph size for
fixed graph densityF = 0.5 and noise levelν = 0.02.

“original system”,SO) with N nodes andE edges was cre-
ated. It was matched with ABSURDIST to a “noisy system”
SN generated fromSO by adding noise.

In each experiment, we run our version of ABSURDIST
on the translation(SO, SN ) for 2000-3000 iterations (unless
otherwise specified), usingα = 0.0 (except in Test 4, where
α = 0.5), andβ = (3n − 1)/(2 ∗ n2 − 2). At each step,
χ was set as per (5). All elements of the correspondence
matrix were initialized withC(Aq, Bx) = 0.5.

A good way to measure the quality of mappingP between
SO andSR found with ABSURDIST II would be to com-
pare it to the best mapping possible. That is, we could use
a graph matching algorithm (e.g. (Messmer 1995)) guar-
anteed to find the best possible isomorphismP∗ between
the systems with respect to the relation mismatch measure
(6), and then look at the adjusted relation mismatch measure
µ(SO, SN , P )−µ(SO, SN , P∗). A difference of zero would
mean that we have found the best possible mapping.

As finding the guaranteed best isomorphism has exponen-
tial complexity, we use a simpler approach to estimate the
base mismatch measureµ(SO, SN , P∗) in each experiment.
First, we assume that, because noise levels are low, the best
mapping mapping betweenSO andSR is the identity iso-
morphismI. Second, we use our knowledge of how the
noise was applied to obtain the averageestimated base mis-
match measure, µ∗ = 〈µ(SO, SN , I)〉, and useµ∗ in lieu of
the true base mismatch measureµ(SO, SN , P∗).

Finally, we normalize the mismatch measure by dividing
it by 2E, which serves as the estimate for the maximum pos-
sible value of the relation mismatch measure between two
graphs withE edges each. The resultingnormalized ad-
justed relation mismatch measure (NARMM)

ε =
〈µ(SO, SN , I)〉 − µ∗

2E
(7)

is reported for each experiment.
Test 1: Noise tolerance.In this test,SO was an unlabeled

undirected graph with no non-trivial homomorphisms (no
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degrees of symmetry) withN nodes. The number of edges
E is chosen asE = FN(N−1)/2, whereF (0 < F ≤ 0.5)
is referred to as thedensityof the graph. The noisy system
SN was created as an inexact copy ofSO, where each of
n(n − 1)/2 existing or potential edges was independently
switched from present to absent or vice versa with the prob-
ability ν. Thus the base mismatch measure could be esti-
mated asµ∗ = νN(N − 1)/2. NARMM computed by (7)
with thisµ∗ after 3000 iterations was reported.

This test shows that, for a fixed number of iterations, fixed
learning rate, andβ = O(n−1), the mapping quality dete-
riorates with increasing graph size (Fig. 1). On the other
hand, it improves with increasing graph density (Fig. 2).

Test 2: Iteration count. In this test (Figs. 3,4), we mea-
sured how the mapping quality improves with the number of
iterations. Pairs of unlabeled, undirected graphs were gen-
erated as in Test 1, with noise levelν = 0.02.

Test 2 shows that the rate of convergence to the desired
mapping is independent of the graph size. That is, the five
lines in Figure 3 are approximately parallel. There is, how-
ever, an interaction between graph density and convergence,
with sparse graphs converging slower than dense graphs.

Test 3: Coverage noise and intensity noise on weighted
graphs. In this test we generated random, undirected
weighted graphs with one relation type. The weight of each
relation was uniformly distributed on the[0; 1] interval.

Two types of noise were tested. In the experiments with
coverage noise(RC), the difference between the noisy sys-
temSN and the original systemSO consisted in some edges
created or destroyed according to the same rules as in Test
1. The creation/destruction probability for each existing or
potential edge wasνC .

In the experiments with theintensity noise(RI), SO and
SN had the same topology, but the intensity of each edge
present inSO was changed inSN . The difference between
the weights of the edges in the two graphs was, for each
edge, a random value distributed uniformly on the[−νC ; νC ]
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Figure 5: Test 3:ε vs. noise level for coverage noise RC,
intensity noise RI, and their combination.N = 12,F = 0.5.

range. However, the intensity change was limited so as to
never take the resulting weight outside of the[0; 1] interval.

Finally, we carried out experiments with the two types of
noise combined. Coverage noise was applied first, and then
intensity noise was applied to those edges that existed inSO
and remained inSN . In the experiments presented here, the
two noise levels were equal,νC = νI .

The base mismatch measure for a noisy system with any
combination of coverage and intensity noise can be esti-
mated asµ∗ = 0.5 ∗ (νCn(n − 1)/2 + (1 − νC)νIE); this
µ∗ is in formula (7) to compute NARMM

The results shown in Figure 5 are quite interesting. For
a pair of system with intensity noise only, the NARMM is
very close to zero within the noise range shown on the graph
(νC ≤ 0.08). This indicates that ABSURDIST II is very tol-
erant to random variation to the values of weighted edges,
matching graphs correctly as long as the topological struc-
ture is preserved. This finding may be of importance in ap-
plications where the weights of the relations come from real-
world data and, by their nature, are imprecise. The NARMM
for coverage-noise-only experiments is better than that ob-
tained in similar experiment with an unweighted graph (the
N = 12 curve in Figure 2, Test 1(b)).

Test 4: External similarity seeding. In this test we ex-
plored the effect of external similarity input on ABSUR-
DIST II mapping quality. We used pairs of unlabeled, un-
weighted graphs designed as in Test 1, withN = 12 nodes,
densityF = 0.5, and the noise levelν from 0 to 0.08. Un-
like other tests, external similarity was used along with the
excitation and inhibition in the net input at each step. The
external similarity matrix contained ones inSNumrandomly
chosen diagonal positions, and zeros elsewhere. Thus it pro-
vided external “seeding”, tyingSNumconcepts in the origi-
nal system to their counterparts in the noisy system.

The results, shown in Figure 6 forSNum= 0 through 4
show that the presence of even one external seeding point
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improves mapping quality significantly compared to the re-
sults obtained with internal similarity only. Adding extra
seeding points improves the mapping quality further, but the
marginal gains diminish as more correspondences are exter-
nally seeded. The improvements in mapping garnered by
seeding correspondences far outstrips the gains predicted if
only the seeded correspondence itself was correctly mapped.
This is due to the ripples of influence that one seeded corre-
spondence has on fixing other correspondences.

Conclusion and Future Work
We introduced the attributed graph representation of concep-
tual systems, extending the ABSURDIST framework to han-
dle systems with multiple relation types, including weighted
and directed relations. We exploited sparsity of the relation
graphs to improve efficiency and scalability of the algorithm.

We illustrated the behavior of ABSURDIST II on some
simple models. We have shown that our iterative approach
inspired by constraint-propagation neural networks can be
used to match concept systems represented by purely topo-
logical structures (unweighted graphs). When noise is intro-
duced in the form of adding and deleting edges, the resulting
translation is considerably poorer than when noise is added
to the weights. That is, distorting a system by “flipping” X%
of the edges is more damaging than distorting a system by
altering weights all of the edges by X%.

Future work may include applying the algorithm to con-
ceptual systems from real-world domains: ontologies, dic-
tionaries, database schemas. We have already achieved
some success using ABSURDIST II for matching hundreds
of terms in bilingual texts. Further investigation of the con-
vergence properties of the ABSURDIST II is worthwhile,
especially if it can lead to redesigning the process to guar-
antee convergence. It would be useful to compare the effec-
tiveness and efficiency of our approach to those of already
implemented classical methods, such as (Messmer & Bunke

1996), guaranteed to find the best mapping with respect to
the target mismatch function.

Still, in terms of real-world translation tasks, ABSUR-
DIST II already offers benefits over many existing graph
matching algorithms: it does not enforce 1-to-1 mappings
and so allows multiple concepts from a richer conceptual
system to map onto a single concept from a more impover-
ished system, it provides a natural way to incorporate both
internal and external sources of information, and it accom-
modates several different graph structures. More generally,
it offers the promise of showing how the meaning of a con-
cept can be based simultaneously on its role within its con-
ceptual system and on its external grounding, and that these
two sources of information cooperate rather than compete.
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