
An Evolutionary Neural Learning Algorithm for Offline Cursive 
Handwriting Words with Hamming Network Lexicon 

Moumita Ghosh, Ranadhir Ghosh, John Yearwood  
 

School of Information Technology and Mathematical Sciences 
University of Ballarat, Victoria, Australia 

{m.ghosh, r.ghosh, j.yearwood} @ballarat.edu.au 
 
 
 

Abstract 
 

Original Word Image Rule Based Segmentation Character 
Resizing 

Recognition of Character 
using an ANN  (trained 
with EALTS-BT) 

Lexicon Analyser 

Input 

Feature 
Extraction 

Output 

In this paper we incorporate a hybrid evolutionary method, 
which uses a combination of genetic algorithm and matrix 
based solution method such as QR factorization. A heuristic 
segmentation algorithm is initially used to over segment 
each word. Then the segmentation points are passed through 
the rule-based module to discard the incorrect segmentation 
points and include any missing segmentation points. 
Following the segmentation the connected contour is 
extracted between two correct segmentation points. The 
contour is passed through the feature extraction module that 
extracts the angular features of the contour, after which the 
EALS-BT algorithm finds the architecture and the weights 
for the classifier network.  These recognized characters are 
grouped into words and passed to a variable length lexicon 
that retrieves words that has highest confidence value. 
Hamming neural network is used as a lexicon that rectifies 
the word misrecognized by the classifier. We have used 
CEDAR benchmark dataset and UCI Machine Learning 
repository (Upper case) to test the train and test the system 

Introduction 
Different approaches have been utilized for segmentation 
and recognition in handwriting recognition tasks. Several 
have used ANNs to segment the cursive words (Eastwoord 
et al., 1997), (Blumenstein & Verma, 1999), (Blumenstein 
& Jones, 1999). Segmentation plays important roles in the 
overall process of handwriting recognition (Lu & Shridhar, 
1999). Cursive word segmentation deserves particular 
attention since it has been acknowledged as the most 
difficult of all handwriting problems. In this proposed 
word recognition system, rule based segmentation methods 
are used for handwritten words. Following segmentation, a 
contour between two consecutive segmentation points is 
extracted. From this contour structural features are 
extracted after which the EALS-BT algorithm finds the 
architecture and the weights for a neural network classifier. 
The recognized characters are grouped together into words 
and passed to a variable length lexicon that retrieves words 
that have the highest confidence value. An overview of the 
recognition system is shown in Figure 1. 

Figure 1: Handwriting recognition System 

Methodology 
The research methodology is briefly explained in this 
section. 

Segmentation 
The segmentation follows the following steps: 
Step1: Compute Baselines. 
Step2: Over-segment the word. 
Step 3: Pass the segmentation points through the rule base 
to detect the incorrect segmentation point. 
Step 4: Output the correct segmentation points. 

Baseline Computation 
Baseline computation is an important technique in 
handwriting recognition. Baselines are used for size 
normalization, correcting rotation, extracting features etc.  
In this approach we compute five lines for the 
segmentation task. These are the: upper baseline, lower 
baseline, middle baseline, ascender line, and descender 
line. All the baselines are computed with respect to the 
horizontal pixel density. The upper baseline is the line that 
goes through the top of the lower case characters. The 
lower baseline is the line that goes through the bottom of 
the lower case characters. The middle baseline corresponds 
to the writing line on which the word was written.  The 
ascender line corresponds to the line that passes through 
the topmost point of the word.  



Over Segmentation 
This module is used to assign Candidate Segmentation 
Points (CSP) that could be validated through the rule-
based system for further processing. A heuristic over 
segmentation algorithm is used that incorporates the 
vertical histogram change. A vertical histogram is drawn at 
each column point and the change in vertical density is 
noted. Where the change is drastic, a possible Candidate 
segmentation point is drawn.  

Rule Based Validation 
The over-segmented word is passed through the rule base 
where rules are written on the basis of contour 
characteristics of a character (such as a loop, a hat shape 
etc.) described below. Application of the rules leads to the 
removal of segmentation points from the character. 
Rule 1. If a loop (closed area) is detected, remove the 
segmentation points within a loop. Add a segmentation 
point after the end of the loop as a Candidate Segmentation 
Point (CSP).  
 
Rule 2. If the hat shape is detected remove the 
segmentation point within the hat shape contour. Add an 
extra segmentation point after the end point of the hat 
shape. The hat shape is described as  ‘∧’ or ‘∨’. 
 
Rule 3. Add missing segmentation points. The missing 
points are detected by comparing the distance between two 
segmentation points to a threshold. The average distance 
between two segmentation points (threshold) is calculated 
by taking the average of all segmentation points. If the 
distances cross the threshold value a Candidate 
Segmentation Point is added as a missing one.  
 
Rule 4. Delete a few irrelevant segmentation points. The 
irrelevant points are detected by comparison with the 
average width between two segmentation points. The 
average distance between two segmentation points is 
calculated by taking the average of all segmentation points. 
If the distance is less than the average width a 
segmentation point is irrelevant and one deleted.      

Contour Extraction 
The contour between two consecutive segmentation points 
is extracted as follows. In the first step disconnect the 
pixels near the first segmentation point; disconnect the 
pixels near the second segmentation point. Find the 
smallest distance of the first black pixel from the first 
segmentation point and the three baselines. Follow the 
contour path across that baseline having minimum 
distance. Find the connecting contour. Mark it as visited 
once it is visited. If the contour is already visited then 
discard that, take the other part if any. 

Resizing 
The individual extracted contours are of varying size and 
hence in need of size normalization for use with the neural 
network. The contours are passed through a resizing 
algorithm that adjusts each contour to a normalized size. 

Feature Extraction 
A novel feature extraction technique is used to extract the 
features of the extracted contour. The features extracted in 
this methodology are structural features. 
 
Slope. The slope of consecutive points is calculated. The 
rate of change of slope is used as the main feature. The 
input to the feature extraction module is the set of 
coordinates (x, y) of the contour extracted from the contour 
extraction phase. Slope (θ) between two coordinate (x1, y1) 
and (x2, y2) is as follows 
If (x2 = x1) then 
    θ = 0 
else 
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Direction Change (Up/Down). The point with respect to 
the main body of the contour where the direction is 
changing is also taken care of. The change of direction is 
classified by whether the contour is changing direction 
upwards to downward or vice versa. 

EALS-BT Classifier Model 
A hybrid evolutionary technique is used to find the neural 
network architecture and weights. The details of this 
algorithm are described in Ghosh [2003]. The training of 
the model is based on a hierarchical structure, which is 
evolved with its own architecture and weights. A method 
called ‘Evolutionary Algorithm and Least Squares’ is used 
to find the weights and a type of Binary Search is used for 
the architecture (EALS-BT). In Figure 2 the flowchart for 
the dynamics of the combination methodology for 
searching the architecture and calculating the weights is 
given.  The two separate modules for the architecture and 
the weights are referred to as the findArchitecture and the 
findWeight modules respectively.  
 
Architecture Details. A two-layer network architecture is 
considered. The input nodes for the ANN do the range 
compression for the input and transmit output to all the 
nodes in the hidden layer. The activation function used for 
all the nodes in hidden and output layer is sigmoidal. The 
first layer is composed of input nodes, which simply range 
compress the applied input (based on pre-specified range 
limits) so that it is in the open range interval (0, 1) and fan 
out the result to all nodes in the second layer. The hidden 



nodes perform a weighted sum on its input, and then pass 
that through the sigmoidal activation function before 
sending the result to the next layer. The output layers also 
perform the same weighted sum operation on its input and 
then pass that through the sigmoidal activation function to 
give the final result.  

 

 
Figure 2 Hierarchical structure for weight and architecture 

module 
 
FindWeight module. The weight variables for each layer 
are found using a hybrid method, which uses the genetic 
algorithm (GA) and a least square method. The 
architecture is shown in Figure 3. The genetic algorithm is 
applied for the first layer weight and the least square 
method is applied to find the weights for the output layer.  

 

Figure 3: A two layer ANN architecture for the proposed 
hybrid learning method 

 
We initialize the hidden layer weights with a uniform 
distribution with closed range interval [-1, +1]. How we 
can combine the evolutionary algorithm with the least 
square method (EALS) is again a very important issue as 
there are many possibilities joining the two independent 
modules. The LS method is called after the convergence of 
the evolutionary algorithm (EA) is over. After certain 

number of generations for the EA, the best fitness 
population is halved and the lower half is used as the 
weights for the hidden layer and those weights are used for 
the LS method. The Stopping criterion for EALS is also 
based on a few simple rules. All the rules are based on the 
current train and test output and the maximum number of 
generations for the evolution algorithm. In the following, 
we describe the stopping criterion for the convergence of 
the evolutionary algorithm. 
If (best_RMS_error1 < goal_RMS_error) then Stop 
 
Else if (number_of_generation =   

total_number_of_generation2) then 
               Stop 

Else if (train_classification_error is increased in #m3 
consecutive generation) then 
           Stop 
Else continue 
FindArchitecture module. We use a binary tree search 
type to find the optimal number of hidden neuron. The 
pseudo-code of the algorithm is given below: 
 
Step 1: Find the percentage test classification error & 
train_classification_error (error_min) for the minimum 
number of hidden neurons, where error_min = 
(train_classification_error (%)+ test_classification_error 
(%)) / 2 
 
Step 2: Find the percentage test classification error & train 
classification error (error_max) for the maximum number 
of hidden neurons, where error_max = 
(train_classification_error (%) + test_classification_error 
(%)) / 2 
 
Step 3: Find the percentage test classification error & train 
classification error  (error_mid) for the middle (mid = (min 
+ max) / 2) number of hidden neurons, where error_mid = 
(train_classification_error (%) + test_classification_error 
(%)) / 2 
 
Step 4: If (error_mid  < error_min) and (error_mid > 
error_max) then 
   min = mid  
   mid = (min + max / 2) 
         else  
   max = mid 
   mid = (min + max / 2) 
        end if 
Step 5: Go to Step1, if (mid  > min) and (mid < max) 
            Else go to Step 6 
                                                 
1 The best_RMS_error is the best of the RMS error from 
the population pool 
2 Total number of generations is considered as 30 
3 m is considered as 3 



 
Step 6: Number of hidden neurons = mid 
 
A simple rule base can describe the working of the 
stopping criterion for the combined algorithm.  
Rule 1: If the current output is satisfactory, then stop the 
algorithm, else check rule 2.  
Rule 2: If the stopping criterion for the weight search is 
met and the search is completely exhausted (in terms of the 
number of iterations) then stop, else check rule 3.  
Rule 3: If the stopping criterion for the weight search is 
met then go to rule 4, else go to the next generation for the 
EALS.  
Rule 4: If the stopping criterion for EALS is met then go 
to rule 1, else initialize for the next number of hidden 
neurons for EALS.  

Lexicon Analyzer 
A neural network based dictionary was used for 
recognizing words following the recognition of individual 
characters. The normalized ASCII value for each character 
is taken as the feature for the Neural network. The number 
of words in the dictionary represents the number of output 
of the Neural network. The hamming neural network is 
trained with the words in the dictionary. Hamming 
distance can be defined as being the number of bits in the 
input that do not match corresponding bits encoded in the 
weights of the network. The hamming network calculates 
the Hamming distance to the exemplar of each class and 
selects the class with the minimum hamming distance. 
When analyzing, the network fires the output neuron that 
matches the word in the dictionary. Figure 4 shows a 
representation of the lexicon analyzer. 
 

Figure 4: ANN based lexicon analyzer 

Experimental Results 
A number of experiments were conducted. Samples of 
handwritten words from the CEDAR benchmark dataset 
were used to test the segmentation module. The character 
dataset of the CEDAR and UCI Machine Learning 
repository (Upper case) were also used to train and test the 
neural network classifier. All algorithms were 
implemented in C++ on a UNIX platform. The number of 
characters used for training and testing respectively were 
7000 and 2000 for CEDAR dataset. For UCI Machine 

Learning repository handwriting dataset 6000 and 1500 
were used respectively for training and testing. The 
number of outputs was 26 representing uppercase 
characters (A-Z) and 26 representing lowercase characters 
(a-z).  

Segmentation Results 
To test the accuracy of the rule based novel segmentation 
algorithm three criteria were used for the segmentation 
results.  These are the number of: 1) over segmentations, 2) 
missed segmentations and 3) bad segmentations. Over 
segmentation occurs when the character is segmented by 
more than two segmentation lines. Missed segmentation 
occurs when a correct segmentation point is not noted by 
the segmentation algorithm. Bad segmentation occurs 
when the segmentation point does not separate two 
characters properly. The error rates are shown in Table 1.  

Table 1: Segmentation Results 

Over segmentation 
(%) 

Missed (%) Bad (%) 

20.02 0.2 8.7 
 
As shown in Table 1, the segmentation algorithm 
performed reasonably well. The missed error rate was 
almost zero (0.2%). The over segmentation error was 
prominent but not excessive (20.02%). The bad 
segmentation error obtained was also modest (8.7%).  

Character Recognition Results 
The character recognition results obtained for CEDAR 
benchmark dataset are shown in Table 2. The character 
recognition results obtained for UCI Machine Learning 
repository dataset are shown in Table 3.The result is 
compared with the traditional Back Propagation algorithm 
in both the cases. 
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Table 2: Character Recognition Results for CEDAR 

Recognition Rate [%] Lower/
Upper 
case 

Dataset 
Back 

propagation 
EALS-BT 

Lower Training 100 99.8 
Lower Testing 87.3 92.4 
Upper Training 99.7 100 
Upper Testing 86.4 95.6 

Table 3: Character Recognition Results for UCI Machine 
Learning 

Recognition Rate [%] Dataset 
Back 

propagation 
EALS-BT 

Training 100 99 
Testing 95 96.8 



Word Recognition Results 
The word recognition result is shown in Table 3.  The 
words are passed through the lexicon analyzer. The word 
recognition result we got before passing through the 
lexicon analyzer was 75%. The recognition rate after 
passing through the lexicon was 96%. 
 

 Table 3: Word Recognition Results 

Analysis and Discussion 
The experiment was started with two neural classifiers for 
lower case and uppercase. The upper-case characters 
were giving higher classification results than the lower 
case. This is due to the increasing ambiguity of lower case 
characters. The shapes of the upper case characters are 
mostly straightforward and unambiguous. However, in the 
case of lower case characters are very ambiguous. Several 
lowercase characters  (like i, l, j) sometimes follow 
overlapping shapes and this caused miss-recognition a 
number of times.  
 
The following figure (Figure 5) shows the improvement of 
test classification accuracy in percentage over the standard 
EBP and the evolutionary algorithm (EA) in CEDAR 
benchmark dataset. From the Figure 5, it shows that in 
cases for the proposed algorithm the test classification 
accuracies were higher than the standard EBP and EA 
methods. Whereas in case of EBP the improvement was 
5.8% for lowercase and 10.6% for Uppercase, the results 
improved a lot when compared with standard EA method.  
In later case the improvement was 9% for lowercase and 
14% for Uppercase. 
 

Figure 5: Improvement of Classification accuracy for CEDAR 
dataset 

 

The following figure (Figure 6) shows the improvement of 
test classification accuracy in percentage over the standard 
EBP and the evolutionary algorithm (EA) in UCI Machine 
Learning repository (Upper case) dataset. The 
improvement was 2% for EBP and 5.6% for EA method. 
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Figure 6: Improvement of Classification accuracy in UCI 
Machine Learning repository (Upper case) dataset 

 
The following figure (Figure 7) shows the improvement of 
time complexity of the training dataset in percentage over 
the standard EBP and the evolutionary algorithm in 
CEDAR benchmark dataset. From the Figure 7, it shows 
that in cases for the proposed algorithm worked much 
faster than the standard EBP and EA methods. In case of 
EBP the improvement was 41% for Lower case and 42% 
for Uppercase. In case of EA, the improvement was 43.5% 
for lowercase and 45.5% for Uppercase. 
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Figure 7: Improvement of Time Complexity in CEDAR 
dataset 

The following figure (Figure 8) shows the improvement of 
time complexity of the training dataset in percentage over 
the standard EBP and the evolutionary algorithm in UCI 
Machine Learning repository (Upper case) dataset 
benchmark dataset. In case of EBP the improvement was 
48% and in case of EA the improvement was 52%. 
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Figure 8: Improvement of Time Complexity in UCI 
Machine Learning repository (Upper case) dataset 

 Conclusion 

The paper has concentrated on a hybrid evolutionary 
technique for offline handwriting recognition. It uses a 
combination of genetic algorithm and matrix based 
solution methods such as QR factorisation. The technique 
produces satisfactory results with improvements in 
character recognition and time complexity over the use of 
a Back Propagation network and Evolutionary algorithm. 
The result further improves with application of hamming 
neural network as lexicon analyser. 
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