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Abstract 
The Heavy Weight Deflectometer (HWD) test is one of the 
most widely used tests for assessing the structural integrity 
of airport pavements in a non-destructive manner. The 
elastic moduli of the individual pavement layers 
“backcalculated” from the HWD deflection measurements 
are effective indicators of layer condition. Most of the 
backcalculation programs that are currently in use do not 
account for the non-linearity of unbound granular materials 
and fine-grained cohesive soils and therefore do not 
produce realistic results. The primary objective of this study 
was to develop a tool for backcalculating non-linear 
pavement layer moduli from HWD data using Artificial 
Neural Networks (ANN). A multi-layer, feed-forward 
network which uses an error-backpropagation algorithm 
was trained to approximate the HWD backcalculation 
function. The synthetic database generated using the non-
linear pavement finite-element program ILLI-PAVE was 
used to train the ANN. Using the ANN, we were 
successfully able to predict the AC moduli and subgrade 
moduli. The final product was used in backcalculating 
pavement layer moduli from actual field data acquired at 
the National Airport Pavement Test Facility (NAPTF). 

Introduction  
The Falling Weight Deflectometer (FWD) test is one of the 
most widely used tests for assessing the structural integrity 
of roads in a non-destructive manner. In the case of 
airfields, a Heavy Weight Deflectometer (HWD) test, 
which is similar to a FWD test, but using higher load 
levels, is used. In an FWD/HWD test, an impulse load is 
applied to the pavement surface by dropping a weight onto 
a circular metal plate and the resultant pavement surface 
deflections are measured directly beneath the plate and at 
several radial offsets. The deflection of a pavement 
represents an overall “system response” of the pavement 
layers to an applied load. A conventional Asphalt Concrete 
(AC) pavement is typically made up of three layers: a 
surface layer paved with AC mix, a base or/and subbase 
layer made up of crushed stone, and a subgrade layer made 
up of natural soil. When a wheel load is applied on an AC 
pavement, the pavement layers deflect nearly vertically to 
form a basin as illustrated in Figure 1. The FWD/HWD 

test tries to replicate the force history and deflection 
magnitudes of a moving truck tire/aircraft tire. 
  

Figure 1. Illustration of Deflection Surface Caused by 
Moving Wheel Loads 
 

Figure 2. Schematic of FWD Load-Geophone 
Configuration and Deflection Basin 
 
 The deflected shape of the basin (Figure 2) is 
predominantly a function of the thickness of the pavement 
layers, the moduli of individual layers, and the magnitude 
of the load. “Backcalculation” is the accepted term used to 
identify a process whereby the elastic (Young’s) moduli of 
individual pavement layers are estimated based upon 
measured FWD/HWD surface deflections. As there are no 
closed-form solutions to accomplish this task, a 
mathematical model of the pavement system (called a 
forward model) is constructed and used to compute 
theoretical surface deflections with assumed initial layer 
moduli values at the appropriate FWD/HWD loads. 
Through a series of iterations, the layer moduli are 
changed, and the calculated deflections are then compared 

 



to the measured deflections until a match is obtained 
within tolerance limits. Most of the commercial 
backcalculation programs currently in use (e.g. WESDEF, 
BISDEF) utilize an Elastic Layer Program (ELP) as the 
forward model to compute the surface deflections. For 
example, WESDEF uses WESLEA and BISDEF uses 
BISAR.  
 The ELPs consider the pavement as an elastic multi-
layered media, and assume that pavement materials are 
linear-elastic, homogeneous and isotropic. However, in 
reality, it has been found that certain pavement materials 
do not show linear stress-strain relation under cyclic 
loading. The non-linearity or stress-dependency of resilient 
modulus for unbound granular materials and cohesive fine-
grained subgrade soils is well documented in literature 
(Hicks 1970; Thompson and Robnett 1979). Unbound 
granular materials used in the base/subbase layer of an AC 
pavement show “stress-hardening” behavior (increase in 
resilient modulus with increasing hydrostatic stress) and 
cohesive subgrade soils show “stress-softening” behavior 
(reduction in resilient moduli with increased deviator 
stress). Therefore, the layer modulus is no longer a 
constant value, but a function of the stress state. Also, the 
ELPs do not account for the available shear strength of 
these unbound materials and frequently predict tensile 
stresses at the bottom of unbound granular layers which 
exceeds the available strength. Thus, the pavement layer 
moduli values predicted using ELP-based backcalculation 
programs are not very realistic. 
 ILLI-PAVE is a two-dimensional axi-symmetric 
pavement finite-element (FE) software developed at the 
University of Illinois at Urbana-Champaign (Raad and 
Figueroa 1980). It incorporates stress-sensitive material 
models and it provides a more realistic representation of 
the pavement structure and its response to loading. The 
primary objective of this study was to develop a tool for 
backcalculating non-linear pavement layer moduli from 
FWD/HWD data using Artificial Neural Networks (ANN). 
The reason for using ANN to accomplish this task is that 
once trained, they offer mathematical solutions that can be 
easily calculated in real-time on even the basic personal 
computers, unlike conventional backcalculation programs. 
Also, ANN can learn a backcalculation function that is 
based on much more realistic models of pavement 
response (e.g., ILLI-PAVE) than are used in traditional-
basin matching programs. ANNs have been successfully 
used in the past for the backcalculation of flexible 
pavement moduli from FWD data (Meier and Rix 1993). 
However, they did not account for realistic pavement layer 
properties as ELP-generated synthetic database was used 
to train the ANN. Therefore, ILLI-PAVE was used in this 
study to develop the synthetic database which accounts for 
the nonlinearity in unbound material behavior. A multi-
layer, feed-forward network which uses an error-
backpropagation algorithm (LMS minimization) was 
trained to approximate the HWD backcalculation function. 
The final product was used in backcalculating pavement 
layer moduli from actual field data acquired at the National 
Airport Pavement Test Facility (NAPTF). The NAPTF was 

constructed to generate full-scale testing data to support 
the investigation of the performance of airport pavements 
subjected to new generation aircrafts. The results from this 
study were compared with those obtained using a 
traditional ELP-based backcalculation program. It is noted 
that this is a preliminary study specifically targeted 
towards the backcalculation of pavement layer moduli 
from HWD data acquired at the NAPTF. 

Database Generation Using ILLI-PAVE 
A conventional airport flexible pavement section was 
modeled as a five-layered (AC layer, base layer, subbase 
layer, subgrade layer and a sand layer as constructed in 
conventional NAPTF test sections), two-dimensional, 
axisymmetric FE structure. A typical HWD test is 
performed by dropping a 36,000-lb load on the top of 
circular plate with a radius of 6 inches resting on the 
surface of the pavement. The loading duration is about 30 
ms. Deflections are typically measured at offsets of 0-,12-
,24-,36-,48- and 60-inches from the center of loading plate. 
The effect of HWD loading was simulated in ILLI-PAVE.  
 The AC layer and the sand layer were treated as linear 
elastic material. Stress-dependent elastic models along 
with Mohr-Coulomb failure criteria were applied for the 
base, subbase and subgrade layers. The ‘stress-hardening’ 
K-θ model was used for the base and subbase layers: 

Where MR is resilient modulus (psi), θ is bulk stress (psi) 
and K and n are statistical parameters. Based on extensive 
testing of granular materials, Rada and Witczak (1981) 
proposed the following relationship between K and n (R2 = 
0.68, SEE = 0.22): 

Log10 (K) =4.657 – 1.807n 
  
 The ‘stress-softening’ bilinear model was used for the 
subgrade layer: 

 
Where MR is resilient modulus (psi), σd is applied deviator 
stress (psi), and K1 and K2 are statistically determined 
coefficients from laboratory tests. 
 The thickness of the AC, base, subbase, subgrade and 
sand layers were held at constant values of 5, 8, 12, 95, 
and 120 inches respectively. These layer thicknesses are 
for a conventional AC pavement section (referred to as 
“MFC”) constructed at the NAPTF. The elastic modulus of 
the sand layer was fixed at 45,000 psi. Pavement surface 
deflections were computed at spacings of 0 (D0), 12 (D12), 
24 (D24), 36 (D36), 48 (D48), and 60 (D60) inches from the 
load center.  
 Deflection Basin Parameters (DBPs) derived from 
FWD/HWD deflection measurements are shown to be 
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good indicators of selected pavement properties and 
conditions (Hossain and Zaniewski 1991). Recently Xu et 
al (2001) used DBPs in developing new relationships 
between selected pavement layer condition indicators and 
FWD deflections by applying regression and ANN 
techniques. The DBPs considered in this study are shown 
in Table 1. Each DBP supposedly represents the condition 
of specific pavement layers. For example, AUPP is 
sensitive to the AC layer properties whereas BCI and AI4 
are expected to reflect the condition of subgrade. Some of 
these DBPs were included as inputs for training the ANN 
apart from the 6 independent deflection measurements (D0 
to D6). 
 
Table 1. Deflection Basin Parameters (DBPs) Used in this 
Study 

Deflection 
Basin 
Parameter 
(DBP) 

Formula 

Area Under 
Pavement 
Profile 

AUPP = (5D0 – 2D12 – 2D24 – D36)/2 

Area Index AI4 = (D36 + D48)/2D0 

Base 
Curvature 
Index 

BCI = D24 – D36 

Deflection 
Ratio 

DR = D12/D0 

 
 A total of 5,000 data sets were generated by varying the 
AC and subgrade layer moduli, the ‘Kb’-‘nb’ and ‘Ks’-‘ns’ 
values (note that K and n are related) for the base and 
subbase layers respectively. Of the total number of data 
sets, 3,750 data vectors were used in training the ANN and 
the rest 1,250 data vectors were utilized for the testing the 
network after the training was completed. The range of 
layer properties used in training the ANN are summarized 
in Table 2. 
 In order for the network weights to compare the features 
to one another more easily, it is generally desirable to 
reduce each feature in the data set to zero mean and an 
approximately equal variance, usually unity. But, in this 
case, as the data was well controlled, all the features were 
reduced to similar orders of magnitude. Also, it is crucial 
that the training and test data both represent sampling from 
the same statistical distribution, which is also taken care of 
in this study. 
 
 
 
 
 
 
 
 
 
 

Table 2. Range of Layer Properties Used to Train the ANN 
Pavemen
t Layer 

Thickness 
(inches) 

Elastic Layer Modulus 
(psi) 

Asphalt 
Concrete 

5 100,580 – 1,999,884 

Base 8 Kb: 1,628 – 19,747 
nb: 0.2 – 0.8 

Subbase 12 Ks: 1,628 – 19,750 
ns: 0.2 – 0.8 

Subgrade 95 1,630 – 19,743 
Sand 120 45,000 

Network Architecture 
 A generalized n-layer feedforward artificial neural 
network which uses an error-backpropogation algorithm 
(Haykin 1994) was implemented in the Visual Basic (VB 
6.0) programming language. The program can allow for a 
general number of inputs, hidden layers, hidden layer 
elements, and output layer elements. Two hidden layers 
were found to be sufficient in solving a problem of this 
size and therefore the architecture was reduced to a four-
layer feedforward network. A four-layer feedforward 
network consists of a set of sensory units (source nodes) 
that constitute the input layer, two hidden layer of 
computation nodes, and an output layer of computation 
nodes. The following notation is generally used to refer to 
a particular type of architecture that has two hidden layers: 
(# inputs)-(# hidden neurons)-(# hidden neurons)-(# 
outputs). For example, the notation 10-40-40-3 refers to an 
ANN architecture that takes in 10 inputs (features), has 2 
hidden layers consisting of 40 neurons each, and produces 
3 outputs. 
 An ANN-based backcalculation procedure was 
developed to approximate the FWD/HWD backcalculation 
function. Using the ILLI-PAVE synthetic database, the 
ANN was trained to learn the relation between the 
synthetic deflection basins (inputs) and the pavement layer 
moduli (outputs).  

To track the performance of the network a Root Mean 
Squared Error (RMSE) at the end of each epoch was 
calculated. An epoch is defined as one full presentation of 
all the training vectors to the network. The RMSE at the 
end of each epoch defined as: 

 
Where dj is the desired response for the input training 
vector Xj, and N is the total number of input vectors 
presented to the network for training. In order for the 
network to ‘learn’ the problem smoothly, a monotonic 
decrease in the RMSE is expected with increase in the 
number of epochs. 
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Separate ANN models were used for each desired output 
rather than using the same architecture to determine all the 
outputs together. The most effective set of input features 
for each ANN model were determined based on both 
engineering judgment and the experience gained through 
past research studies conducted at the University of 
Illinois. Parametric analyses were performed by 
systematically varying the choice and number of inputs 
and number of hidden neurons to identify the best-
performance  networks. As it was found that the prediction 
accuracy of the network remained the same for hidden 
layers greater than or equal to two, the number of hidden 
layers was fixed at two for all runs. The learning curve 
(RMSE Vs number of epochs) and the testing RMSE were 
studied in order to arrive at the best networks. 

A range of (-0.2, +0.2) was used for random 
initialization of all synaptic weight vectors in the network. 
For this problem, an asymmetric hyperbolic tangent 
function (tanh) was chosen as the nonlinear activation 
function at the output end of all hidden neurons. Since, the 
final outputs (layer moduli) are real values rather than 
binary outputs, a linear combiner model was used for 
neurons in the output layer, thus omitting the nonlinear 
activation function. A smooth learning curve was achieved 
with a learning-rate parameter of 0.001. 

Discussion of Results 
The training progresses of the best-performance networks 
are captured in Figures 3-5. Table 3 summarizes the best-
performance network architectures defined by the input 
features, the desired output and their prediction 
performance. The base and the subbase layer moduli were 
the hardest to predict. The difficulty associated with 
backcalculating the base/subbase layer modulus, especially 
if a thin AC layer is used, is a well recognized problem. It 
is sufficient to predict either ‘n’ or ‘K’ as there is a relation 
between the two. Note that the AC modulus (EAC) 
predicted using the best ANN model is one of the inputs 
for predicting nb. The RMSEs are significantly higher for 
both nb and ns. Therefore, the accuracy of predicting base 
and subbase layer moduli from HWD data using ANN is 
considered poor in this study. Figures 6 and 7 compare the 
target and ANN-predicted moduli of the AC and subgrade 
layers, respectively for the 1,250 test data vectors. The 
results are not shown for nb and ns as the R2 values were 
poor. Excellent agreement is found between the target and 
ANN-predicted layer moduli for AC and subgrade layers. 
These two ANN models have successfully learned the 
backcalculation function over the entire range of pavement 
properties included in the training dataset. 
 
 
 
 
 
 
 

Figure 3. Training Curve for AC Modulus 

Figure 4. Training Curves for nb and ns 

Figure 5. Training Curve for Subgrade Modulus 
 

 
Figure 6. Prediction of AC Modulus 

 Figure 7. Prediction of Subgrade Modulus 
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Table 3. Summary of Best-Performance ANNs 
 
 
 
 
 
 
 
 
 
 
 
 
 

ANN Application to Field Data 
One of the major reasons for developing this 
backcalculation procedure is to reliably evaluate the 
structural integrity of the NAPTF pavement test sections as 
they were subjected to traffic loading. The NAPTF is 
located at the Federal Aviation Administration (FAA) 
William J. Hughes Technical Center, Atlantic City 
International Airport, New Jersey. The NAPTF test 
pavement area is 900-foot long and 60-foot wide and it 
includes six AC pavement sections. One of them is a 
conventional-base AC pavement built over a medium-
strength subgrade which was modeled in this study. This 
test section is referred to as the “MFC”. All the pavement 
sections were subjected to a six-wheel tridem aircraft 
landing gear (Boeing 777) in one lane and a four-wheel 
tandem landing gear (Boeing 747) in the other lane 
simultaneously. The wheel loads were set at 45,000 lbs and 
the speed was 5 mph during trafficking. The test sections 
were trafficked to “failure”. According to the NAPTF 
failure criterion, pavements were considered to be failed 
when there is a 1-inch surface upheaval adjacent to the 
traffic lane. The MFC test section was the first one to 
“fail” at 12,952 load repetitions exhibiting 3 to 3.5 inches 
of rutting and severe cracking.  
 During the NAPTF traffic test program, HWD tests 
were conducted at various times to monitor the effect of 
time and traffic on the structural condition of the 
pavement. Tests were conducted on B777 traffic lane, 
B747 traffic lane and on the no-traffic Centerline (C/L). 
Using the HWD test data acquired at the NAPTF for the 
MFC test section, the AC moduli and subgrade moduli 
were backcalculated with the best-performance ANNs. The 
results were then compared with those obtained using 
FAABACKCAL, an ELP-based backcalculation program. 
FAABACKCAL was developed under the sponsorship of 
the FAA Airport Technology Branch and is based on the 
LEAF layered elastic computation program. A stiff layer 
with a modulus of 1,000,000 psi and a poisson’s ratio of 
0.50 was used in backcalculation process. The plots 
comparing the results of ANN-based approach with those 
of FAABACKCAL are shown in Figure 8 for AC modulus 
and in Figure 9 for subgrade modulus. 

 

Figure 8. Comparison of ANN-predicted AC Moduli with 
FAABACKCAL AC Moduli (Field Data) 
 

Figure 9. Comparison of ANN-predicted Subgrade Moduli 
with FAABACKCAL Subgrade Moduli (Field Data) 
 
 In the Figures, “B777-” and “B747-” in the legend refer 
to B777 traffic lane and B747 traffic lane respectively. One 
of the objectives of the NAPTF traffic test program was to 
compare the damaging effect of B777 and B747 landing 
gears on airport pavements. In these Figures, the changes 
in layer moduli in B777 traffic lane and B747 traffic lane 
are due to both traffic loading as well as variation in 
temperature and climate. The changes in pavement 
material properties in the pavement Centerline (C/L) are 
only due to environmental effects as the C/L was not 
subjected to trafficking.  
 In Figure 8, the variation in pavement temperature over 
the duration of trafficking program is indicated. Studies 
have shown that the AC modulus is very sensitive to 
pavement temperature. Therefore, the pavement 
temperature is plotted as well in Figure 8 on the secondary 
Y-axis. The AC modulus Vs N trend is similar for both 
ANN-predicted and FAABACKCAL results. The ANN-
model seems to be more sensitive to traffic loading effects 
and temperature effects which is reflected in the sharp 
decrease in AC moduli with rise in temperature and 
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number of load repetitions. The B747 traffic lane is 
slightly more distressed in terms of reduction in elastic 
moduli compared to the B777 traffic lane. This is captured 
by the ANN-model. This result was confirmed by the 
NAPTF rutting study results (Gopalakrishnan and 
Thompson 2003). The NAPTF trench study results showed 
that the subgrade layer contributed significantly to the total 
pavement rutting in the MFC test section. The ANN-model 
shows an overall decreasing trend in subgrade moduli with 
increasing number of load repetitions, whereas the moduli 
values backcalculated using FAABACKCAL remain more 
or less the same throughout the trafficking program (see 
Figure 9). 

Summary 
The Heavy Weight Deflectometer (HWD) test is one of the 
most widely used tests for assessing the structural integrity 
of airport pavements in a non-destructive manner. In this 
test, an impulse load is applied to the pavement surface by 
dropping a weight onto a circular metal plate and the 
resultant pavement surface deflections are measured 
directly beneath the plate and at several radial offsets. 
Backcalculation is the accepted term used to identify a 
process whereby the elastic (Young’s) moduli of 
individual pavement layers are estimated based upon 
measured HWD surface deflections. The elastic moduli of 
the individual pavement layers are effective indicators of 
layer condition. They are also necessary inputs to 
mechanistic-based analysis and design of pavements. The 
ELP-based backcalculation programs do not account for 
the stress-dependency of unbound granular materials (used 
in the base and subbase layers) and fine-grained cohesive 
soils (used in the subgrade layer) and therefore do not 
produce realistic results. ILLI-PAVE is a pavement finite-
element software that incorporates stress-sensitive material 
models and it provides a more realistic representation of 
the pavement structure and its response to loading. The 
primary objective of this study was to develop a tool for 
backcalculating non-linear pavement layer moduli from 
FWD/HWD data using Artificial Neural Networks (ANN). 
A multi-layer, feed-forward network which uses an error-
backpropagation algorithm was trained to approximate the 
HWD backcalculation function. The ILLI-PAVE 
generated synthetic database was used to train the ANN. 
Using the ANN, we were successfully able to predict the 
AC moduli and subgrade moduli. The final product was 
used in backcalculating pavement layer moduli from actual 
field data acquired at the National Airport Pavement Test 
Facility (NAPTF). Although this is a preliminary study 
with a narrow scope, the results are very encouraging. 
Future studies would incorporate a wide range of 
pavement layer properties in the training dataset which 
would improve the generalization capabilities of the ANN. 
They would consider all four (two conventional-base and 
two asphalt-stabilized base) flexible test sections 
constructed at the NAPTF. The results would be used in 

studying the comparative effect of B777 and B747 gears 
on the moduli values. 
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