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Abstract 
In the neural network literature, input feature de-correlation 
is often referred as one pre-processing technique used to 
improve the MLP training speed. However, in this paper, 
we find that de-correlation by orthogonal Karhunen-Loeve 
transform (KLT) may not be helpful to improve training. 
Through detailed analyses, the effect of input de-correlation 
is revealed to be equivalent to using a different weight set to 
initialize the network. Thus, for a robust training algorithm, 
the benefit of input de-correlation would be negligible. The 
theoretical results are applicable to several gradient training 
algorithms, i.e. back-propagation, conjugate gradient. The 
simulation results confirm our theoretical analyses. 

Introduction   
The multi-layer perceptron (MLP) is a popular tool for 
signal processing (Manry, Chandrasekaran and Hsieh 
2001), remote sensing (Manry et al. 1994), and pattern 
recognition (Chen, Manry and Chandrasekaran 1999). 
Although its universal approximation ability has already 
been proved (Cybenko 1989, Hornik, Stinchcombe, and 
White 1989), many issues are still unsolved, such as the 
network topology, the initial weights setting, the 
generalization ability and so forth. Different contributions 
from statisticians and neural networks researchers attack 
these problems from various aspects (Battiti 1992, Parisi et 
al. 1996, Wang and Chen 1996, Yam and Chow 2000). As 
MLP training is quite data dependent, naturally, pre-
processing techniques have been proposed for efficient 
training. LeCun (LeCun 1998) suggests de-correlating the 
input features before training. This strategy will make the 
system equations in the training algorithm easier to solve. 
For linearly dependent inputs, it can decrease the network 
size by removing redundant features. Raudys (Raudys 
2001) points out that it is difficult to ensure fast 
convergence of the back-propagation algorithm when we 
have an immense difference between the smallest and 
largest eigenvalues of the data covariance matrix (CM). He 
recommends the use of a whitening transformation that 
scales the input features after de-correlation, to transform 
the CM into an identity matrix. This speeds up the 
convergence rate.  
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From these results, some readers may assume that fewer 
training iterations are required when de-correlated inputs 
are used. However, in our research, we found that, at least 
in the orthogonal transformation case, the de-correlation 
procedure may not result in fewer iterations. By analyzing 
the training procedure of the original network and the 
transformed network, which has de-correlated inputs, we 
discovered that if the two networks start from the same 
initial state, they will have exactly the same training 
dynamics and achieve the same results for a given training 
algorithm. The same initial state can be realized by a 
proper transformation between the corresponding initial 
weight sets of the networks. So the effect of de-correlation 
is equivalent to initializing the original network with a 
different set of weights. For a robust training algorithm, 
this would be of little help for improving training speed. 

In the first section below, we introduce the notation used 
in the derivation and describe the Karhunen-Loeve 
transform (KLT). Next, we give theoretical analyses of the 
effects of de-correlation by tracking the training procedure 
in two networks. After that, simulation results are 
presented. Several practical issues are discussed in the last 
section. 

MLP and KLT 
Without loss of generality, we restrict our discussion to a 
three layer fully connected MLP with linear output 
activation functions. First, we describe the structure and 
notation, and then present one classical de-correlation 
technique, the KLT. 

Notation for a Fully Connected MLP 
The network structure is shown in Fig. 1. For clarity, the 
bypass weights from input layer to output layer are not 
shown. The training data set consists of Nv training patterns 
{(xp, tp)}, where the pth input row vector xp and the pth 
desired output row vector tp have dimensions N and M, 
respectively. For the jth hidden unit, the net function netpj 
and the output activation Opj for the pth training pattern are 
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 Fig. 1 MLP network structure 
 

Here xpn denotes the nth element of xp, whi(j, n) denotes the 
weight connecting the nth input unit to the jth hidden unit, 
Th(j) is the hidden unit threshold and Nh is the number of 
hidden units. The activation function f is the sigmoid 
function 
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The kth output ypk for the pth training pattern is 

( ) ( ) ( )kTOjkwxnkwy o

N

j
pjoh

N

n
pnoipk

h

+⋅+⋅= ∑∑
== 11

,,         (3) 

 k=1, …, M, where woi(k, n) denotes the weight connecting 
the nth input node to the kth output unit, To(k) is the output 
threshold and woh(k, j) denotes the weight connecting the 
jth hidden unit to the kth output unit. In batch mode 
training, the overall performance of a feed-forward 
network, can be measured by the mean square error (MSE) 
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where tpm denotes the mth element of the pth desired output 
vector. Recall that tp and yp are row vectors. 

Karhunen-Loeve Transform (KLT) 
The KL transform was originally introduced by Karhunen 
and Loeve. Here, the orthogonal KLT matrix A is used to 
de-correlate the original input feature vector xp to zp: 
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For the original training patterns, the mean vector and CM 
are 
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After applying the KLT, the mean vector and CM of the 
de-correlated inputs are 
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The new CM Cz is a diagonal matrix. The orthogonal KLT 
matrix A can be found by the singular value decomposition 
(SVD). 

Input De-correlation and MLP Training   
The effect of de-correlating the input features is analyzed in 
this section. We demonstrate our analyses using the full 
conjugate gradient algorithm (FCG) (Fletch 1987, Kim 
2003).  

Assume that two MLP networks are respectively trained 
with training data { } vN

ppp 1
,

=
tx  and { } vN

ppp 1
,

=
tz . The 

networks are said to be equivalent if their hidden layer 
activations are identical and their output vectors are 
identical for every training pattern. 

First, the conditions for ensuring equivalent states in the 
two networks are derived. Then we briefly describe the 
FCG algorithm. Finally, by induction, we show that the 
training dynamics in the two networks are exactly the same. 
We will use u to denote the weights in the transformed 
network and add an extra subscript ‘d’, representing de-
correlation, to other notation for discrimination. 

Conditions for Equivalent States 
If the weights of the transformed network are uoi, uoh, and 
uhi, the thresholds are Tdo, Tdh, then the hidden layer net 
functions and network outputs are: 
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where the hidden layer output vector Odp is calculated by 
applying the sigmoid function to netdp.  

From equations (10) and (11), we can see that, if the 
weights and thresholds in the original network satisfy: 

Auw ⋅= hihi , Auw ⋅= oioi                     (12) 

ohoh uw = , doo TT = , dhh TT =               (13) 
then the two networks will have the same net functions and 
outputs, and consequently, the same states. After 
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initializing the two networks with the strategy in (12) and 
(13), they start from the same initial state. 

The Full Conjugate Gradient Algorithm 
In FCG (Fletch 1987, Kim 2003), for the kth training 
iteration, the weights and thresholds are updated in 
corresponding conjugate directions, P, i.e., in the 
transformed network 

( )kB doioioi Puu ⋅+← 2 , ( )kB dhihihi Puu ⋅+← 2    (14) 
  ( )kB dohohoh Puu ⋅+← 2 , ( )kB dododo PTT ⋅+← 2  

( )kB dhdhdh PTT ⋅+← 2                                            (15)                  
The weights and thresholds in the original network are 
updated in the same way. So, if the two networks have the 
same learning factors B2 and the conjugate directions P 
satisfy: 

APP ⋅= dhihi , APP ⋅= doioi                 (16) 

dohoh PP = , doo PP = , dhh PP =             (17) 
then they will still have the same states as long as they have 
the same states in the (k-1)th iteration. It is easy to verify 
this because updating the weights and thresholds in (14) to 
(17) will ensure conditions (12) and (13). 

In FCG, the conjugate directions evolve from iteration to 
iteration in the following way: 

( ) ( ) ( )11 −+−= kBkk PgP                  (18) 
Here g is the gradient matrix for the weights and 
thresholds. In the transformed network, for certain training 
iterations, the gradient matrix of uoi has the form: 
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where 
Mmyte dpmpmdpm L,1            =−=      (20) 

Similarly, the gradient matrix of uoh is: 
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The gradient matrix of Tdo is: 
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For the hidden weights uhi, the gradient matrix is: 
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(23) 
Similarly, the gradient matrix for the hidden unit threshold  
vector Tdh: 
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Applying similar analyses to the original network, we can 
write the corresponding gradient matrices: 
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B1 in (18) is the ratio of the gradient energies between the 
current iteration and the previous iteration: 
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Dynamics of the Training Procedure 
In the following, we show by induction that the above two 
networks have the same dynamics for full conjugate 
gradient training. 

In the first training iteration, for both networks, 
( ) ( ) 0gg == 00d , ( ) ( ) 0PP == 00d            (28) 

In order to calculate B1, we just set 
( ) ( ) 100 == gg d                          (29) 

Due to the initialization strategy, at the beginning of the 
first iteration, we have 

pdp yy = , pdp ee = , pdp OO = , pdp DD =   (30) 
By observing the gradient matrices (19) to (26), it is 
obvious that during the first training iteration, the gradients 
in the two networks satisfy  
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ohdoh gg = , odo gg = , hdh gg =             (32) 
Then the energy of gradients in the transformed network 
for the first training iteration is: 
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(33) 
where superscript (j) denote the jth row vector in the 
corresponding matrix. From equation (27), (29) and (33), 
we conclude that B1 is the same in the two networks. Based 
on equations (28), (31), (32), and substituting them into 
(18), the new conjugate directions in the first training 
iteration satisfy conditions (16) and (17).  

In order to prove that the two networks have same state 
after the first training iteration, we still need to verify that 
the learning factor B2 is the same in the two networks. The 
learning factor B2 is found by solving: 

0
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In the transformed network, the output vector after a 
training iteration is: 

( ) ( )
( ) ( ) ( )( )dhdh

T
pdhihidohoh

dododo
T
pdoioi

T
dp

BBB

BB

PTzPufPu

TPTzPuy

222

22

++⋅+⋅++

++⋅+=
 

(35) 
where f denotes the vector form of the sigmoid function. 
The current weights and thresholds satisfy conditions (12), 
(13), and the updating directions satisfy (16) and (17), thus 
equation (35) can be expressed as: 
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(36) 
Hence after the first training iteration, the outputs in the 
two networks are exactly the same. Substituting them into 
(4) will result in the same expression for E in the two 
networks. Thus any practical methods for solving (34) will 
yield the same B2 for the two networks. 

From the above analyses, it is clear that the two networks 
will have exactly the same state after the first training 
iteration. 

We assume for the nth iteration, that the two networks 
still reach the same state after training. This implies that in 
the (n+1)th iteration, equation (30) is satisfied, current 

weights and thresholds satisfy conditions (12) and (13), so 
(33) becomes 

( ) ( )nnd gg =                         (37) 
The derivation for the (n+1)th iteration is similar to the 

analyses in the first iteration. From (30), conditions (31) 
and (32) are met again. Just as in (33), we have 

 ( ) ( )11 +=+ nnd gg                     (38) 
So once again B1 is the same in the two networks. Using 
this result, combined with equations (18), (31) and (32), it 
is easy to show that conditions (16) and (17) are valid in 
the (n+1)th iteration. As equation (35) is true for an 
arbitrary iteration, from conditions (16), (17), (12) and 
(13), equation (36) is satisfied in the (n+1)th iteration. 
Based on exactly the same reason as in the first iteration, B2 
will be same in the two networks. As a result, conditions 
(12) and (13) are proved to be true for the new updated 
weights and thresholds after the (n+1)th training iteration. 
That is to say, the two networks will still have same state 
after the (n+1)th training iteration. 

From the above induction, the training dynamics of the 
two networks are proved to be exactly the same. Actually, 
for other gradient-related algorithms, i.e. output weight 
optimization-backpropagation (OWO-BP), output weight 
optimization-hidden weight optimization (OWO-HWO), 
we can prove similar conclusions as long as learning 
factors are optimal, meaning that equation (34) is satisfied. 
Without the sufficient condition of equation (34), the 
training errors of two equivalent networks may diverge 
during training.  

Simulation 
The results in the last section are verified using four 
training data sets. Our simulations were carried out on a 
733Mhz Pentium III, running Windows 2000 and using the 
Visual C++ 6.0 compiler. 

Training data set Twod.tra contains simulated data based 
on models from backscattering measurements. This training 
file is used in the task of inverting the surface scattering 
parameters from an inhomogeneous layer above a 
homogeneous half space, where both interfaces are 
randomly rough. The parameters to be inverted are the 
effective permittivity of the surface, the normalized rms 
height, the normalized surface correlation length, the 
optical depth, and single scattering albedo of an in-
homogeneous irregular layer above a homogeneous half 
space from back scattering measurements.  

The data set has 8 inputs, 7 outputs, and 1768 patterns. 
We use 10 hidden units in a three-layer MLP. The 
networks are trained using FCG for 200 iterations. From 
the simulation results of figure 2, it is clear that the two 
networks have exactly the same dynamics.  

Training data set mattrn.dat provides the data for 
inversion of random two-by-two matrices. Each of the 2000 
patterns consists of 4 input features and 4 output features. 
The input features, which are uniformly distributed 
between 0 and 1, represent matrix elements and the four  
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Fig. 2 Simulation results for example 1 data: Twod.tra, 
Structure: 8-10-7 

Fig. 3 Simulation results for example 2 data: mattrn.dat, 
Structure: 4-10-4 

 
output features are elements of the corresponding inverse 
matrix. The determinants of the input matrices are 
constrained to be between 0.3 and 2. 

We chose the MLP structure 4-10-4 and trained the 
networks for 200 iterations. The simulation results of figure 
3 show the same dynamics for the two networks. 

Training data fmtrain.dat is used to train a neural 
network to perform demodulation of an FM (frequency 
modulation) signal containing a sinusoidal message. It has 
5 inputs, 1 output, and 1024 patterns. The data are 
generated from the equation  

     r(n) = Camp • cos[2π • n •  Cfreq + Mamp  
               • sin(2π • n •  Mfreq )] 
where Camp is the Carrier Amplitude, Mamp is the 

Message Amplitude, Cfreq is the normalized Carrier 
frequency,  Mfreq is the normalized message frequency. In 
this data set, Camp = .5, Cfreq = .1012878, Mfreq = 
.01106328, and Mamp=5. The five inputs are r(n-2), r(n-1), 
r(n), r(n+1), and r(n+2). The desired output is cos(2π • n • 
Mfreq ). In each consecutive pattern, n is incremented by 1.  

Fig. 4 Simulation results for example 3 data: fmtrain.dat, 
Structure: 5-10-1 

Fig. 5 Simulation results for example 4 data:Single2.tra, 
Structure: 16-20-3 

 
We use 10 hidden units in the three-layer MLP. The 

networks are trained using FCG for 200 iterations. Figure 4 
shows the result. 

Single2.tra consists of 16 inputs, 3 outputs and 5992 
patterns. It represents the training set for inversion of 
surface permittivity, the normalized surface rms roughness, 
and the surface correlation length found in the back 
scattering models from randomly rough dielectric surfaces.  

The first 16 inputs represent the simulated back 
scattering coefficient measured at 10, 30, 50 and 70 
degrees at both vertical and horizontal polarization. The 
remaining 8 are various combinations of ratios of the 
original eight values. These ratios correspond to those used 
in several empirical retrieval algorithms (Fung, Li and 
Chen 1992). 

We chose the MLP structure 16-20-3 and trained the 
networks for 200 iterations. From the simulation results of 
figure 5, we can see that there are obvious differences 
between the two curves. This phenomenon is caused by 
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problems in the matrix A. For data sets Twod.tra, 
mattrn.dat,  and fmtrain.dat, we found that A calculated by  
the SVD is orthogonal, i.e. ATA = I, so the analyses in the 
last section are satisfied. However, for the training data file 
Single2.tra, A is not orthogonal because of problems in the 
SVD. Our analyses are not valid for this case and the two 
networks are not equivalent, as seen in figure 5. 

Conclusion 
In this paper, we analyzed the effect of orthogonally 
transformed input vectors on MLP training. Using the 
concept of equivalent states, we have shown that this de-
correlation procedure has no effect on the error per 
iteration for the FCG training algorithm. Of course, de-
correlation is still useful for compression purposes and as a 
means for reducing the number of operations per iteration 
in some training algorithms. We have derived our results 
for networks that have bypass weights. These results are 
still valid when the bypass weights are set to zero, or 
equivalently, removed.  

Although the analyses in this paper are based upon FCG, 
they apply equally well to BP, and other gradient-based 
training algorithms when optimal learning factors are used.  

Acknowledgement 
This work was supported by the Advanced Technology 
Program of the state of Texas, under grant number 003656-
0129-2001. 

References 
Battiti, R. 1992. First- and Second-order Methods for 
Learning: between Steepest Descent and Newton’s Method. 
Neural Computation 4 (2): 141-166. 
Chen, H. H.; Manry, M. T.; and Chandrasekaran, H. 1999. 
A Neural Network Training Algorithm Utilizing Multiple 
Sets of Linear Equations. Neurocomputing 25: 55-72. 
Cybenko, G. 1989. Approximation by superpositions of a 
sigmoidal function. Mathematics of Control, Signals, and 
Systems 2: 303-314. 
Fletch, R. 1987. Practical Methods of Optimization. John 
Wiley & Sons. 
Fung, A.K.; Li, Z.; and Chen, K.S. 1992. Back Scattering 
from a Randomly Rough Dielectric Surface. IEEE 
Transactions on Geoscience and Remote Sensing 30 (2):  
356-369. 
Hornik, K.; Stinchcombe, M.; and White, H. 1989. 
Multilayer feedforward networks are universal 
approximators. Neural Networks 2: 359-366. 
Kim, T. H.; Manry, M. T.; and Maldonado, F. J. 2003. 
New Learning Factor and Testing Methods for Conjugate 
Gradient Training Algorithm. In Proceedings of 2003 

International Joint Conference on Neural Networks, 2011-
2016. Portland, OR: International Joint Conference on 
Neural Networks.  
LeCun Y., et al. 1998. Efficient BackProp. In Orr, G. B. 
and Muller, K. R. eds., Neural Networks: Tricks of the 
Trade. Springer-Verlag. 
Manry, M. T., et al. 1994. Fast Training of Neural 
Networks for Remote Sensing. Remote Sensing Reviews 9: 
77-96. 
Manry, M. T.; Chandrasekaran, H.; and Hsieh, C. H. 2001. 
Signal Processing Using the Multiplayer Perceptron. CRC 
Press. 
Parisi, R.; Claudio, E. D.; Orlandi G.; and Rao B. D. 1996. 
A Generalized Learning Paradigm Exploiting the Structure 
of Feedforward Neural Networks. IEEE Transactions on 
Neural Networks 7 (6): 1450-1460. 
Raudys, Š. 2001. Statistical and Neural Classifiers: An 
Integrated Approach to Design. Springer-Verlag. 
Wang, G. J., and Chen C. C. 1996. A Fast Multilayer 
Neural-network Training Algorithm Based on the Layer-
by-layer Optimizing Procedures. IEEE Transactions on 
Neural Networks 7 (3): 768-775. 
Yam, Y. F., and Chow, W. S. 2000. A Weight Initialization 
Method for Improving Training Speed in Feedforward 
Neural Network. Neurocomputing 30: 219-232. 
 


