
Hidden Layer Training via Hessian Matrix Information

Changhua Yu, Michael T. Manry, Jiang Li

Department of Electrical Engineering
University of Texas at Arlington, TX 76019

E-mail: changhua_yu@uta.edu; manry@uta.edu; li@wcn.uta.edu

Abstract
The output weight optimization-hidden weight optimization
(OWO-HWO) algorithm for training the multilayer
perceptron alternately updates the output weights and the
hidden weights. This layer-by-layer training strategy greatly
improves convergence speed. However, in HWO, the
desired net function actually evolves in the gradient
direction, which inevitably reduces efficiency. In this paper,
two improvements to the OWO-HWO algorithm are
presented. New desired net functions are proposed for
hidden layer training, which use Hessian matrix information
rather than gradients. A weighted hidden layer error
function, taking saturation into consideration, is derived
directly from the global error function. Both techniques
greatly increase training speed. Faster convergence is
verified by simulations with remote sensing data sets.

Introduction
The multi-layer perceptron (MLP) is widely used in the
fields of signal processing, remote sensing, and pattern
recognition. Since back propagation (BP) was first
proposed for MLP training (Werbos 1974), many
researchers have attempted to improve its convergence
speed. Techniques used to improve convergence include
second order information (Battiti 1992, Mollor 1997),
training network layer by layer (Wang and Chen 1996,
Parisi et al. 1996), avoiding saturation (Yam and Chow
2000, Lee, Chen and Huang 2001) and adapting the
learning factor (Magoulas, Vrahatis and Androulakis 1999,
Nachtsheim 1994).

Algorithms like Qprop (Fahlman 1989), conjugate
gradient (Fletch 1987, Kim 2003), Levenberg-Marquardt
(LM) (Hagan and Menhaj 1994, Fletch 1987) often
perform much better than BP. In these algorithms, the
essential difference is the weight updating strategy. The
convergence speeds are quite different when the weights
are modified in the gradient direction, a conjugate direction
or the Newton direction. As to which one is better, this
depends on the nature of the application, the computational
load and other factors. Generally, gradient methods
perform worst. While the Newton method performs best, it
requires more computation time.

Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

Chen (Chen, Manry and Chandrasekaran 1999)
constructed a batch mode training algorithm called output
weight optimization-hidden weight optimization (OWO-
HWO). In OWO-HWO, output weights and hidden unit
weights are alternately modified to reduce the training
error. The algorithm modifies the hidden weights based on
the minimization of the MSE between a desired and the
actual net function, as originally proposed by Scalero and
Tepedelenlioglu (Scalero and Tepedelenlioglu 1992).
Although, OWO-HWO greatly increases the training speed,
it still has room for improvement (Wang and Chen 1996)
because it uses the delta function, which is just the gradient
information, as the desired net function change. In addition,
HWO is equivalent to BP applied to the hidden weights
under certain conditions (Chen, Manry and Chandrasekaran
1999).

In this paper, a Newton-like method is used to improve
hidden layer training. First, we review OWO-HWO
training. Then, we propose new desired hidden layer net
function changes using Hessian matrix information. Next,
we derive a weighted hidden layer error function from the
global training error function, which de-emphasizes error in
saturated hidden units. We compare the improved training
algorithm with the original OWO-HWO and LM
algorithms with simulations on three remote sensing
training data sets.

The OWO-HWO Algorithm
Without loss of generality, we restrict our discussion to a
three layer fully connected MLP with linear output
activation functions. First, we describe the network
structure and our notation. Then we review the OWO-
HWO algorithm for our MLP.

Fully Connected MLP Notation
The network structure is shown in Fig. 1. For clarity, the
bypass weights from input layer to output layer are not
shown. The training data set consists of Nv training patterns
{(xp, tp)}, where the pth input vector xp and the pth desired
output vector tp have dimensions N and M, respectively.
Thresholds in the hidden and output layers are handled by
letting xp,(N+1)=1. For the jth hidden unit, the net input netpj
and the output activation Opj for the pth training pattern are

Fig. 1 The network structure

 ∑
+

=
⋅=

1

1
),(

N

n
pnhpj xnjwnet

() pjpj netfO = (1)
Here xpn denotes the nth element of xp and wh(j, n) denotes
the weight connecting the nth input unit to the jth hidden
unit. Nh is the number of hidden units. The activation
function f is sigmoidal

()
pjnetpj e

netf −+
=

1
1 (2)

The kth output ypk for the pth training pattern is

() ()∑∑
=

+

=
⋅+⋅=

hN

j
pjoh

N

n
pnoipk Ojkwxnkwy

1

1

1
,, (3)

woi(k, n) denotes the weight connecting the nth input node
to the kth output unit and woh(k, j) denotes the weight
connecting the jth hidden unit to the kth output unit. In
batch mode training, the overall performance of a feed-
forward network, measured as MSE, can be written as

[]∑∑
= =

−=
vN

p

M

k
pkpk

v

yt
N

E
1

2

1

1 (4)

where tpk denotes the kth element of the pth desired output
vector.

Review of OWO-HWO
As the output units have linear activation functions in this
paper, the OWO procedure can be realized by solving
linear equations (Chen, Manry and Chandrasekaran 1999),
which result when gradients of E with respect to the output
weights, woi(k, n) and woh(k, j), are set to zero.

In HWO, the hidden weights wh(j, n) are updated by
minimizing a separate error function for each hidden unit.
These error functions use differences between the desired
and the actual net function. For the jth hidden unit and pth
pattern, the desired net function netpjd is constructed as
(Chen, Manry and Chandrasekaran 1999):

pjpjpjpjpjd ZnetnetZnetnet δ⋅+≅∆⋅+= (5)

Z is the learning rate and δpj is the jth hidden unit delta
function defined as:

() ()∑′=
k

ohopkpjpj jkwnetf ,δδ (6)

where δopk is the delta function of the kth output unit,
pkpkopk yt −=δ (7)

The hidden weights are updated as
() () ()njeZnjwnjw hh ,,, ⋅+← (8)

where e(j, n) is a direction vector element. The weight
changes are derived using

() ()[] pn

N

n
hpjpj xnjeZnjwZnet ⋅⋅+≅⋅+ ∑

+

=

1

1
,,δ (9)

Therefore,

()∑
+

=
⋅≅

1

1
,

N

n
pnpj xnjeδ (10)

The error of (10) for the jth hidden unit is measured as

() ()
2

1

1

1
,1 ∑ ∑

=

+

=








⋅−=

vN

p

N

n
pnpj

v

xnje
N

jE δδ (11)

Linear equations resulting from (11) can be solved for
e(j, n) by the conjugate gradient method. After finding the
learning factor Z, the hidden weights are updated as in (8).
After applying OWO and HWO to the network, the
procedures are repeated for as many iterations as necessary.

Improved Hidden Layer Training
In the original HWO algorithm, the desired hidden layer
net function change pjnetZ ∆⋅ uses the gradient, i.e. the
delta function, which inevitably slows down the
optimization procedure due to its steepest descent
direction. Here, we use a Newton-like method to derive a
new desired net function, which exploits second order
information from a Hessian matrix.

The New Desired Net Function
As we know, when E is minimized by the optimal value of
the jth hidden layer net function *

pjnet , we have:

0* =
∂

∂

pjnet
E (12)

As in the derivation of Newton-like methods, we have

()∑
=

−⋅
∂∂

∂+
∂

∂≈
∂

∂ hN

k
pjpj

pkpjpjpj

netnet
netnet

E
net

E
net

E
1

*
2

* (13)

Now, the new direction of desired net function change with
element pjpjpj netnetnet −=∆ ** can be found by:

OP,Nh

Op1

 xp,N+1

yp1

yp2

yp3

ypM

xp3

xp2

xp1

[]





























∂
∂

∂
∂

∂
∂

⋅































∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂
∂

−=

⋅−=∆∆∆
−

−

hhh

h

h

h

pN

pj

p

pNppN

pNpjppj

pNpp

T
pNpjp

net
E

net
E

net
E

net
E

netnet
E

netnet
E

netnet
E

netnet
E

net
E

netnetnet

M

M

LL

MLLM

LL

MLLM

LL

LL

1

1

2

2

1

2

2

1

2

1

2

2
1

2

1 ***
1

gH

(14)
The elements of the Hessian matrix H and the gradient
matrix g are calculated through the chain rule as:

() () [] () pi
v

M

k
ohpkpkpi

v N
ikwytf

N
ig δ2,2

1
−=⋅−′−= ∑

=
 (15)

() () ()∑
=

′′=
∂∂

∂=
M

k
ohohpjpi

vpjpi

jkwikwff
Nnetnet

Ejih
1

2

,,2, (16)

() () () ()
pi

pi
M

k
ohpi

vpi f
f

igikwf
Nnet

Eiih
′
′′

⋅+








′=
∂
∂= ∑

=1

22
2

2

,2, (17)

Here, pif is shorthand for ()pinetf as described in (2), so

pif ′ and pif ′′ are the first and second derivatives
respectively. In the algorithms that update hidden weights
directly by Newton methods, the main trouble is the large
dimension of the Hessian matrix. For example, for the
three-layer MLP in fig. 1, the Hessian matrix size will be
()() ()()hh NNNN ⋅+×⋅+ 11 . The dimension of H in (14) is

much smaller, only hh NN × since the hidden unit net
functions are treated as weights to be changed. However,
calculating its inverse is still not trivial. Both explicit
computation (Bishop 1992) and alternative methods
(Moller 1993) have been presented in the literature.
However, these methods are still computationally intensive
for large networks, and it is not certain whether the extra
computation speeds up convergence (Magoulas, Vrahatis
and Androulakis 1999). Therefore, we just use the diagonal
elements of H in equation (14) to calculate the desired net
function change, yielding

() ()∑
=












′
′′

⋅+′
=∆

M

k pi

pi
piohpi

pi
pi

f
f

ikwf
net

1

22

*

, δ

δ
 (18)

The use of *
pinet∆ is detailed in the following subsection.

A Weighted Hidden Layer Error Function
In the following, we derive a new hidden layer error
function to replace Eδ(j) in (11) directly from the global
MSE. Thus, hidden layer optimization really decreases
global errors. In addition, this new error function takes
hidden unit saturation into consideration.

If we substitute equations (3) into (4), we can rewrite the
total MSE as

() ()
2

1

1

11
,,1 ∑∑ ∑∑

=

+

== 










−−=

p

M

k

N

n
pnoipj

N

j
ohpk

v

xnkwOjkwt
N

E
h

 (19)

During the HWO procedure, the desired net function
change is *

pjnetZ ∆⋅ , while the actual change is

()∑
+

=
⋅

1

1
,

N

n
pnxnjeZ as in (9). Here Z is the learning factor. So

the corresponding desired hidden unit output Opjd and the
actual one pjO could be approximated by using Taylor
series as

() *
pjpjpjpjdpjd netfZOnetfO ∆⋅′⋅+≈= (20)

() ()∑
+

=
⋅′⋅+≈=

1

1
,

N

n
pnpjpjpjpj xnjefZOnetfO (21)

We denote the kth output caused by the inputs and Opjd as:

() ()∑∑
=

+

=
⋅+⋅=

hN

j
pjdoh

N

n
pnoipk OjkwxnkwT

1

1

1
,, (22)

After HWO, then the actual total error can be rewritten as:

() ()

[] ()[]
2

1 1

1

1

1

2

1

,1

.,1

∑∑ ∑

∑∑ ∑ ∑

= =

=

+

= =













−+−=













−−+−=

p

M

k

N

j
pjpjdohpkpk

v

p

M

k

N

n

N

j
pjohpnoipkpkpk

v

h

h

OOjkwTt
N

OjkwxnkwTTt
N

E

 (23)
If we assume that [tpk-Tpk] is uncorrelated with

() 







−∆ ∑

n
pnpj xnjenet ,* , and use equations (20) and (21),

equation (23) becomes:

[]

() ()∑∑ ∑ ∑

∑∑

= =

+

=

=





















−∆′+

−≈

p

M

k

N

j

N

n
pnpjpjoh

v

p

M

k
pkpk

v

h

xnjenetZfjkw
N

Tt
N

E

1

2

1

1

1

*

2

1

,,1

1

(24)
We can evaluate (24) further because it is reasonable to

assume that the values () ()
















−∆′ ∑

n
pnpjpjoh xnjenetfjkw ,, *

associated with different hidden units are uncorrelated with
each other. This assumption yields

[]

() () ()∑∑∑ ∑

∑∑

= =

+

=

=









−∆′+

−≈

p

M

k

N

j

N

n
pnpjpjoh

v

p

M

k
pkpk

v

h

xnjenetfZjkw
N

Tt
N

E

1 1

21

1

*222

2

1

,,1

1

 (25)

(a)

(b)
Fig. 2 Results for Twod.tra, Structure: 8-10-7

Since Z, [tpk-Tpk] and ()jkwoh , are constant during the
HWO procedure, minimizing E in the current iteration is
equivalent to minimizing

() () ()∑ ∑ 







−∆′=

+

=p

N

n
pnpjpj

v

xnjenetf
N

kE
21

1

*2 ,1
δ (26)

with respect to e(j, n). This hidden layer error function
successfully de-emphasizes error in saturated hidden units
by inserting the square of the derivative of the activation
function. When netpj is in the sigmoid’s linear region,
errors between netpj and netpjd receive large weight in (26).

Simulation
The proposed new OWO-HWO algorithm was verified
using three remote sensing training data sets. Its
performance was compared to the original OWO-HWO

and the LM algorithm. Our simulations were carried out on
a 733Mhz Pentium III, Windows 2000 using the Visual
C++ 6.0 compiler.

Training data set Twod.tra contains simulated data based
on models from backscattering measurements. This training
file is used in the task of inverting the surface scattering
parameters from an inhomogeneous layer above a
homogeneous half space, where both interfaces are
randomly rough. The parameters to be inverted are the
effective permittivity of the surface, the normalized rms
height, the normalized surface correlation length, the
optical depth, and single scattering albedo of an in-
homogeneous irregular layer above a homogeneous half
space from back scattering measurements.

This data set has 8 inputs, 7 outputs, and 1768 patterns.
We use 10 hidden units in a three-layer MLP. All the
algorithms are trained for 200 iterations. From the
simulation results of figure 2, the new algorithm has the
fastest convergence speed while LM is the slowest for this
data, in terms of both iteration number and time.

Single2.tra consists of 16 inputs, 3 outputs and 5992
patterns. It represents the training set for inversion of
surface permittivity, the normalized surface rms roughness,
and the surface correlation length found in the back
scattering models from randomly rough dielectric surfaces.
The first 16 inputs represent the simulated back scattering
coefficient measured at 10, 30, 50 and 70 degrees at both
vertical and horizontal polarization. The remaining 8 are
various combinations of ratios of the original eight values.
These ratios correspond to those used in several empirical
retrieval algorithms (Fung, Li and Chen 1992).

We chose the MLP structure 16-20-3 and trained the
network for 200 iterations for all algorithms. From the
simulation results of figure 3, the new algorithm performs
much better than the original OWO-HWO and almost the
same as LM in terms of iterations. In terms of MSE versus
time, the new algorithm is still much better than LM. The
original OWO-HWO is also better than LM in terms of
time although worse in terms of iterations.

Inputs for training data set OH7.TRA (Oh, Sarabandi and
Ulaby, 1992) are VV and HH polarization at L 30, 40 deg,
C 10, 30, 40, 50, 60 deg, and X 30, 40, 50 deg. The
corresponding desired outputs are { }T

vml,,Θ σ= , where
σ is the rms surface height; l is the surface correlation
length; mv is the volumetric soil moisture content in g/cm3.
There are 20 inputs, 3 outputs, 15,000 training patterns. We
used a 20-20-3 network and trained the network for 200
iterations for all three algorithms. The simulation results of
figure 4 show that the advantage of the new algorithm over
the other two is overwhelming and that the original OWO-
HWO is also better than LM. We also show the testing
results in figure 5 for this data set. The minimum testing
error of the original OWO-HWO is 1.537589, which is not
shown here for clarity purpose.

From the simulation results, it is obvious that the new
OWO-HWO algorithm has the fastest convergence speed.

0 20 40 60 80 100 120 140 160 180 200
0.12
0.14
0.16
0.18
0.2

0.22
0.24
0.26
0.28
0.3

Training iterations

M
SE

Simulation results for example 1 Data: Twod.tra, Structure: 8-10-7

LM
owohwo
new HWO

0 100 200 300 400 500 600
0.12
0.14
0.16
0.18

0.2
0.22
0.24
0.26
0.28

0.3

Training time: seconds

M
SE

Simulation results for example 1 Data: Twod.tra, Structure: 8-10-7

LM
owohwo
new HWO

 (a)

(b)
Fig. 3 Results for Single2.tra, Structure: 16-20-3

The LM algorithm requires much longer training time due
to its computational complexity.

Conclusion
In the proposed algorithm, second order information from
the Hessian matrix is used to find the desired hidden layer
net function changes, thereby, ensuring better hidden layer
training. The new weighted hidden layer error function
Eδ(j) relates hidden weight optimization to the global error
function. Training speed is improved because hidden unit
saturation is taken into consideration.

In experiments with remote sensing data sets, the new
algorithm has much faster training speed than the original
OWO-HWO and the LM algorithms. In general, the ratio
of testing error to training error is similar to that seen with
other training algorithms. Several interesting issues still
under investigation include efficient calculation of the

(a)

(b)
Fig. 4 Results for oh7.tra, Structure: 20-20-3

Fig. 5 Testing results for Oh7.tra, Structure: 20-20-3

0 100 200 300 400 500 600 700 800
1.52

1.53

1.54

1.55

1.56

1.57

1.58

1.59

1.6

Training time: second

M
S

E

Testing results for example Data: oh7.tra, Stucture: 20-20-3

LM
new HWO

0 20 40 60 80 100 120 140 160 180 200

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

Training iterations

M
SE

Simulation results for example 3 Data: single2.tra, Structure: 16-20-3

LM
owohwo
new HWO

0 500 1000 1500 2000 2500 3000

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

Training time: seconds

M
SE

Simulation results for example 3 Data: single2.tra, Structure: 16-20-3

LM
owohwo
new HWO

0 20 40 60 80 100 120 140 160 180 200
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Training iterations

M
SE

Simulation results for example 2 Data: oh7.tra, Structure: 20-20-3

LM
owohwo
new HWO

0 500 1000 1500 2000 2500 3000 3500 4000
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Training time: seconds

M
SE

Simulation results for example 2 Data: oh7.tra, Structure: 20-20-3

LM
owohwo
new HWO

complete Hessian matrix H, and more theoretical analysis
of the new hidden layer error function.

Acknowledgement
This work was supported by the Advanced Technology
Program of the state of Texas, under grant number 003656-
0129-2001.

References
Battiti, R. 1992. First- and Second-order Methods for
Learning: between Steepest Descent and Newton’s Method.
Neural Computation 4 (2): 141-166.
Bishop, C. 1992. Exact Calculation of the Hessian Matrix
for the Multiplayer Perceptron. Neural Computation 4 (4):
494-501.
Chen, H. H.; Manry, M. T.; and Chandrasekaran, H. 1999.
A Neural Network Training Algorithm Utilizing Multiple
Sets of Linear Equations. Neurocomputing 25: 55-72.
Fahlman, S. E. 1989. Faster-learning Variations on
Backpropagation: An Empirical Study. In Proceedings of
1988 Connectionist Models Summer School, 38-51. San
Mateo, Calif.: Morgan Kaufmann.
Fletch, R. 1987. Practical Methods of Optimization. John
Wiley & Sons.
Fung, A.K.; Li, Z.; and Chen, K.S. 1992. Back Scattering
from a Randomly Rough Dielectric Surface. IEEE
Transactions on Geoscience and Remote Sensing 30 (2):
356-369.
Hagan, M. T., and Menhaj, M. B. 1994. Training Feed-
forward Networks with the Marquardt Algorithm. IEEE
Transaction on Neural Networks 5 (6): 989-993.
Kim, T. H.; Manry, M. T.; and Maldonado, F. J. 2003.
New Learning Factor and Testing Methods for Conjugate
Gradient Training Algorithm. In Proceedings of 2003
International Joint Conference on Neural Networks, 2011-
2016. Portland, OR: International Joint Conference on
Neural Networks.
Lee, H. M.; Chen, C. M.; and Huang, T. C. 2001. Learning
Efficiency Improvement of Back-propagation Algorithm by
Error Saturation Prevention Method. Neurocomputing 41:
125-143.
Magoulas, G. D.; Vrahatis, M. N.; and Androulakis, G. S.
1999. Improving the Convergence of the Backpropagation
Algorithm Using Learning Adaptation Methods. Neural
Computation 11: 1769-1796.
Moller, M. 1993. A Scaled Conjugate Gradient Algorithm
for Fast Supervised Learning. Neural Networks 6 (4): 525-
533.

Moller, M. 1997. Efficient Training of Feed-forward
Neural Networks. Ph.D. diss., Dept. of Computer Science,
Aarhus University, Denmark.
Nachtsheim, P. R. 1994. A First Order Adaptive Learning
Rate Algorithm for Back Propagation Networks. IEEE
World Congress on Computational Intelligence: 257 -262.
Oh, Y.; Sarabandi, K.; and Ulaby, F.T. 1992. An Empirical
Model and an Inversion Technique for Radar
Scattering from Bare Soil Surfaces. IEEE Transactions on
Geoscience and Remote Sensing 30 (2): 370-381.
Parisi, R., et al. 1996. A Generalized Learning Paradigm
Exploiting the Structure of Feedforward Neural Networks.
IEEE Transactions on Neural Networks 7 (6): 1450-1460.
Scalero, R. S., and Tepedelenlioglu, N. 1992. A Fast New
Algorithm for Training Feedforward Neural Networks.
IEEE Transactions on Signal Processing 40 (1): 202-210.
Wang, G. J., and Chen C. C. 1996. A Fast Multilayer
Neural-network Training Algorithm Based on the Layer-
by-layer Optimizing Procedures. IEEE Transactions on
Neural Networks 7 (3): 768-775.
Werbos, P.J. 1974. Beyond Regression: New Tools for
Prediction and Analysis in the Behavioral Science. Ph. D.
diss., Harvard University, Cambridge, Mass.

Yam, Y. F., and Chow, W. S. 2000. A Weight Initialization
Method for Improving Training Speed in Feedforward
Neural Network. Neurocomputing 30: 219-232.

