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Abstract 
The output weight optimization-hidden weight optimization 
(OWO-HWO) algorithm for training the multilayer 
perceptron alternately updates the output weights and the 
hidden weights. This layer-by-layer training strategy greatly 
improves convergence speed. However, in HWO, the 
desired net function actually evolves in the gradient 
direction, which inevitably reduces efficiency. In this paper, 
two improvements to the OWO-HWO algorithm are 
presented. New desired net functions are proposed for 
hidden layer training, which use Hessian matrix information 
rather than gradients. A weighted hidden layer error 
function, taking saturation into consideration, is derived 
directly from the global error function. Both techniques 
greatly increase training speed. Faster convergence is 
verified by simulations with remote sensing data sets. 

Introduction   
The multi-layer perceptron (MLP) is widely used in the 
fields of signal processing, remote sensing, and pattern 
recognition. Since back propagation (BP) was first 
proposed for MLP training (Werbos 1974), many 
researchers have attempted to improve its convergence 
speed. Techniques used to improve convergence include 
second order information (Battiti 1992, Mollor 1997), 
training network layer by layer (Wang and Chen 1996, 
Parisi et al. 1996), avoiding saturation (Yam and Chow 
2000, Lee, Chen and Huang 2001) and adapting the 
learning factor (Magoulas, Vrahatis and Androulakis 1999, 
Nachtsheim 1994).  

Algorithms like Qprop (Fahlman 1989), conjugate 
gradient (Fletch 1987, Kim 2003), Levenberg-Marquardt 
(LM) (Hagan and Menhaj 1994, Fletch 1987) often 
perform much better than BP. In these algorithms, the 
essential difference is the weight updating strategy. The 
convergence speeds are quite different when the weights 
are modified in the gradient direction, a conjugate direction 
or the Newton direction. As to which one is better, this 
depends on the nature of the application, the computational 
load and other factors. Generally, gradient methods 
perform worst. While the Newton method performs best, it 
requires more computation time.  
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Chen (Chen, Manry and Chandrasekaran 1999) 
constructed a batch mode training algorithm called output 
weight optimization-hidden weight optimization (OWO-
HWO). In OWO-HWO, output weights and hidden unit 
weights are alternately modified to reduce the training 
error. The algorithm modifies the hidden weights based on 
the minimization of the MSE between a desired and the 
actual net function, as originally proposed by  Scalero and 
Tepedelenlioglu (Scalero and Tepedelenlioglu 1992). 
Although, OWO-HWO greatly increases the training speed, 
it still has room for improvement (Wang and Chen 1996) 
because it uses the delta function, which is just the gradient 
information, as the desired net function change. In addition, 
HWO is equivalent to BP applied to the hidden weights 
under certain conditions (Chen, Manry and Chandrasekaran 
1999). 

In this paper, a Newton-like method is used to improve 
hidden layer training. First, we review OWO-HWO 
training. Then, we propose new desired hidden layer net 
function changes using Hessian matrix information. Next, 
we derive a weighted hidden layer error function from the 
global training error function, which de-emphasizes error in 
saturated hidden units. We compare the improved training 
algorithm with the original OWO-HWO and LM 
algorithms with simulations on three remote sensing 
training data sets.  

The OWO-HWO Algorithm 
Without loss of generality, we restrict our discussion to a 
three layer fully connected MLP with linear output 
activation functions. First, we describe the network 
structure and our notation. Then we review the OWO-
HWO algorithm for our MLP. 

Fully Connected MLP Notation 
The network structure is shown in Fig. 1. For clarity, the 
bypass weights from input layer to output layer are not 
shown. The training data set consists of Nv training patterns 
{(xp, tp)}, where the pth input vector xp and the pth desired 
output vector tp have dimensions N and M, respectively. 
Thresholds in the hidden and output layers are handled by 
letting xp,(N+1)=1. For the jth hidden unit, the net input netpj 
and the output activation Opj for the pth training pattern are  
 



Fig. 1 The network structure 
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Here xpn denotes the nth element of xp and wh(j, n) denotes 
the weight connecting the nth input unit to the jth hidden 
unit. Nh is the number of hidden units. The activation 
function f is sigmoidal 
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The kth output ypk for the pth training pattern is 
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woi(k, n) denotes the weight connecting the nth input node 
to the kth output unit and woh(k, j) denotes the weight 
connecting the jth hidden unit to the kth output unit. In 
batch mode training, the overall performance of a feed-
forward network, measured as MSE, can be written as 
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where tpk denotes the kth element of the pth desired output 
vector.  

Review of OWO-HWO 
As the output units have linear activation functions in this 
paper, the OWO procedure can be realized by solving 
linear equations (Chen, Manry and Chandrasekaran 1999), 
which result when gradients of E with respect to the output 
weights, woi(k, n) and woh(k, j), are set to zero.  

In HWO, the hidden weights wh(j, n) are updated by 
minimizing a separate error function for each hidden unit. 
These error functions use differences between the desired 
and the actual net function. For the jth hidden unit and pth 
pattern, the desired net function netpjd is constructed as 
(Chen, Manry and Chandrasekaran 1999): 

pjpjpjpjpjd ZnetnetZnetnet δ⋅+≅∆⋅+=          (5) 

Z is the learning rate and δpj is the jth hidden unit delta 
function defined as: 
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where δopk is the delta function of the kth output unit, 
pkpkopk yt −=δ                              (7)   

The hidden weights are updated as 
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where e(j, n) is a direction vector element. The weight 
changes are derived using 
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The error of (10) for the jth hidden unit is measured as 
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Linear equations resulting from (11) can be solved for    
e(j, n) by the conjugate gradient method. After finding the 
learning factor Z, the hidden weights are updated as in (8). 
After applying OWO and HWO to the network, the 
procedures are repeated for as many iterations as necessary. 

Improved Hidden Layer Training 
In the original HWO algorithm, the desired hidden layer 
net function change pjnetZ ∆⋅  uses the gradient, i.e. the 
delta function, which inevitably slows down the 
optimization procedure due to its steepest descent 
direction. Here, we use a Newton-like method to derive a 
new desired net function, which exploits second order 
information from a Hessian matrix. 

The New Desired Net Function 
As we know, when E is minimized by the optimal value of 
the jth hidden layer net function *

pjnet , we have: 
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As in the derivation of Newton-like methods, we have 
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Now, the new direction of desired net function change with 
element pjpjpj netnetnet −=∆ **  can be found by:  
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(14) 
The elements of the Hessian matrix H and the gradient 
matrix g are calculated through the chain rule as: 
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Here, pif is shorthand for ( )pinetf  as described in (2), so 

pif ′ and pif ′′  are the first and second derivatives 
respectively. In the algorithms that update hidden weights 
directly by Newton methods, the main trouble is the large 
dimension of the Hessian matrix. For example, for the 
three-layer MLP in fig. 1, the Hessian matrix size will be 
( )( ) ( )( )hh NNNN ⋅+×⋅+ 11 . The dimension of H in (14) is 

much smaller, only hh NN ×  since the hidden unit net 
functions are treated as weights to be changed. However, 
calculating its inverse is still not trivial. Both explicit 
computation (Bishop 1992) and alternative methods 
(Moller 1993) have been presented in the literature. 
However, these methods are still computationally intensive 
for large networks, and it is not certain whether the extra 
computation speeds up convergence (Magoulas, Vrahatis 
and Androulakis 1999). Therefore, we just use the diagonal 
elements of H in equation (14) to calculate the desired net 
function change, yielding 
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The use of *
pinet∆  is detailed in the following subsection. 

A Weighted Hidden Layer Error Function 
In the following, we derive a new hidden layer error 
function to replace Eδ(j) in (11) directly from the global 
MSE. Thus, hidden layer optimization really decreases 
global errors. In addition, this new error function takes 
hidden unit saturation into consideration.  

If we substitute equations (3) into (4), we can rewrite the 
total MSE as 

( ) ( )
2

1

1

11
,,1 ∑∑ ∑∑

=

+

== 










−−=

p

M

k

N

n
pnoipj

N

j
ohpk

v

xnkwOjkwt
N

E
h

 (19) 

During the HWO procedure, the desired net function 
change is *

pjnetZ ∆⋅ , while the actual change is 
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pnxnjeZ  as in (9). Here Z is the learning factor. So 

the corresponding desired hidden unit output Opjd and the 
actual one pjO  could be approximated by using Taylor 
series as 
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We denote the kth output caused by the inputs and Opjd as: 
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After HWO, then the actual total error can be rewritten as: 
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If we assume that [tpk-Tpk] is uncorrelated with 
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equation (23) becomes: 
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We can evaluate (24) further because it is reasonable to 

assume that the values ( ) ( )
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associated with different hidden units are uncorrelated with 
each other. This assumption yields 
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(b) 
Fig. 2 Results for Twod.tra, Structure: 8-10-7 

 
 

Since Z, [tpk-Tpk] and ( )jkwoh ,  are constant during the 
HWO procedure, minimizing E in the current iteration is 
equivalent to minimizing 
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with respect to e(j, n). This hidden layer error function 
successfully de-emphasizes error in saturated hidden units 
by inserting the square of the derivative of the activation 
function. When netpj is in the sigmoid’s linear region, 
errors between netpj and netpjd receive large weight in (26). 

Simulation 
The proposed new OWO-HWO algorithm was verified 
using three remote sensing training data sets. Its 
performance was compared to the original OWO-HWO 

and the LM algorithm. Our simulations were carried out on 
a 733Mhz Pentium III, Windows 2000 using the Visual 
C++ 6.0 compiler. 

Training data set Twod.tra contains simulated data based 
on models from backscattering measurements. This training 
file is used in the task of inverting the surface scattering 
parameters from an inhomogeneous layer above a 
homogeneous half space, where both interfaces are 
randomly rough. The parameters to be inverted are the 
effective permittivity of the surface, the normalized rms 
height, the normalized surface correlation length, the 
optical depth, and single scattering albedo of an in-
homogeneous irregular layer above a homogeneous half 
space from back scattering measurements.  

This data set has 8 inputs, 7 outputs, and 1768 patterns. 
We use 10 hidden units in a three-layer MLP. All the 
algorithms are trained for 200 iterations. From the 
simulation results of figure 2, the new algorithm has the 
fastest convergence speed while LM is the slowest for this 
data, in terms of both iteration number and time.  

Single2.tra consists of 16 inputs, 3 outputs and 5992 
patterns. It represents the training set for inversion of 
surface permittivity, the normalized surface rms roughness, 
and the surface correlation length found in the back 
scattering models from randomly rough dielectric surfaces. 
The first 16 inputs represent the simulated back scattering 
coefficient measured at 10, 30, 50 and 70 degrees at both 
vertical and horizontal polarization. The remaining 8 are 
various combinations of ratios of the original eight values. 
These ratios correspond to those used in several empirical 
retrieval algorithms (Fung, Li and Chen 1992). 

We chose the MLP structure 16-20-3 and trained the 
network for 200 iterations for all algorithms. From the 
simulation results of figure 3, the new algorithm performs 
much better than the original OWO-HWO and almost the 
same as LM in terms of iterations. In terms of MSE versus 
time, the new algorithm is still much better than LM. The 
original OWO-HWO is also better than LM in terms of 
time although worse in terms of iterations. 

Inputs for training data set OH7.TRA (Oh, Sarabandi and 
Ulaby, 1992) are VV and HH polarization at L 30, 40 deg, 
C 10, 30, 40, 50, 60 deg, and X 30, 40, 50 deg. The 
corresponding desired outputs are { }T

vml,,Θ σ= , where 
σ  is the rms surface height; l is the surface correlation 
length; mv is the volumetric soil moisture content in g/cm3. 
There are 20 inputs, 3 outputs, 15,000 training patterns. We 
used a 20-20-3 network and trained the network for 200 
iterations for all three algorithms. The simulation results of 
figure 4 show that the advantage of the new algorithm over 
the other two is overwhelming and that the original OWO-
HWO is also better than LM. We also show the testing 
results in figure 5 for this data set. The minimum testing 
error of the original OWO-HWO is 1.537589, which is not 
shown here for clarity purpose. 

From the simulation results, it is obvious that the new 
OWO-HWO algorithm has the fastest convergence speed.  
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 (a) 

(b) 
Fig. 3 Results for Single2.tra, Structure: 16-20-3 

 
The LM algorithm requires much longer training time due 
to its computational complexity. 

Conclusion 
In the proposed algorithm, second order information from 
the Hessian matrix is used to find the desired hidden layer 
net function changes, thereby, ensuring better hidden layer 
training. The new weighted hidden layer error function 
Eδ(j) relates hidden weight optimization to the global error 
function. Training speed is improved because hidden unit 
saturation is taken into consideration. 

In experiments with remote sensing data sets, the new 
algorithm has much faster training speed than the original 
OWO-HWO and the LM algorithms. In general, the ratio 
of testing error to training error is similar to that seen with 
other training algorithms. Several interesting issues still 
under investigation include efficient calculation of the  
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Fig. 4 Results for oh7.tra,  Structure: 20-20-3  

Fig. 5 Testing results for Oh7.tra, Structure: 20-20-3 
 

0 100 200 300 400 500 600 700 800
1.52

1.53

1.54

1.55

1.56

1.57

1.58

1.59

1.6

Training time: second

M
S

E

Testing results for example Data: oh7.tra,    Stucture: 20-20-3

LM
new HWO

 

0 20 40 60 80 100 120 140 160 180 200

0.05 
0.1 

0.15 
0.2 

0.25 
0.3 

0.35 
0.4 

0.45 
0.5 

Training iterations 

M
SE

 
Simulation results for example 3 Data: single2.tra,  Structure: 16-20-3

LM
owohwo
new HWO

 

0 500 1000 1500 2000 2500 3000

0.05 
0.1 

0.15 
0.2 

0.25 
0.3 

0.35 
0.4 

0.45 
0.5 

Training time: seconds 

M
SE

 

Simulation results for example 3 Data: single2.tra,  Structure: 16-20-3

LM
owohwo
new HWO

0 20 40 60 80 100 120 140 160 180 200
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Training iterations 

M
SE

 

Simulation results for example 2 Data: oh7.tra,    Structure: 20-20-3

LM
owohwo
new HWO

0 500 1000 1500 2000 2500 3000 3500 4000
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Training time: seconds 

M
SE

 

Simulation results for example 2 Data: oh7.tra,    Structure: 20-20-3

LM
owohwo
new HWO



complete Hessian matrix H, and more theoretical analysis 
of the new hidden layer error function. 
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