
Prototype Based Classifier Design with Pruning

Jiang Li, Michael T. Manry, and Changhua Yu
Department of Electrical Engineering, University of Texas at Arlington

Arlington, Texas 76019.
manry@uta.edu

Abstract

An algorithm is proposed to prune the prototype vectors (pro-
totype selection) used in a nearest neighbor classifier so that a
compact classifier can be obtained with similar or even better
performance. The pruning procedure is error based; a proto-
type will be pruned if its deletion leads to the smallest clas-
sification error increase. Also each pruning iteration is fol-
lowed by one epoch of Learning Vector Quantization (LVQ)
training. Simulation results show that the selected prototypes
can approach optimal or near optimal locations based on the
training data distribution.

Introduction
The Nearest neighbor classifier (NNC) is used for many pat-
tern recognition applications where the underlying probabil-
ity distribution of the data is unknown a priori. The behav-
ior of the NNC is bounded by two times the optimal Bayes
risk (Cover & Hart 1967). Traditional NNC stores all the
known data points as labelled prototypes such that makes
this algorithm prohibitive for very large database, due to
the limitation of computer storage and search cost for find-
ing the nearest neighbors of an input vector. To overcome
the above challenges several techniques have been proposed
by researchers.k − d trees (Sproull & Robert 1991) and
projection (Papadimitriou, Christos, & Bentley 1980) can
reduce the searching time for the nearest neighbors but still
do not decrease storage requirements. To reduce both the
memory requirements and searching time, the better way is
to reduce data size under the constrict that the classification
accuracy is kept similar. One can use all the training samples
as initial prototypes, and improve the classifier using Editing
Techniques (Penrod & Wagner 1977) followed by the Con-
densing algorithm (Tomek 1976) for deleting outliers and in-
ternal prototypes. The performance can be further improved
by employing adaptive NNC (Geva & Sitte 1992). Instance-
based learning algorithms (Aha, Dennis, & Marc 1991;
Wilson & Martinez 1997) remove irrelevant instances, are
similar to the condensed nearest neighbor rule. Sebban et.
al. (Nock & Sebban 2001) presented a boosting-based algo-
rithm for data reduction, by weighting and combining many
of the weak hypotheses into a final classifier with theoret-

This work was funded by the Advanced Technology Program of
the state of Texas under grant 003656-0129-2001.

ically high accuracy for the two class problem. They ex-
tended their idea to multiclass problems (Sebban, Nock, &
Lallich 2002). A similar idea was proposed by Kubat and
Cooperson (Kubat & Cooperson 2000).

The above algorithms do not modify instances, but merely
remove misclassified or irrelevant instances. One also
can generate prototypes by modifying data instances us-
ing a clustering algorithm such as the Self-Organizing Map
(SOM) (Kohonen 1995). However, some problems occur
when clustering is used. Consider the artificially constructed
example in Fig. 1 where the probability density functions
of both inputs are uniform. It is obvious that the classifi-
cation error is minimized and a perfect decision boundary
is defined with only one prototype located in the middle of
C1 and two prototypes inC2. Two challenges are: 1) the
number of prototypes necessary for a classifier is difficulty
to determine. The optimal number of the prototypes seems
to have no direct correspondence to the probability density
functions of each class; 2) the optimal placement of these
prototypes is not obvious. Note that in this example the ideal
locations of the prototypes are not unique, we can move
them and keep the decision boundary fixed and the classifi-
cation error remains unchanged. Lobo and Swiniarski (Lobo
& Swiniarski 1998) pruned unnecessary prototypes using a
Boolean function formalization. Even though they kept the
same classification error after pruning, the remaining proto-
types are no longer optimally placed. Further, the choice of
the pruning candidate is not always unique. Thus the solu-
tion is not unique which may lead to different generalization
capability for different pruning choices. In this paper we
propose an algorithm that prunes prototypes based on the
error their elimination produces. LVQ2.1 (Kohonen 1990)
is used to improve the pruned classifier.

Review of LVQ2.1
Consider a training set{xp, ip} for NNC design, where for
the pth instance,xp ∈ RN and ip is the integer class la-
bel associated withxp. Nv is the total number of instances.
Assume that there areNtc prototypesmk that have been
generated, where1 ≤ k ≤ Ntc. Each prototype is assigned
a class category according the plurality vote of its members.
LVQ2.1 corrects the locations of these NNC prototypes as
follows: Forp = 1 to Nv

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Decision boundary

C2

C1

Figure 1: Uniform Data Example

1. Identify two nearest prototypesmi andmj to xp. The
distance is defined asdk = d(xp,mk) = ||xp − mk||,
where any norm may be used. Assume the two nearest
distances toxp aredi anddj respectively.

2. If the class categories ofmi andmj are different and one
of them has the same category asxp, test the inequality

min(
di

dj
,
dj

di
) > 1− ε, (1)

whereε is the ”width” of the window, usually taken to be
0.35 (Kohonen 1990). Go to step 3 if this inequality is
satisfied. Otherwise go to step 1.

3. If the class category ofmi is the same as that ofxp then
updatemi andmj as follows

mi ← mi + α(xp −mi) (2)

mj ← mj − α(xp −mj) (3)

where0 < α < 1 andα decrease monotonically from a
starting value such as 0.1. Then go to step1.

A Weighted Distance Measure
In this section, a distance measure is introduced which can
suppress random or useless features in the input vector.
Training data sometimes contains inputs, which are either
useless or random. When the standard Euclidean distance is
used in clustering such data during NNC training, this can
lead to many more prototypes than is necessary. Here we
derive a weighted distance measure in the form

d(xp,mk) =
N∑

j=1

w(j)[xp(j)−mk(j)]2 (4)

whereN is the number of inputs. For a given training set
{xp, ip}, we first design a simple classifier such as the func-
tional link network (FLN) by minimizing

E =
1

Nv

Nc∑

i=1

Nv∑
p=1

(tp(i)− t′p(i))
2 (5)

whereNc is the number of classes,tp(i) denotes theith de-
sired output for thepth input vectorxp, t′p(i) denotes theith

observed output forxp. tp(ic) = 1 andtp(id) = 0 where
ic denotes the correct class number for the current training
input vector, andid denotes any incorrect class number for
that vector. Theith output of the classifier forxp can be
written as

t′p(i) =
Nu∑

j=1

wo(i, j)Xp(j) (6)

wherewo(i, j) denotes the weight connecting thejth unit
to theith output unit.Xp(j) denotes thejth basis function
for the pth pattern. In an FLN,Xp(j) often represents a
multinomial combination ofN elements ofxp, andNu is the
number of basis functions. The following theorem provides
the basis for determining useful distance measure weights
from training data.

Theorem I. Let t̂(x) denote the minimum mean-square
error (MMSE) estimate of the desired output vectort(x).
Assume thatx(j), thejth element of input vectorx, is sta-
tistically independent oft(x) and the other elements of the
input vector. Then the derivative oft̂(x) with respect tox(j)
is zero for allx.

Proof: The MMSE estimate oft(x) is

t̂(x) = E[t|x] =
∫ ∞

−∞
tft(t|x)dt (7)

where ft(t|x) denotes the joint probability density of the
desired output vectort conditioned onx. Using Bayes law,

ft(t|x) =
ft,x(t,x)
fx(x)

(8)

Lettingx′ denotex without the elementx(j),

ft(t|x) =
ft,x′(t,x′)fx(j)(x(j))
fx′(x′)fx(j)(x(j))

=
ft,x′(t,x′)
fx′(x′)

=
ft(t|x′)fx′(x′)

fx′(x′)
= ft(t|x′)

Now the derivative of̂t(x) with respect tox(j) is

∂t̂(x)
∂x(j)

=
∫ ∞

−∞

∂

∂x(j)
[tft(t|x)]dt

=
∫ ∞

−∞

∂

∂x(j)
[tft(t|x′)]dt

= 0
We complete the proof.

Corollary. Given the assumptions ofTheorem I,

E
[∣∣∣∣

∣∣∣∣
∂t̂(x)
∂x(j)

∣∣∣∣
∣∣∣∣
]

= 0 (9)

where|| · || denotes theL1 norm.
Now we train a FLN network, whose output for thepth

pattern is denoted bytp. The corollary above then implies
thatu(j) ' 0 where

u(j) =
1

Nv

Nv∑
p=1

Nc∑

i=1

∣∣∣∣
∂t′p(i)
∂xp(j)

∣∣∣∣ . (10)

As a heuristic, the distance measure’s weights are deter-
mined as

w(j) =
u(j)∑N

n=1 u(n)
. (11)

u(j), which represents the importance ofx(j) to the network
outputs, is normalized to yieldw(j), which is used in (4)
when calculating a distance.

NNC Pruning Algorithm
In this section, we describe the NNC pruning algorithm.
First a list of the algorithm steps is presented, and then ex-
planations for those steps are given.

Algorithm Outline
Initially we start with a large number of prototypes, then
prune one prototype at a time based on the additional clas-
sification error produced if it is deleted. Since these pro-
totypes are representative of the training data, the remain-
ing prototypes may now be at less optimal locations. We
then use an LVQ2.1 epoch to refine the prototype locations.
Given a training set{xp, ip}, and the number of classesNc,
the pruning algorithm is described as follows,

1. Make the number of prototypes per classNpc sufficiently
large

2. Randomly initialize theseNtc = Npc ·Nc prototypes, and
train a separate SOM network withNpc prototypes for
each class. Denote the number of patterns closest to the
kth prototype asNv(k), where1 ≤ k ≤ Ntc

3. Delete thekth prototype if it does not contain any mem-
bers (empty prototypes), i.e.,Nv(k) = 0, and decrease
the total number of prototypesNtc by 1

4. Change the class label of a prototype if it disagrees with
the plurality of the input vectors closest to it

5. Use LVQ2.1 to refine the locations of the prototypes

6. Prune one prototype based on the error increases, in case
one is deleted, setNtc = Ntc − 1

7. An epoch of LVQ2.1 is utilized to fine-tune the locations
of the remaining prototypes

8. Go back to step 6 until the total error percentage increases
20% from the previous iteration or the total number of
prototypes remaining reaches a user predefined value.

Choosing the Number of Initial Clusters
As we stated earlier, determining the exact number of proto-
types required to accurately represent the data is very dif-
ficult, and there is no widely accepted method for doing
this. Even though many researchers, for example Yager and
Stephen (Yager & Filev 1994; Stephen 1994), have proposed
such methods, the user still needs to choose some parame-
ters to initialize the algorithms.

In our algorithm, instead of giving control parameters
before training, we choose the final number of prototypes
based on the testing result. It is well known that for a given
finite set of training data, the training error can eventually
go to zero if we keep increasing the number of prototypes.

However, according to (Hughes 1968) and Vapnik (Vapnik
1995), this ”overtraining” or ”memorization” phenomenon
decreases the generalization capability of a learning ma-
chine. Generally, on the testing result curve there is a mini-
mum point, which indicates theempirical minimum riskfor
the given data. LetNpc denote the number of prototypes per
class. We initially choose a large number forNpc in step 1.

Training Initial SOM Network for the Data
GivenNpc prototypes for each class, we then train a separate
SOM network for each class in step 2. Due to the complex-
ity of the data, there might be some prototypes that are not
surrounded by data samples. These are called empty proto-
types. Alternately, a prototype assigned to theith class may
have nearby data samples which belongs to thejth class.
For the first case, these empty prototypes(Nv(k) = 0) are
deleted in step 3. For the second case the category of the
prototype needs to be changed as discussed in the following
section.

Changing a Prototype’s Category
In order to change the categories of the prototypes in step 4,
we count the members of each prototype. If a plurality of the
members of a prototype belong to theith class, for example,
but the class category of that prototype initially is assigned
asj, we then change the category of the prototype fromj to
i.

For a NNC, letTjk denote the number of instances from
the kth class closest to thejth prototype. Also letic(j)
denote the class category of thejth prototype. The two-
dimensional array containingTjk is generated by the fol-
lowing algorithm.

1. SetTjk = 0 for 1 ≤ j ≤ Ntc, 1 ≤ k ≤ Nc

2. Forp = 1 to Nv

(a) Readxp andip
(b) Find j such thatd(xp,mj) is minimized. Letk denote

the value ofip
(c) Accumulate patterns asTjk ← Tjk + 1

3. For j = 1 to Ntc

(a) Findk′ that maximizesTjk′

(b) If ic(j) = k′, go to 2. Otherwise changeic(j) to k′

4. Stop.

Pruning Prototypes Based on Classification Error
The goal here is to develop an algorithm to eliminate the
least useful prototypes for step 6. Letk be the index of a
candidate prototype to be eliminated. ThenErr(k) is the
number of misclassified data samples after prototypek has
been pruned.

1. SetErr(k) = 0, 1 ≤ k ≤ Ntc

2. Forp = 1 to Nv

(a) Identify two nearest prototypes (whose class category
is l andm respectively) to input vectorxp, and letn
denote the class label ofxp

(b) Accumulate errors as

i. Err(l) ← Err(l) + 1, if n = l, n 6= m
ii. Err(l) ← Err(l), if n = l = m, or n 6= l 6= m

iii. Err(l) ← Err(l)− 1, if n 6= l, n = m

3. Now find the smallestErr(k) asErr(kmin) and elimi-
nate thekminth prototype. Note thatErr(kmin) can be
negative sometimes.

4. Stop.

After one prototype has been deleted, we use another epoch
of LVQ2.1 to adjust the location of the remaining proto-
types. This pruning process continues until the classification
error increases 20% compared to the previous iteration (This
number is chosen because it may indicate the remaining pro-
totypes are much less than is necessary) or the remaining
number of prototypes reaches a predefined number.

Simulation and Discussion
We study the performance of the proposed algorithm on
three different data sets: uniformly distributed data, nor-
mally distributed data and data from the handwritten nu-
meral recognition problem.

Uniformly Distributed Data
We first apply the proposed algorithm to the artificially con-
structed data set of Fig. 1, which contains 1000 instances.
Here 400 belong toC1 and 600 belong toC2, and both inputs
have a uniform distribution. We select the initial number of
prototypes asNpc = 20 for each class. The ”small disks” in
Fig. 2 represent prototypes initially generated by SOM, the
”diamonds” represent pruned result. The 4 squares represent
the situation when 4 prototypes remain. Those 4 prototypes
form the decision boundary which is the dotted line in the
figure. The solid line in the figure denotes the optimal de-
cision boundary for this problem. We conclude from Fig. 2
that the proposed algorithm can find a good solution for this
specific example, since the final prototypes form the opti-
mal decision boundary and classification error is still zero.
We notice that the performance will degrade a lot if we try
to prune even one additional prototype. It is also observed
that more prototypes for the data do not guarantee a better
solution. In Fig. 2, the remaining 3 prototypes form the op-
timal decision boundary. However, the decision boundary
(the dotted line) formed by the remaining 4 prototypes is not
optimal even though the classification error is still zero.

Normally Distributed Data
The second experiment is performed on a normally dis-
tributed data set. As we illustrate in Fig. 3, the data instances
from both classes follow normal distributions but with dif-
ferent mean and variance. We denote the instances outside
the circle as classC1 and those inside the circle as classC2.
The probability density function for theith class is

fx,y(x, y|Ci) =
1

2πσ2
i

exp{−(
(x−mxi)

2

2σ2
i

+
(y −myi)

2

2σ2
i

)}
(12)

wherei = 1, 2, mxi , myi are the means for theith class, and
σi is the standard deviation for theith class. In this example,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The first input

T
h
e

 s
e
c
o
n
d
 i
n
p
u
t

Final 3 prototypes

Data samples

Initial prototypes

Optimal decision boundary

Final 4 prototypes

Figure 2: The Design Result for Uniformly Distributed Data

classC1 has zero mean andσ1 = 0.5, and the mean of class
C2 is [mxi ,myi] = [2, 2] andσ2 = 1. Each class contains
20000 instances, but only 4000 of them for each class are
plotted in Fig. 3 for clarity. The optimal decision boundary
calculated by Bayes decision rule for this example is

(x +
2
3
)2 + (y +

2
3
)2 = 4.48 (13)

which is the circle plotted in Fig. 3. If a data instance is
outside the circle, we decide it is from classC1, otherwise it
is from classC2.

In this example we illustrate the pruning process in de-
tail. The starting number of clusters for each class is 30. In
Fig.4 we plot the pruning process when the total number of
remaining prototypesNtc varies from 19 to 2. The testing
results corresponding to each network are listed in Table 1.
The first row denotes the number of remaining prototypes,
the second and the third rows represent the training and test-
ing results (the values represent classification error in%)
for the corresponding network respectively. The testing data
contains the same number of instances as the training data
but the two data sets have no patterns in common. Based on

-3 -2 -1 0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

4

5

6

Figure 3: Normal Distributed Data

Fig. 4 and Table 1 we make the following observations.

1. The pruning process deletes more prototypes ofC1 than
of C2 in the beginning. When only one prototype remains
for C1 and 15 remain forC2, classC2’s prototypes are
deleted one by one.

2. We select the network with 5 prototypes as the final one
since its testing error is lowest (see Table 1). We always
prefer a simple network if we get similar generalization
capability. As we can see from both Table 1 and Fig. 4, the
5 prototype network has slightly better performance than
the others and it forms a near optimal decision bound-
ary. The decision boundaries formed by the prototypes
are very close to the optimal Bayes decision boundary.

3. The final prototypes we chose for the NNC classifier
do not represent the probability distribution of the data.
Instead, they approximate the optimal Bayes decision
boundary.

4. During the pruning process, the remaining prototypes in-
deed approach their ”optimal” locations. The number of
prototypes needed for the final network is determined by
the data itself. It is observed in Fig. 4 that a near optimal
decision boundary is already formed when there are 14
prototypes. The pruning process just removes unneeded
prototypes from classC2. It is possible to utilize the Con-
densing method within the pruning process to delete inter-
nal prototypes since they do not affect class boundaries.

Under certain conditions, a Multilayer perceptron (MLP)
with sigmoid activation functions in the hidden layer and
trained with Back Propagation(BP) can approximate a Bayes
classifier (Wan 1990). We run the BP algorithm in a three
layer MLP for this normal data and compare it to the NNC
classifier. Using the early stopping method (Hassoun 1995),
we first determine the iteration number for a given number
of hidden units and then increase the number of hidden units.
The best testing performance for the MLP is observed when
it has 3 hidden units with 180 training epochs. The best test-
ing error percentage of the MLP is 2.42% for this data. Note
that the theoretical Bayes error percentage for this data is
2.41%. Thus, if the data is normally distributed, both the de-
signed NNC classifier and the MLP classifier can approach
the optimal Bayes classifier. However, the data is usually not
normally distributed. The NNC classifier is often employed
since it is not based on any model. We thus test the designed
NNC classifier on a real handwritten data set for verification.

Handwritten Numeral Data Set
The raw data consists of images from handwritten numerals
collected from 3,000 people by the Internal Revenue Ser-
vice. We randomly chose 300 characters from each class to

Table 1: Training and Testing Error Percentage for Various
NetworksNtc

Ntc 3 4 5 6 8 9 19
Traing 2.57 2.37 2.36 2.37 2.37 2.36 2.39
Testing 2.57 2.43 2.42 2.43 2.43 2.43 2.46

-5 0 5
-4

-2

0

2

4

N
tc

=19

-5 0 5
-4

-2

0

2

4

N
tc

=18

-5 0 5
-4

-2

0

2

4

N
tc

=17

-5 0 5
-4

-2

0

2

4

N
tc

=16

-5 0 5
-4

-2

0

2

4

N
tc

=15

-5 0 5
-4

-2

0

2

4

N
tc

=14

-5 0 5
-4

-2

0

2

4

N
tc

=13

-5 0 5
-4

-2

0

2

4

N
tc

=12

-5 0 5
-4

-2

0

2

4

N
tc

=11

-5 0 5
-4

-2

0

2

4

N
tc

=10

-5 0 5
-4

-2

0

2

4

N
tc

=9

-5 0 5
-4

-2

0

2

4

N
tc

=8

-5 0 5
-4

-2

0

2

4

N
tc

=7

-5 0 5
-4

-2

0

2

4

N
tc

=6

-5 0 5
-4

-2

0

2

4

N
tc

=5

-4 -2 0 2 4

-4

-2

0

N
tc

=4

-4 -2 0 2 4

-4

-2

0

N
tc

=3

-4 -2 0 2 4

-4

-2

0

N
tc

=2

Figure 4: The Pruning process for the Normal Data

generate 3,000 character training data (Gong, Yau, & Manry
1994). Images are 32 by 24 binary matrices. An image-
scaling algorithm is used to remove size variation in charac-
ters. The feature set contains 16 elements. The 10 classes
correspond to 10 Arabic numerals. Using the same method
we generated a testing data set that contains 3000 instances.

In this experiment we compare our classifier to the MLP
classifier trained using the BP algorithm. For the proposed
algorithm we start with 30 prototypes for each class so that
the total number of prototypes isNtc = 300. After deleting
empty prototypes, 215 prototypes remain. We then prune
one prototype in each iteration. The training and testing re-
sults are plotted in Fig. 5. The best testing classification er-
ror of 9.13% has been obtained when 108 prototypes remain.
It is observed that if the number of prototypes increases the
training error can decrease. However, the testing results be-
come worse which indicates that over training has occurred.

To illustrate the advantages of the proposed algorithm, we
compare the designed network(Ntc = 108) to a directly
designed network in which only the pruning step has been
eliminated. The final designed network has 109 prototypes
and the testing performance is 10.47% which is worse than
that of the pruned network (9.13%) even though they have
almost the same number of prototypes. We investigate this
difference by exploiting the prototype distribution among

40 60 80 100 120 140 160 180 200 220
4

6

8

10

12

14

16

18

20

22

24

Number of prototypes remaining

E
rr

o
r

p
e
rc

e
n
ta

g
e
 %

Testing Results

Training Results

Figure 5: Training and Testing Results for Handwritten Data

Table 2: The Number of Prototypes of Each Class.
’0’ ’1’ ’2’ ’3’ ’4’ ’5’ ’6’ ’7’ ’8’ ’9’
7 12 13 10 13 9 9 12 11 13
4 3 9 5 8 4 18 24 18 15

classes. Table 2 shows the number of prototypes for each
class, in which the first row denote the numeral image to be
classified, the second and third row represent the number of
prototypes in each class corresponding to the first row of the
network designed without and with pruning respectively. It
is observed that there are more prototypes for classes ’7’,
’8’ and ’9’ in the pruned network, while the prototypes are
almost evenly distributed among classes for the unpruned
network. Minimizing the classification error for the difficult
classes ’7’,’8’ and ’9’ allows the pruned network to outper-
form the unpruned one.

For the MLP classifier we use the early stopping method
to determine the number of hidden units and corresponding
number of iterations needed for the network. It is found that
when the number of hidden units is 20 with 550 iterations
of training, we get the best testing result for this data set.
We then train the network with 50 different sets of initial
weights. The best testing result we get for this data is 9.87%.
It is can be concluded that for this real data set, our proposed
NNC classifier outperforms MLP classifier and the network
designed without pruning.

Conclusion and Future Works
We have proposed a pruning algorithm for NNC prototypes.
Simulation results show that the pruned NNC can be com-
parable to the MLP classifier for a normally distributed data
set, and approaches the optimal Bayes error. We also show
that it outperforms the MLP classifier for a real data set. Fur-
ther work will involve applying the Condensing algorithm to
the prototypes to speed up the pruning process, and compar-
ing to existing prototype selection algorithms.

References
Aha, D. W.; Dennis, K.; and Marc, K. A. 1991. Instance-
based learning algorithms.Machine Learning6:37–66.

Cover, T. M., and Hart, P. E. 1967. Nearest neighbor pat-
tern classification.IEEE Trans. Info. Theory13(1):21–27.
Geva, S., and Sitte, J. 1992. Adaptive nearest neighbor
pattern class.IEEE Trans. Neur. Net.2(2):318–322.
Gong, W.; Yau, H. C.; and Manry, M. T. 1994. Non-
gaussian feature analyses using a neural network.Progress
in Neural Networks2:253–269.
Hassoun, M. H. 1995.Fundamentals of Artificial Neural
Networks. Cambridge, MA: MIT Press.
Hughes, G. F. 1968. On the mean accuracy of statisti-
cal pattern recognizers.IEEE Transactions on Information
Theory14:55–63.
Kohonen, T. 1990. Improved versions of learning vec-
tor quantization.IJCNN International Joint Conference on
Neural Networks545–550.
Kohonen, T. 1995. Self-Organizing Maps. Mass.:
Springer-verlag.
Kubat, M., and Cooperson, M. 2000. Voting nearest-
neighbor subclassifiers.Proceedings of the Seventeenth In-
ternational Conference on Machine Learning503–510.
Lobo, V. J., and Swiniarski, R. 1998. Pruning a classifier
based on a self-organizing map using boolean function for-
malization.IEEE International Joint Conference on Neural
Network3:1910–1915.
Nock, R., and Sebban, M. 2001. Advances in adaptive
prototype weighting and selection.International Journal
on Artificial Intelligence Tools10(1-2):137–156.
Papadimitriou; Christos, H.; and Bentley, J. L. 1980. A
worst-case analysis of nearest neighbor searching by pro-
jection. Lecture Notes in Computer Science85:470–482.
Automata Languages and Programming.
Penrod, C., and Wagner, T. 1977. Another look at the
edited nearest nearest neighbor rule.IEEE Trans. Syst.,
Man, Cyber.7:92–94.
Sebban, M.; Nock, R.; and Lallich, S. 2002.Journal of
Machine Learning Research3:863–885.
Sproull, and Robert, F. 1991. Refinements to nearest neigh-
bor searching ink-dimen. trees.Algorithmica6:579–589.
Stephen, L. C. 1994. Fuzzy model identification based on
vluster estimation.Journal of Intelligent and Fuzzy Sys-
tems2:267–278.
Tomek, I. 1976. Two modifications of cnn.IEEE Trans.
on Syst., Man., And Cybern.(SMC-6:):769–772.
Vapnik, V. N. 1995. The Nature of Statistical Learning
Theory. New York: Springer-Verlag.
Wan, E. A. 1990. Neural network classification: A
bayesian interpretation.IEEE trans. on Neural Network
1(4):303–305.
Wilson, D. R., and Martinez, T. T. 1997. Instance prun-
ing techniques.Proceeding of the Fourteenth International
Conference on Manchine Learning404–411.
Yager, R., and Filev, S. P. 1994. Approximate clustering
via the mountain method.IEEE Transactions on Systems,
Man and Cybernetics24(8):1279–1284.

