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Abstract

Machine learning (ML) is often used to obtain control
knowledge to improve planning efficiency. Usually, ML
techniques are used in isolation from experience that
could be obtained by other means. The aim of this pa-
per is to determine experimentally the influence of us-
ing such previous experience or prior knowledge (PK),
so that the learning process is improved. In particu-
lar, we study three different ways of getting such ex-
perience: from a human, from another planner (called
FF), and from a different ML technique. This previous
experience has been supplied to two different ML tech-
niques: a deductive-inductive system (HAMLET) and a
genetic-based one (EVOCK).

Introduction

Planning in non-trivial applications is a PSpace-hard
task that has to be guided by human or machine gene-
rated knowledge in order to efficiently solve problems.
In the context of machine learning, several approaches
have been used to supply that guidance, varying from
Case-Based Reasoning, as in (Kambhampati 1989;
Veloso 1994), to pure EBL as in (Kambhampati 1999;
Minton 1988; Qu & Kambhampati 1995) or macroop-
erators (Fikes, Hart, & Nilsson 1972). More recent ap-
proaches combine techniques, as reinforcement learning
with ILP (Dzeroski, Raedt, & Driessens 2001). Other
approaches combine deductive and inductive meth-
ods (Estlin & Mooney 1997; Huang, Selman, & Kautz
2000).

One of the first approaches that combined deduc-
tive learning techniques, as EBL, with inductive learn-
ing techniques was HAMLET (Borrajo & Veloso 1997).
Later, we developed another learning technique that
could be considered as relational learning, and used
a genetic programming approach, EVOCK (Aler, Bor-
rajo, & Isasi 2002). Both approaches generated control
knowledge in terms of control rules to be used by the
PRODIGY planner (Veloso et al. 1995). We showed that
the behaviour of EVOCK depends very much on the prior
(background) knowledge (PK) that we provided to it,
in the form of an initial population (Aler, Borrajo, &
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Isasi 2002), or an auxiliary population that could be
used for the crossover operators (Aler, Borrajo, & Isasi
2001). We have also explored in the past the usefulness
of a mixed initiative approach (collaborative work of a
human and an automated system) to control knowledge
(heuristics) generation in the context of planning (Aler
& Borrajo 2002).

In this paper, we wanted to deepen in the study of the
effect of providing PK outlined in the previous works,
by placing all the results together for comparison pur-
poses and adding a new form of introducing PK, such
as the use of another planner. We have selected for this
study the two relational learning systems, HAMLET and
EVOCK, which use very different learning biases, so that
results can be generalized. Therefore, they have been
supplied previous experience by means of three diffe-
rent strategies: a human provides the PK in terms of
a set of control rules; one learning system provides the
set of control rules as prior knowledge to the other; and
another planner provides knowledge on how to solve a
given planning problem by generating one solution to
the problem. The experiments compare the three diffe-
rent approaches in two relatively difficult domains for
machine learning in planning: logistics and depots.

In the context of non-linear planning, some learning
systems have opted to provide previous experience for
learning one way or another. For instance, Q-RRL (Dze-
roski, Raedt, & Driessens 2001) uses predicates such
as numberofblockson to learn control knowledge for
the blocksworld domain. SCOPE, that modified FOIL to
learn control rules for UCPOP, also required human sup-
plied PK (Estlin & Mooney 1996). The reason for this
is that it is very difficult for a machine learning system
to find the right conditions that have to appear in the
left hand side of control rules. These conditions (called
meta-predicates in our case) vary from checks on the
literals that are true in the current state of the plan-
ning process, to checks on the things that are true in
the meta-state of the search process: on which goal the
planner is working, which operator it has selected to set
as true a given literal, or what is the initial goal that
introduced a given sub-goal in the search tree.

The rest of the paper is organized as follows. The
next section overviews the planner, and the machine



learning techniques that we have used for the experi-
ments (they have been extensively covered in previous
works). The second section describes how to incorpo-
rate PK into each machine learning technique. The
third section presents the experiments that we have
performed and their outcome. And, finally, last section
draws some conclusions from the work.

Planner and machine learning
techniques used

In this paper, we intend to study the effects of using
prior knowledge on planning control knowledge learn-
ers. First, the planner itself (PRODIGY) will be intro-
duced and then each one of the two machine learning
techniques: HAMLET and EVOCK.

Prodigy

PRODIGY is a nonlinear planning system that follows a
means-ends analysis (Veloso et al. 1995). The inputs
to the problem solver algorithm are:

e Domain theory, D (or, for short, domain), that in-
cludes the set of operators specifying the task know-
ledge and the object types hierarchy;

e Problem, specified in terms of an initial configuration
of the world (initial state, S) and a set of goals to be
achieved (G); and

e Control knowledge, C, described as a set of control
rules, that guides the decision-making process.

A planning operator is the specification of an action
that informs how the world changes when the operator
is applied. PRODIGY uses a specific domain descrip-
tion language whose representation capabilities are be-
tter, in some issues, than the current planning standard
pPDDL2.1 (Fox & Long 2002).

From a control knowledge acquisition perspective,
PRODIGY planning /reasoning cycle, involves several de-
cision points. Figure 1 shows an schematic view of a
generic search tree with all those decisions. The types
of decisions made are:

e select a goal from the set of pending goals and sub-
goals;

e choose an operator to achieve a particular goal;

e choose the bindings to instantiate the chosen opera-
tor;

e apply an instantiated operator whose preconditions
are satisfied or continue subgoaling on another un-
solved goal.

We refer the reader to (Veloso et al. 1995) for more
details about PRODIGY. In this paper it is enough to see
the planner as a program with several decision points
that can be guided by control knowledge. If no control
knowledge is given, backtracking is usually required,
thus reducing planning efficiency.
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Figure 1: Generic PRODIGY search tree.

Hamlet

HAMLET is an incremental learning method based on
EBL (Explanation Based Learning) and inductive re-
finement of control rules (Borrajo & Veloso 1997). The
inputs to HAMLET are a task domain (D), a set of train-
ing problems (P), a quality measure (Q)! and other
learning-related parameters. The output is a set of
control rules (C). HAMLET has two main modules: the
Bounded Explanation module, and the Refinement mo-
dule.

The Bounded Explanation module generates control
rules from a PRODIGY search tree by finding examples of
right decisions (lead to a good solution instead of a fai-
lure path). Once a right decision is found, a control rule
is generated by extracting the meta-state, and perform-
ing a goal regression for finding which literals from the
state were needed to be true to make this decision (the
details can be found in (Borrajo & Veloso 1997)). These
EBL like rules might be overly specific or overly general.
HAMLET Refinement module solves the problem of be-
ing overly specific by generalising rules when analysing
new positive examples of decisions of the same type.
It also replaces overly general rules with more specific
ones when it finds situations in which the learned rules
lead to wrong decisions. HAMLET gradually learns and
refines control rules, in an attempt to converge to a
concise set of correct control rules (i.e., rules that are
individually neither overly general, nor overly specific).

Figure 2 shows an example of control rule generated
by HAMLET for the logistics domain. In the logistics
domain, packages (objects) have to be moved from one
location to another among cities. There are two types
of carriers: airplanes, that can transport packages be-

A quality metric measures the quality of a plan in
terms of number of operators in the plan, execution time
(makespan), economic cost of the planning operators in the
plan or any other user defined criteria.



tween two airports; and trucks, that can only move
packages among locations in the same city. The rule
determines when the unload-airplane operator must
be selected for achieving the goal of having an object
in an airport of another city where it is now.

(control-rule select-operators-unload-airplane

(if (current-goal (at <object> <locationl>))
(true-in-state (at <object> <location2>))
(true-in-state (loc-at <locationl> <city1>))
(true-in-state (loc-at <location2> <city2>))
(different-vars-p)
(type-of-object <object> object)
(type-of-object <locationl> airport))

(then select operator unload-airplane))

Figure 2: Example of a control rule for selecting the
unload-airplane operator in the logistics domain.

EVOCK

We only intend to provide here a summary of EVOCK
and refer to (Aler, Borrajo, & Isasi 2002) for details.
EVOCK is a machine learning system for learning con-
trol rules based on Genetic Programming (GP) (Koza
1992). GP is an evolutionary computation method that
has been used for program induction. Instead of com-
plete programs, EVOCK tries to induce control know-
ledge. EVOCK starts from a population of sets of control
rules (each set is an individual) that can be either ran-
domly generated, or initialised with some PK. Figure 3
shows an example of an individual in the blocksworld
domain.
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Figure 3: Example of an EVOCK individual.

Then, it follows a kind of heuristic beam search to
find a good enough set of control rules. During the
search process, individuals are modified by the so called
genetic operators. Only syntactically correct control
rules are generated by means of a grammar. EVOCK
genetic operators can grow (components of) rules, re-
move (components of) rules and cross parts of rules with
parts of other rules, just like the standard GP crossover
operator does. EVOCK also includes some tailor made
operators for modifying control rules. EVOCK search
is guided by the fitness function, which measures indi-
viduals according to the number of planning problems
from the learning set they are able to solve, the num-
ber of nodes expanded, and the size of the individual

(smaller individuals are preferred). EVOCK can be con-
sidered also as a relational learner as it learns relational
control rules.

Introduction of prior knowledge

The goal of this paper is an empirical study of the effect
of providing prior knowledge to a relational learning
system in the planning framework. We will describe
in this section the different options that we have used
to supply such knowledge for the HAMLET and EVOCK
systems.

Providing prior knowledge to HAMLET

We have devised two different ways of providing PK to
HAMLET for this work. The first one consists of provid-
ing HAMLET an initial set of control rules. This set can
be generated by a human, or by a previous learning pro-
cess of another learning technique. In this case, HAM-
LET can use this initial set of control rules to generalise
some of them, if it thinks it is needed, or remove some of
them if negative examples of their use are found. These
rules cannot be specialised given that they do not come
from a bounded explanation, but were given directly as
they are by an external source. HAMLET’s refinement
module would not know what meta-predicates (condi-
tions) to add to the control rule.

The second method for incorporating knowledge into
HAMLET consists of receiving a solution to a planning
problem by another planner. The reason that lead us to
use this approach was that, in some domains, it might
be the case that the planner we were using, could not
solve some planning problems. HAMLET assumes that
the planner is able to solve planning problems, in order
to provide positive and negative examples of decisions
that were made in the search tree. If the planner cannot
generate even one solution, the learning system cannot
generate those instances. Therefore, we used another
planner, FF (Hoffmann & Nebel 2001) in the case of
these experiments, when our planner could not solve a
problem in a reasonable learning time. The approach
is general and any other planner could have been used.
The generation of instances to learn from is performed
in two steps:

e In the first step, FF is given the same planning pro-
blem, and it generates a solution to the problem. If it
finds a solution, this solution does not have to be the
best one in terms of plan length or solution quality,
but when the domain is a difficult one, generating
one solution might be enough in order to learn some-
thing out of it. Then, the problem consists of how
the solution to a problem can help PRODICY to ge-
nerate instances to learn from, since HAMLET needs
a search tree in which there is, at least, one solution
path, and, possibly, several dead ends.

e So, the second step consists of artificially generating
a search tree from the FF solution. This is not a
trivial task, given that a solution to a planning pro-
blem does not incorporate all the needed rationale to



reproduce a problem solving episode (a search tree
corresponding to this solution). Basically, it provides
the order based on which a set of instantiated oper-
ators have to be executed. But, there are potentially
many search trees that can generate this order. We
have opted to use a set of control rules (independent
of the ones that are being learned, and of the problem
within a domain), that select as valid search nodes,
the ones that use any of the instantiated operators in
the solution. There are two types of control rules in
this set:

+ Select operator: one control rule selects those ope-
rator names that are member of the FF solution.
If the solution incorporates all operators in the do-
main, then this control rule does not help in follow-
ing the solution provided by FF given that, for each
goal, it would select all relevant operators (those
that can achieve that goal).

+ Select bindings of an operator: there is one control
rule for each operator in the domain. The bind-
ings control rule for an operator O would select all
bindings for its variables that correspond to instan-
tiations of O in the solution.

Using this new set of rules, PRODIGY generates a so-
lution path corresponding to the solution provided by
the other planner. Afterwards, we let PRODIGY con-
tinue searching for different solutions, so that HAM-
LET can generate control rules from the decisions that
led to better solutions if any was found within the
learning time limit. Figure 4 shows a schema of the
approach.
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Figure 4: Providing prior knowledge to HAMLET by us-
ing another planner, FF.

In some cases, even with this guided process the plan-
ner is not able to generate a solution. This is so, be-
cause in those cases the set of possible search paths
that can be generated out of this scheme is very large,
and the solution path might not be found. We will
explore better ways of generating a solution path out
of a solution provided by another planner (or even a
human) in the future.

A third way of providing knowledge into HAMLET
that we have not explored in this paper, and it might be

interesting to study in the future, consists of the defini-
tion of a set of domain-dependent functions that could
be used by HAMLET for adding them into the control
rules conditions.

Providing prior knowledge to EVOCK

Instead of starting from a random population, EVOCK
can accept prior knowledge from different sources. In
particular, it is possible to seed EVOCK initial popula-
tion with control rules generated by either a human or
another machine learning technique. These rules pro-
vide a starting point, that might be difficult to get at
by purely evolutionary means. These seeding rules also
focus the search in the set of control rules space.

Figure 5 shows how HAMLET rules are used as PK by
EVOCK. First, HAMLET is run to learn from a set of ran-
domly generated training problems. HAMLET uses the
search trees returned by PRODIGY after solving each of
the training problems. Then, HAMLET control rules are
used to seed EVOCK initial population, along with other
randomly generated individuals. Control rules are eva-
luated by EVOCK by loading them into PRODIGY. Then,
the PRODIGY+control rules system is run and perfor-
mance data such as whether the learning problems were
solved or not, or the time required to solve them, is re-
turned to EVOCK, so that the fitness of individuals can
be determined.
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Figure 5: Prior knowledge for EVOCK.

Experiments and results

For the experiments, we have used two commonly
used domains in previous planning competitions: lo-
gistics (Bacchus 2001) and depots (from the 2002 com-
petition). We have already described the logistics do-
main, and the depots domain is a similar one, where
crates should be moved among depots and distributors.
There are trucks for movement, and hoists to lift crates
from places and trucks. Crates can also be stacked one
top of another, as in the blocksworld. The depots do-
main is a specially hard domain as it can be seen in the
results of the competition.

In both domains, we trained separately both HAM-
LET and EVOCK with 400 randomly generated training
problems of 1 and 2 goals in the logistics, and 200 ran-
domly generated training problems also of 1 and 2 goals
in the depots domain. The training problems must be
of small size to guarantee that the planner finds all the



possible solutions to provide the positive and negative
decision points made in the search tree necessary for the
learning. Then, we provided PK in the different forms
that we explained in the previous section to each learn-
ing system, and tested against randomly generated test
problems. In the logistics, we used 120 test problems
ranging from 1 to 5 goals. In the depots, we used 60
test problems also ranging from 1 to 5 goals. The time
limit used in both domains was 15 seconds, which is a
rather small one. We have verified experimentally that
increasing this time limit does not contribute to any
significant improvement. For problems of this size, if
a solution is not reached within very few seconds, the
probability of finding a solution with a time limit an
order of magnitude larger is very small.

Table 1 displays the results for all the systems work-
ing autonomously. Results for human (an expert on
planning and control knowledge definition) generated
control rules are also shown. The time devoted to hand-
generated control knowledge was about 8 hours in the
depots domain. In the logistics domain, it is difficult
to determine because the expert has been working with
that domain for about 10 years. We would like to study
in the future the impact that people with different ex-
pertise have on the definition by hand of such know-
ledge.

Table 1: Results for PRODIGY, EVOCK, and HAMLET
with no prior knowledge.

| Logistics | Depots |
System | Solved N© rules | Solved N° rules
PRODIGY | 21% 12%
EVOCK 33% 7 52% 2
HAMLET | 36% 32 0% 4
Human 100% 37 55% 5

The main conclusion from the analysis of the results
is that both domains are quite hard for PRODIGY and
for the learners. The human gets mixed results: 100%
problems solved in the logistics domain, but only 55%
in the depots domain. It is also noticeable that HAMLET
cannot solve any problem in the depots domain. The
reason is that PRODIGY cannot fully expand the search
tree for any of the training problems, which is required
for HAMLET to learn rules. In any case, none of the
learners does too well. Thus, it seems that PK might
be needed if results are to be improved.

Table 2 shows the results of providing prior know-
ledge to each one of the learners in terms of test pro-
blems solved in the logistics and depots domains. In the
first column, we have shown where the PK comes from:
EVOCK control rules, HAMLET control rules, FF solu-
tions, and Human control rules. In the rest of columns,
results are shown for each of the systems with and with-
out PK. In the case of providing the output of EVOCK
to HAMLET as PK, since they use different representa-
tion languages for control rules, it is not always easy for

HAMLET to use these rules. HAMLET requires that input
rules follow a template that cannot always be guaran-
teed by EVOCK. This could be achieved in the logistics
domain but not in depots. We have not devise yet ways
of allowing FF to serve as PK source for EVOCK.

Table 2: Results for EVOCK and HAMLET with prior
knowledge in the Logistics and Depots domain. Results
are percentage of problems solved.

| Logistics | Depots |
PK source | EVOCK HAMLET | EVOCK HAMLET
No PK 33% 36% 52% 0%
EVOCK - - - 57%
HAMLET 33% - 43% -
FF - 48% - 43%
Human 83% 88% 55% 55%

In the table we see that in the logistics domain, pro-
viding PK to both EVOCK and HAMLET improves over
the no PK situation, with any of the alternatives ex-
cept when HAMLET provides the PK. EVOCK goes from
33% without PK, up to 83% when knowledge is sup-
plied by the human, and HAMLET goes from 36% with-
out PK, up to 48% when it is supplied by FF and 88%
when it is supplied by the human. However, we also see
that the learning does not improve the human rules.
For instance, the human rules solve 100%? (as Table 1
showed) and, after learning from that PK, EVOCK and
HAMLET actually worsen results (83% and 88%, respec-
tively). Actually, the only case where PK can be con-
sidered useful is when FF is used to improve HAMLET,
because both PK and HAMLET are improved.

In the depots domain, we see again that using PK al-
lows HAMLET to improve its behaviour from 0% to 57%
(EvOCK), 43% (FF), and 55% (human). In the case
of EVOCK, it does not benefit from using PK: with no
PK it solves 52% problems, whereas with HAMLET as
PK source it decreases to 43% and with the human, it
increases slightly to 55%. The human rules are not im-
proved (results remain constant at 55%). Again, there
are only two cases where both PK and learning system
are improved: using EVOCK and FF as PK for HAMLET.

Conclusions

We have presented in this paper three ways of provid-
ing PK to learning systems in planning tasks: using
another learning system output as initial seed of the
learning task; using a human to supply also an initial
state for the search of sets of control rules; and us-
ing another planner for providing previous experience
in terms of a solution. We have compared these three
approaches with not using PK, and we have seen that
in most cases, PK in the form of an initial set of con-
trol rules or another type of information (solution to

2 Actually, we tested the human rules in some harder pro-
blems (10 to 50 goals) and it solved 198 out of 210.



a planning problem) can improve the behaviour of the
learning system. However, there are only a few cases
where both the PK and the learning system are im-
proved. Specifically, we have shown that using a solu-
tion as PK is a consistent way of improving control rule
learning.

The aim of this paper is to perform a preliminary
study of the effect of providing PK for learning and
we’ve done it by counting the number of problems
solved. However, in the future it would be interest-
ing to use different metrics in comparing systems such
as the average planning time, number of operators in
the solutions or any other quality measure.
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