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Abstract

Real-time perception through experimental manipulation is
developed using the robot arm to facilitate perception, or else
exploiting human/robot social interactions (such as with a
caregiver) so that the human changes the world in which it
is situated, enhancing the robot’s perceptions. Contrary to
standard supervised learning techniques relying on a-priori
availability of training data segmented manually, actions by
an embodied agent are used to automatically generate train-
ing data for the learning mechanisms, so that the robot devel-
ops categorization autonomously. This framework is demon-
strated to apply naturally to a large spectrum of computer vi-
sion problems: object segmentation, visual and cross-modal
object recognition, object depth extraction and localization
from monocular contextual cues, and learning from visual
aids – such as books. The theory is corroborated by exper-
imental results.

Introduction
Embodied and situated perception (Arsenio 2002; 2003)
consists of boosting the vision capabilities of an artificial
creature by fully exploiting the concepts of an embod-
ied agent situated in the world (Anderson 2003). Active
vision (Aloimonos, Weiss, & Bandopadhay 1987; Bajcsy
1988), contrary to passive vision, argues for the active con-
trol of the visual perception mechanism so that perception is
facilitated. Percepts can indeed be acquired in a purposive
way by the active control of a camera (Aloimonos, Weiss, &
Bandopadhay 1987). This approach has been successfully
applied to several computer vision problems, such as stereo
vision - by dynamically changing the baseline distance be-
tween the cameras or by active focus selection (Krotkov,
Henriksen, & Kories 1990).

We argue for solving a visual problem by not only ac-
tively controlling the perceptual mechanism, but also and
foremost actively changing the environment through exper-
imental manipulation. The human (and/or robot) body is
used not only to facilitate perception, but also to change the
world context so that it is easily understood by the robotic
creature (the humanoid robot Cog used throughout this work
is shown in Figure 1).
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Figure 1:The experimental platform. The humanoid robot Cog is
equipped with cameras in an active vision head, a microphone array
across the torso and two robotic arms. A human demonstrates some
repetitive action to the robot, such as using a hammer

Real-time visual embodied strategies, which are not lim-
ited to active robotic heads, are described in this paper to
boost perception capabilities. Embodied vision methods will
be demonstrated with the goal of simplifying visual process-
ing. This is achieved by selectively attending to the human
actuator (Hand, Arm or Finger), or the robot actuator. In-
deed, primates have specific brain areas to process the hand
visual appearance (Perrettet al. 1990). Inspired on human
development studies, I will first put emphasis on facilitating
vision through the action of a human instructor. Through
social interactions of a robot with the instructor, the latter
facilitates robot’s perception and learning, in the same way
as human teachers facilitate children perception and learning
during child development phases.

Although a human can interpret visual scenes perfectly
well without acting on them, such competency is acquired
developmentally by linking action and perception. Actions
are not necessary for standard supervised learning, since off-
line data is segmented manually. But whenever an actor
has to autonomously acquire object categories using its own
body to generate informative percepts, actions become in-
deed very useful. Therefore, the next section introduces the
framework to detect visual events produced by such actions.
The following sections apply this framework to tackle a va-
riety of research issues.



Visual Perception Driven by Action
This Section presents the algorithms for identifying events
at multiple spatial/frequency resolutions. Spatial eventcan-
didates are moving regions of the image that change velocity
either periodically, or abruptly under contact.

Detection of Frequency Domain Events
Tools are often used in a manner that is composed of some
repeated motion – consider hammers, saws, brushes, files,
etc. This repetition can potentially aid a robot to perceive
these objects robustly. Our approach is for the robot to de-
tect simple repeated visual events at frequencies relevantfor
human interaction.

Periodic detection for events created by human teachers,
such as tapping an object or waving their hand in front of the
robot, is applied at multiple scales. Indeed, for objects os-
cillating during a short period of time, the movement might
not appear periodic at a coarser scale, but appear as such at
a finer scale. If a strong periodicity is not found at a larger
scale, the window size is halved and the procedure is re-
peated for each half.

A grid of points homogeneously sampled from a mov-
ing region in the image is tracked over a time interval of
approximately 2 seconds (65 frames). The motion trajec-
tory for each point over this time interval is determined us-
ing the Lucas-Kanade pyramidal algorithm. A Short-Time
Fourier Transform (STFT) is applied to each point’s motion
sequence,

I(t, ft) =

N−1∑

t′=0

i(t′)h(t′ − t)e−j 2π

N
ftt

′

(1)

whereh is a windowing function, andN the number of
frames. Periodicity is estimated from a periodogram deter-
mined for all signals from the energy of the STFTs over the
spectrum of frequencies. These periodograms are processed
by a collection of narrow bandwidth band-pass filters. Peri-
odicity is found if, compared to the maximum filter output,
all remaining outputs are negligible. Figure 2 shows STFTs
for both periodic signals and signals filtered out.

Figure 2: (left) STFTs of discarded points; (center) STFTs for a
set of periodic points; (right) trajectories for periodic points from
waving a toy car.

Detection of Spatial Domain Events
The algorithm to identify and track multiple objects in the
image is described herein. A motion mask is first derived by
subtracting gaussian filtered versions of successive images

and placing non-convex polygons around any motion found.
A region filling algorithm is applied to separate the mask
into regions of disjoint polygons (using a 8-connectivity cri-
terion). Each of these regions is used to mask a contour
image computed by a Canny edge detector. The contour
points are then tracked using the Lucas-Kanade algorithm.
An affine model is built for each moving region from the
position and velocity of the tracked points. Outliers are re-
moved using the covariance estimate for such model.

Table 1: Categories of spatial events from the entities’ (objects
and actuator) motion.

Type of Interaction

Knowledge
in memory

Contact
eg. poking/grabbing an object, or
assembling it to another object.

Release
eg. throwing or dropping an object,
or disassembling an object into two.

actuator/object
(explicit)

. overlap of two entities

. large a priori velocities
. two moving entities loose contact
. large a priori velocities

actuator
(implicit)

. abrupt grow of the actuator’s
motion area
. large actuator velocity
. abrupt velocity rise for previ-
ously stationary object

. large initial velocity of ensemble

. large a posteriori velocities for
both entities
. motion flow of assembled region
separates into two disjoint regions

Four categories of spatial events were defined, as shown
in Table 1. Whenever an event occurs, the objects involved
in such event are inserted into a short term memory, with a
span of two seconds after the last instant the object moved.
Figure 3 demonstrates the detection of two events.

Figure 3:(left) sequence of two images for robotic arm approach-
ing and impacting an object - shows an implicit contact. Two hu-
man legs are also moving in the background. (right) sequence of
two images for hammering a nail - shows an explicit release. The
arm that secures the nail also moves, but does not create an event.

Embodied object segmentation
A fundamental problem in computer vision -Object Seg-
mentation- is dealt with by detecting and interpreting nat-
ural human/robot task behavior such as tapping, waving,
shaking, poking, grabbing/dropping or throwing objects.

An active segmentation technique developed re-
cently (Fitzpatrick 2003) relies on poking objects with
a robot actuator. This strategy operates on first-person
perspectives of the world: the robot watching its own
motion. However, it is not suitable for segmenting objects
based on external cues. The minimum cut algorithm (Shi
& Malik 2000) is another good segmentation technique,
though it suffers from problems inherent to non-embodied
techniques. These problems will be dealt by exploiting
shared world perspectives between a cooperative human and
a robot. Object segmentation on unstructured, non-static,
noisy and low resolution images is indeed hard because:

. objects may have similar color/texture as background

. multiple objects may be moving simultaneously in a scene



. significant luminosity variations

. need of real-time, fast segmentations, on low resolution
images (128 × 128)

Segmentation Driven by Active Actuation
A scene perceived might contain several moving objects,
which may have similar colors or textures as the back-
ground. Multiple moving objects create ambiguous segmen-
tations from motion, while difficult figure/ground separation
makes segmentation harder. However, a human teacher fa-
cilitates perception by waving an object (or acting on this
object, such as grabbing it) in front of the robot, so that the
motion of the object is used to segment it.

The set of non-skin moving points tracked over time are
sparse, and hence an algorithm is required to group then into
a meaningful template of the object, as follows. First, an
affine flow-model is applied to the flow data to recruit other
points within uncertainty bounds. Clusters of points mov-
ing coherently are then covered by a non-convex polygon –
the union of a collection of locally convex polygons (Arse-
nio 2003) – as shown in Figure 4. This algorithm is much
faster than the minimum cut algorithm (Shi & Malik 2000),
and provides segmentation of similar quality to the active
minimum cut approach in (Fitzpatrick 2003).

Figure 4:Samples of object segmentations. (left) Top row shows
original images, while bottom row shows segmentations (right)
sample segmentations from a large corpora consisting of tens of
thousands of computed segmentations.

Segmentation by Demonstration
This is a human aided object segmentation algorithm. A hu-
man teacher waves the arm/hand/finger on top of the object
to be segmented. The motion of skin-tone pixels (Breazeal
2000) is tracked over a time interval and the energy per fre-
quency content is determined. A template of the actuator
is built from the trajectory defined by the set of periodic
moving points. Points from these trajectories are collected
together, and mapped onto a reference image. A standard
color segmentation (Comaniciu & Meer 1997) algorithm is
applied to this reference image. The differentiated clusters
of colors hence obtained need to be grouped together into
the colors that form an object. This grouping works by hav-
ing trajectory points being used as seed pixels. The algo-
rithm fills the regions of the color segmented image whose
pixel values are closer to the seed pixel values, using a 8-
connectivity strategy (see Figure 5).

Therefore, points taken from waving are used to both se-
lect and group a set of segmented regions into the full ob-
ject. This strategy segments objects that cannot be moved
independently, such as objects printed in a book, or heavy,
stationary objects such as a table or a sofa.

Figure 5: The actuator’s trajectory is used to extract the object’s
color clusters.

Object Recognition
An object recognition scheme was developed, able to recog-
nize objects from color, luminance and shape cues, or from
combinations of them.

The object recognition algorithm consists of three inde-
pendent algorithms. The input space for each of these algo-
rithms consists of different features:

Color. Input features consist of groups of connected regions
with similar color

Luminance. Input space consists of groups of connected
regions with similar luminance

Shape. A Hough transform algorithm is applied to a con-
tour image (which is the output of a Canny edge detector).
Line orientation is determined using Sobel masks. Pairs
of oriented lines are then used as input features

Geometric hashing (Wolfson & Rigoutsos 1997) is a
rather useful technique for high-speed performance. In this
method, invariants (or quasi-invariants) are computed from
training data in model images, and then stored in hash ta-
bles. Recognition consists of accessing and counting the
contents of hash buckets. A Fuzzy Hash table (a hash table
with variable-size buckets) was implemented to store affine
color, luminance and shape invariants (which are view-
independent for small perspective deformations). Figure 6
shows results for each input space, while results for real ob-
jects will be shown in the next sections.

50 100 150 200 250 300

50

100

150

200

250
50 100 150 200 250 300

50

100

150

200

250
50 100 150 200 250 300

50

100

150

200

250
50 100 150 200 250 300

50

100

150

200

Figure 6:Within features conjunction searches for a yellow-green
triangle. Lines mark features matched (left) The original image
(middle-left) normalized color buckets for the original image, with
results for a yellow-green query superimposed (middle-right) Lu-
minance buckets of the original image. Shows also query results
for a dark-light object (right) Search for triangles (conjunction of
three oriented lines).



Cross Modal Object Recognition
The advantage of combining rhythmic information across
visual and acoustic modalities for object recognition is that
they have complementary properties (Krotkov, Klatzky, &
Zumel 1996). Since sound waves disperse more readily than
light, vision retains more spatial structure – but for the same
reason it is sensitive to occlusion and the relative angle of
the robot’s sensors. Due to physical constraints, the set of
sounds that can be generated by manipulating an object is
often quite small. For tools and toys which are suited to one
specific kind of manipulation – as hammers encourage bang-
ing – there is even more structure to the sound they generate.
When sound is produced through motion for such objects the
audio signal is highly correlated both with the motion of the
object and the tools’ identity. The spatial trajectory is used to
extract visual and acoustic features – patches of pixels, and
sound frequency bands – that are associated with the object
(see Figure 7).1
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Figure 7: (left) a hammer bangs in a table. The visual trajectory
of the hammer along the main axis of motion oscillates at the same
frequency as the sound, with approximately zero phase-shift at the
moment of impact (right) Two moving objects generating sound.
Each temporal trajectory of a sound coefficient group is mapped
into one of the visual trajectories if coherent with its periodicity.
The sound energy has two peaks per period, since the sound of
rolling is loudest during the two moments of high velocity motion
between turning points in the car’s trajectory (because of mechani-
cal rubbing). The object’s sound is segmented from the background
by clustering the frequency bands with the same period (or half the
period) as the visual target, and assigning those bands to the ob-
ject (the estimated line on the spectogram separates the frequency
bands associated to each sound).

Context Priming on Stationary Objects
The structure of the arm relative to a scene structure provides
a natural way for constraining the object detection problem
using global information. In addition, the environment sur-
rounding the robot has also an embedded structure that can
be learned using supervised learning techniques.

Given the image of an object (for instance, a car), its
meaning depends often on the surrounding context. For ex-
ample, in Figure 8-left, aFerrari car may correspond to a
real automobile or to a toy model. Context cues remove
such ambiguity. In addition, for two images of an object
at different scales (as illustrated by Figure 8-right) it ishard
to determine, without contextual cues, if the real objects are
of the same size. However, giving contextual cues, humans
can assert with confidence such relationships.

Considering Figure 9, both sofa and table segmentations
are hard cases to solve. The clustering of regions by table-

1This is collaborative work withPaul Fitzpatrick.

Figure 8: (left) Context cues are essential to remove ambiguity
- an environment with trees, asphalt roads suggest a big, racing
automobile, while a hand picking the car, side by side with another
small toy, suggests a small toy car. (right) Contextual cues enable
the estimation of the correct relative size of objects from the image.

like color content produces two disjoint regions. One of
them corresponds to the table, but it is not possible to infer
which just from the color content. But a human teacher can
showthe table to the robot by waving on the table’s surface.
The arm trajectory then links the table to the correct region.
For the sofa case, segmentation is hard because the sofa ap-
pearance consists of a collection of color regions. It is nec-
essary additional information to group such regions without
including the background. Once more, a human teacherde-
scribesthe object, so that the arm trajectory groups several
color regions into the same object - the sofa.

Figure 9: Segmentation of heavy, stationary objects. A human
teachershowsthe table and sofa to the robot, by waving on the
objects’ surface, so that the robot can then use the arm trajectory to
link the objects to the correct color regions.

Inferring 2.5 Sketches
Besides binocular cues, the human visual system also pro-
cesses monocular data for depth inference, such as focus,
perspective distortion, gravitational light distortion,among
others. Previous attempts have been made on exploring
scene context for depth inference (Torralba & Sinha 2001).
However, these passive techniques make use of contextual
clues already present on the scene. They do not actively
change the context of the scene through manipulation to
improve its perception. I propose an active, embodied ap-
proach that actively changes the context of a scene, extract-
ing monocular depth measures.

The human arm diameter (which is assumed to remain ap-
proximately constant for the same depth, except for degen-
erate cases) is used as reference for extracting relative depth
information – without camera calibration. This measure is
extracted from periodic signals of a human hand as follows.
A skin detector is applied to extract skin-tone pixels over a
sequence of images. A blob detector then groups the skin-



tone pixels into five regions. These regions are tracked over
the sequence, and all non-periodic blobs are filtered out. A
region filling algorithm is then applied to extract a mask for
the arm. The smallest eigenvalue is used as an approximate
measure of a fraction of the arm radius.

Once a reference measure is available, coarse depth in-
formation can be extracted relative to the arm diameter, for
each arm trajectory’s point. A plane is then fitted (in the
least square sense) to this 3D data. Figure 10 presents both
coarse depth images and 3D plots for a typical scene.

Figure 10: (top) coarse depth information for a scene on the
robot’s room (lighter corresponds to closer). Two right plots show
3D coarse Depth information on which the object is modelled by
planes (bottom) re-scaling of objects’ templates. Depth informa-
tion is only available at a coarse resolution, and at discrete levels
(and hence forming a 2.5 Sketch), in contrast to full 3D models.

The size of the objects on the segmented templates are
not proportionally related to their true size – just compare
the image sizes of the sofa, table and car in Figure 10. This
is due to deformations introduced by the object’s perspective
projection into the retinal plane. But by using the arm diam-
eter as reference, templates are proportionally re-scaledso
that they reflect the true proportions between these objects.

Situated Vision
World structural information should be exploited in an ac-
tive manner. For instance, the probability of an object being
located on a table is much bigger than that of being located
on the ceiling. A robot should place an object where it can
easily find it - if one places a book on the fridge, she will
hardly find it later!

A method based on a weighted mixture of gaussians was
developed to determine spatial context on images. Given
an object, the probable location of other objects on the im-
age, together with an estimate of their retinal size and ori-
entation, are obtained by modelling the training data using
a weighted mixture of gaussians (Luenberger 1991). This
way, for each object on a scene, a link is established towards
the other scene objects, as shown in Figure 11.

Learning from Books
This scheme boosts the robot’s object recognition capabili-
ties through the use of books - a learning aid. During chil-
dren developmental phases, learning is often aided by the
use of audiovisuals, and specially, books. Humans often
paint, draw or just read books to children during the early
months of childhood. Object descriptions in a book may

Figure 11:(left) Toy car placed along several locations on a scene.
(right) Red ellipses represent a scene object, while blue ellipses
represent the location, size, and orientation of other objects pre-
dicted by that object (with an associated uncertainty). From the
left: 1

st and2
nd images: predictions for table and toy car from the

sofa, respectively;3rd image: prediction for toy car from the table.

came in different formats - drawings, paintings, photos, etc.
Books are indeed a useful tool to teach robots different ob-
ject representations or to communicate them properties of
unknown objects.

The implemented strategies which enable the robot to
learn from books rely heavily in human-robot interactions.
It is essential to have a human in the loop to introduce ob-
jects from a book to the robot (as a human caregiver does to
a child), by tapping on their book’s representations. The seg-
mentation by demonstration method previously presented is
then used to segment an object’s image from book pages.
This scheme was successfully applied to extract templates
for fruits, geometric shapes and other elements from books,
under varying light conditions (as shown in Figure 12).

Figure 12:(left) top images show pages of a book. The other rows
show segmentations for different luminosity conditions. (right)
segmentations of geometric shapes from another book.

Developmental Learning from Demonstration
Object representations acquired from a book are inserted
into a database, so that they become available for future
recognition tasks. This way, the robot will be able to rec-
ognize (using the algorithms described in Section ) real ob-
jects that, except for a description contained in a book, it has
never seen before, as shown in Figure 13 for several objects.

The human ability to segment objects is not general-
purpose, improving with experience. As soon as the robot
acquires a complex repertoire of object representations on
its database, books become useful as a means to test and val-
idate knowledge. In addition, the robot is also able to recog-
nize stationary objects on its field or view. A human teacher
corrects eventual errors on-line by describing actively that
object representation to the robot. Whenever recognition
ambiguity occurs, objects can be actively segmented through
actions of the robot’s manipulator, such as poking the ob-
ject (Arsenio 2003; Fitzpatrick 2003).
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Figure 13: (left) the humanoid robot looks at an object to rec-
ognize it (right) The database of objects’ templates, learned from
books, is used to recognizereal objects, or drawings of them.

Conclusions and Future Work
Embodiment and situatedness of an agent were exploited
to boost its perception capabilities. We also introduced the
robot/human in the learning loop to facilitate robot percep-
tion. Events originated from human/robot actions were de-
tected at different time scales for a better compromise on fre-
quency and spatial resolution. Objects were segmented and
recognized from tasks being executed in real time, such as
sawing. We also proposed strategies to segment and recog-
nize objects that are not allowed to move. Such techniques
proofed especially powerful to segment heavy objects in a
scene or to teach a robot through the use of visual aids.

Undergoing and Future work
This framework is currently being applied to other research
problems,

Scene Recognition from High-Level Features Given a
configuration of objects, we expect not only to predict
the location of other categorized objects, but also to
infer the scene which these objects describe (eg. a
sofa, a table with chairs and a TV are often not far
apart, being common elements of a living room). Scene
recognition will thus operate on higher level features
(objects already categorized) compared to other research
approaches (Oliva & Torralba 2001), based on low level
features such as spatial distribution of frequencies

Task Detection A task can be defined as a collection of
events on objects, being described by continuous states
(such as a hammer oscillating or a hammer moving con-
nected to a nail), and discrete probabilistic transitions
(from the repetitive execution of tasks) among them (eg.
grabbing, dropping an object). Therefore, an hybrid
Markov Chain is being used to model complex tasks such
as sawing, hammering, painting, among others

Functional Object Recognition A tool may have different
uses. For instance, a knife can be use to cut (motion or-
thogonal to the knife’s edge) or to stab (motion parallel to
the knife’s edge), which describe two different functions
for the same object. We are using the shape and the mo-
tion of a tool while executing a task to classify its function

Control Integration Grounded On Perception The inte-
gration of control strategies for both oscillatory and reach-
ing movements should be grounded on the perception,
which determines the mapping between the perceived mo-
tion of objects and how they should be manipulated

and there are still other potential research directions to ex-
plore for which human-robot interactions can boost the ca-
pabilities of an embodied and situated robotic agent.
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