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Abstract
We considered the problem of developing local reactive
obstacle-avoidance behaviors by a mobile robot through on-
line real-time learning. The robot operated in an unknown
bounded 2-D environment populated by static or moving ob-
stacles (with slow speeds) of arbitrary shape. The sensory
perception was based on a laser range finder. We presented
a learning-based approach to the problem. To greatly re-
duce the number of training samples needed, an attentional
mechanism was used. An efficient, real-time implementa-
tion of the approach had been tested, demonstrating smooth
obstacle-avoidance behaviors in a corridor with a crowd of
moving students as well as static obstacles.

Introduction
The real-time range-based obstacle avoidance in dynamic
environments has been studied by many researchers. The
local reactive approaches are usually used in unknown or
partially unknown environments since they reduce the prob-
lem’s complexity by computing short-term actions based on
current local sensing. For example, the curvature-velocity
method (Simmons 1996) and the dynamic window (DW)
approach (Fox, Burgard, & Thrun 1997) formulate obstacle
avoidance as a constrained optimization problem in a 2-D
velocity space. They assume that the robot moves in circu-
lar paths. Obstacles and the robot’s dynamics are considered
by restricting the search space to a set of admissible veloci-
ties.

In contrast with the above efforts that concentrate on ac-
tion generation without requiring sophisticated perception,
a series of research deals with perception-guided behaviors.
An important direction of research, the appearance-based
method (Pomerleau 1991) (Hwang & Weng 1997) (Chen
& Weng 2000), aims at reducing or avoiding those human-
defined features for better adaptation of unknown scenes.
The need to process high dimensional sensory vector inputs
in appearance-based methods brings out a sharp difference
between behavior modeling and perceptual modeling: the
effectors of a robot are known with the former, but the sen-
sory space is extremely complex and unknown with the latter
and, therefore, very challenging.
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In this paper, we present an approach of developing a local
obstacle avoidance behavior by a mobile humanoid through
online real-time incremental learning. A major distinction
of the approach is that we used the appearance-based ap-
proach for range-map learning, rather than an environment-
dependent algorithm (e.g., obstacle segmentation and classi-
fication) for obstacle avoidance. The new appearance-based
learning method was able to distinguish small range map
differences that are critical in altering the navigation behav-
ior (e.g., passable and not passable sections). In principle,
the appearance-based method is complete in the sense that
it is able to learn any complex function that maps from the
range-map space to the behavior space. This also implies
that the number of training samples that are required to ap-
proximate the complex function is very large. To reduce
the number of training samples required, we introduced the
attentional mechanism which dynamically selected regions
in near approximity for analysis and treated other regions
as negligible for the purpose of local object avoidance. To
indicate the benefit of using the attentional mechanism, we
analytically derived a lower bound of the sample reduction
ratio. Further, online training was used so that the trainer
could dynamically choose the training scenarios according
to the system’s current strengths and weaknesses, further re-
ducing the time and samples of training.

Approach
Problem statement

We consider the obstacle avoidance behavior as a reactive
decision process, which converts the current range map to
action. The robot does not sense and store scene configu-
ration (e.g., global map of the environment) nor the global
robot position. That is, we assume that the current range
map contains all of the information that is sufficient for
robots to derive the next motor control signal. In fact, it uses
the real world as its major representation. In the work pre-
sented here, the robot’s only goal is to move safely according
to the scene: It has no target location. Such a navigation sys-
tem is useful for applications where a human guides global
motion but local motion is autonomous.

The range scanner observesr(t) ∈ R ⊂ Rn at time t,
whereR denotes the space of all possible range images in a
specific environment.r(t) is a vector of distance, whoseith



IHDR

Mobile

Robot

Attention
r(t)

y(t+1)

v(t+1)

z(t)

x(t)

D
v(t)

Figure 1:The control architecture of the range-based navigation.
“Attention” denotes an attentional module.rp(t) denotes the re-
trieved range prototype.

componentri denotes the distance to the nearest obstacle at
a specific angle. The vectorv(t) gives the current velocities
of the vehicle at timet, which are measured by the vehicle’s
encoders. The vectorsr(t) andv(t) are given by two sen-
sors whose dimension and scale are different, thus, we need
a normalization procedure when merging the two vectors to-
gether as the integrated observation vector.

Definition 1 The vectorx(t) denotes the system’s observa-
tion of the environment at timet. It is defined as:

x(t) = (
r(t) − r̄

wr

,
v(t) − v̄

wv

) ∈ X , (1)

wherewr andwv are two positive numbers that denote the
scatter measurements of the variatesr and v, respectively;
and r̄ and v̄ are sample means.

The action vectory(t) ∈ Y consists of control signals sent
to all of the effectors at timet, whereY denotes the sample
space action vectors.

The obstacle avoidance behavior can be formulated as a
mappingf : X 7→ Y, i.e., the primed actiony(t + 1) (the
signal sent to the motors) is a function ofx(t):

y(t + 1) = f(x(t)). (2)

Fig. 1 shows the coarse control architecture of the pre-
sented approach. An Incremental Hierarchical Discriminat-
ing Regression (IHDR) (Hwang & Weng 2000) tree is gen-
erated to estimate the control signaly from x. The current
input range imager(t) and the vehicle’s velocitiesv(t) are
used for deriving the next control signaly(t + 1). An atten-
tional module is added to extract partial views from a whole
view of a scan.

Attentional mechanism
Direct use an image as a long vector for statistical fea-
ture derivation and learning is called the appearance-based
approach in the computer vision community. Usually the
appearance-based approach uses monolithic views where
the entire range data (or visual image) frame is treated as
a single entity. However, the importance of signal compo-
nents is not uniform. There are cases where appearances of
two scenes are quite similar globally, but different actions
are required. Further, similar actions are needed where the
appearance of two scenes look quite different globally. Both
cases indicate that there are critical areas where differences
critically determine the action needed. This necessitatesan
attentional mechanism to select such critical areas.
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Figure 2: (a1), (b1) and (c1) show three scenarios along the
robot’s path. The solid small circles denote the robot with a short
line segment at the front indicating orientation. Thick lines mark
the walls along the corridor.T andr̄ denote the threshold and the
mean, respectively. (a2), (b2) and (c2) are range images taken by
the robot at the three scenarios, respectively. (a3), (b3) and (c3)are
the corresponding images after passing the attentional module. The
diagrams in lower two rows use logarithmic scales for the Y-axis.
We can see that the distance between (a3) and (b3) becomes larger
while the distance between (b3) and (c3) becomes smaller.

For example, in Fig. 2, (a1), (b1) and (c1) show three sce-
narios along the robot’s path. Range images (a2) and (b2)
are quite similar globally judged from the entire image (ex-
cept the critical area on the left side). In the context of an
appearance-based method, this means that the distance (e.g.,
Euclidean one) between the two is small. They require dif-
ferent actions: turning right for (a1), going straight or turn-
ing left for (b1). In another case, range images (b2) and
(c2) are very different globally, but their desired actionsare
similar: going straight or turning left. Thus, it is difficult
to discriminate the three cases correctly by using a distance
metric defined on the entire image. But, if we look at the
left subregions in (a2), (b2) and (c2) of Fig. 2, we can see
that the similarities and differences are clear. Without a ca-
pability to attend to this critical region, the learning system
requires significantly more training samples when complex
scenarios are considered.

In the above three cases, the critical area is the input com-
ponent where range readings are very small. This is true,
in general, because near obstacles determine heading more
than, and often take precedence over, far-away objects. As
we shall see later, this can be accomplished by an attentional
mechanism.

We first define the scalar attentional effector.

Definition 2 The operation of the attentional effectora(t)
for input r(t) and outputz(t) is defined by:

z(t) = g(r(t), a(t)) =

{

r(t) a(t) = 1,
r̄ a(t) = 0,

(3)
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Figure 3: The attentional signal generatorf and attentional ex-
ecutorg. r(t) andz(t) denote the input and output, respectively.

wherer̄ denotes the sample mean of the raw signalr(t).

For intended application, we would like to havea(t) to
behave in the following way. First, when all input compo-
nents have large values, the attentional selection is in itsde-
fault mode, turning on all components. Second, when there
are nearby objects, the attentional selection activates only
nearby objects which are critical for object avoidance while
far-away objects are replaced by their mean readings. This
attentional action can be realized by two programmed func-
tionsg andf :

zi(t) = g(ri(t), ai(t)) (4)

and

ai(t) = f(r(t)) =

{

1 if ri < T or ∀j rj(t) ≥ T,
0 otherwise,

(5)
where T is a threshold,i = 1, 2, ..., n, and r(t) =
(r1(t), r2(t), ..., rn(t)) denotes the input vector. We write
z(t) = (z1(t), z2(t), ..., zn(t)) as the output of the atten-
tional action anda(t) = (a1(t), a2(t), ..., an(t)) as the at-
tention vector. The above functionf will suppress some
far-away components (ai(t) = 0) if there are objects closer
thanT . If all readings are far-away, we do not want to turn
the attention off completely and, therefore, we leave all at-
tentional effectors on(∀j, aj(t) = 1). This operation is
illustrated in Fig. 3.

In practice, this raw attentional vectora(t) is smoothed
by convoluting with a flat window, as

a′

i(t) = [
1

11

i+5
∑

j=i−5

aj(t)],

where [·] denotes rounding to the nearest integer. This
smoothing serves to eliminate point-wise noise and to pro-
vide a neighborhood influence to the output attentional vec-
tor.

In Fig. 2, the readings of the left part of diagrams (b2)
and (c2) are smaller thanT . Thus, only the left part passes
through the attentional mechanism without change whereas
other parts are suppressed by being set to the mean, as shown
in (b3) and (c3) of Fig. 2. This is needed for the robot to pass
through tight areas, where a small change in the width of a
gap determines whether the robot can pass. The attentional
mechanism enables the robot to focus on critical areas (i.e.,
parts with close range) and, thus, the learned behaviors sen-
sitively depend on the attended part of the range map. All
range readings are attended when there is no nearby object
as shown by (a2) and (a3) of Fig. 2.

In Fig. 1, the learner IHDR is a hierarchically organized
high-dimensional regression algorithm. In order to develop

Table 1: The lower bound of the reduction ratio at several para-
metric settings.

Parameters Reduced size
rm = 50m, ∆ = 0.2m, T = 2m, andh = 10 9.51 × 1020

rm = 10m, ∆ = 0.2m, T = 2m, andh = 15 7.52 × 1022

stable collision-avoidance behaviors, the robot needs suffi-
cient training samples. Here, we show that the attentional
mechanism greatly reduces the number of necessary train-
ing samples when there are objects close to the robot. To
quantitatively analyze the attentional mechanism proposed,
we make the following definition.

Definition 3 Consider a scanner operating in a environ-
ment, which can be approximated by piecewise 3-D planes
(for simplicity analysis only). Each range mapr can be ap-
proximated by a polygon withh segments (as in Fig. 4 (a)).
P = (p1, p2, ..., ph) is the map, where theith end pointpi is
denoted by its polar coordinate(ri, αi). Without lost of gen-
erality, the angle coordinate are sorted:α1 < α2 < · · · <
αh. P ′ = (p′1, p

′

2, ..., p
′

h) is the post-attentional map, where
p′i = (zi, αi) whose rangezi has been defined earlier.

Remark. The largerh is, the closer the approximation ofr
in general. In a particular case, the polygon representation
becomes a regular grid whenh = n.

We write the post-attentional approximationP ′ as the
function ofP , i.e.,

P ′ = g∗(P ). (6)

The attentional mechanism, defined in Eq. (6), is not a one-
to-one mapping, as shown in Fig. 4. The post-attentional
mapP ′ is the representative for a set of pre-attentional maps
besidesP if conditionC: ∃pj pj ∈ P ∧ lj < T is satisfied.
We denote this set byR(P ′), i.e. R(P ′) ≡ {P |g∗(P ) =
P ′}. The following theorem gives a lower bound of the aver-
age size ofR(P ′) when there are objects within the distance
T of the robot.

Theorem 1 Let ∆ and rm denote, respectively, the
range resolution and maximum distance of each radial
line. If the ith end pointpi’s radial lengthri is a random
variable with a uniform distribution in the sample space
{0,∆, 2∆, ..., rm}. Then the average size of the setR(P ′)
conditioned onC is:

EP ′{R(P ′)|C} >
(1 − p)hqh−1

1 − ph
, (7)

whereq = (rm − T )/∆, p = (rm − T )/rm, andEP ′{·|C}
denotes the expectation on conditionC.

We relegate the proof of Theorem 1 to Appendix A. Ta-
ble. 1 shows the lower bound of the size due to attention at
two typical parametric settings. We see that the reduction
is large. Of course the size of remaining space to learn is
also large, the ratio of space reduced over original space is
roughlyp.
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Figure 4:(a) shows that the pre-attentional mapr is approximated
by a polygonP . P is specified byh end points:p1, p2, ..., ph. The
kth end point is denoted by(lk, αk). (b) shows the post-attentional
approximationP ′, after the attentional functiong∗. Those end-
points whose distances are larger thanT are set tōr. The half-circle
with symbolT shows the area the robot pays attention to. We can
see numerous pre-attentional approximations map to a single post-
attentional approximationP ′. It is clear that the points outside
the half-circle of (a) have the freedom to change positions without
affecting the shape of (b).

IHDR: Associative memory mapping engine
The IHDR realizes a regressionf : X 7→ Y through context-
addressable recall for each high-dimensional input vector
x(t). IHDR is not new for this paper, for details see (Hwang
& Weng 2000). Its function is similar to CART, C5.0 and
SVM, but performs significantly better for high-dimensional
input.

IHDR dynamically approximates the input and output
spaces using a large but finite number of clusters represented
as high dimensional vectors. The X-clusters in theX space
represent a larger number of context prototypes. IHDR
automatically derives discriminating feature subspaces in a
coarse-to-fine manner from input spaceX in order to gener-
ate a tree architecture of memory self-organization. Shown
in Fig. 5, a linear subspace is spanned by automatically de-
rived discriminating features at the root of the tree. The
features are most discriminative in the sense they span the
linear subspace that passes the space of between-class scat-
ter. In this way input components that are irrelevant to the
mapping’s output are disregarded to achieve better discrimi-
nation and generalization.

A probability-based nonlinear partition in the subspace
divides the entire input spaceX into a number of regions,
as shown in Fig. 6. Such a coarse-to-fine partition of input
space is carried out recursively until the node has received
only a few samples of prototypes corresponding to the most
detailed cases. Each prototype is then associated with the
desired outputs in theY space. The tree structure recursively
excludes many far-away prototypes from consideration (e.g.,
a near object does not search far-away objects), thus the time
to retrieve the associated contexts to update the mapping for
each inputx is O(log(n)), wheren is the number of leaf
nodes. This extremely low time complexity is essential for
real-time online learning with a very large memory.

The robotic system and online training
procedure

The tests were performed in a humanoid robot, called Dav,
built in the Embodied Intelligence Laboratory at Michigan
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Figure 5:Y-clusters in spaceY and the corresponding X-clusters
in spaceX . Each sample is indicated by a number which denotes
the order of arrival. The first and second order statistics are updated
for each cluster.
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Figure 6: The incrementally generated IHDR tree. Each node
has its own most discriminating feature (MDF) subspaceD which
partitions its own input samples into its children.

State University. Details about the Dav robot, please refer
to (Hanet al. 2002) and (Zeng, Cherba, & Weng 2003).

Mounted on the front of Dav, the laser scanner (SICK
PLS) tilts down3.8◦ for possible low objects. The local ve-
hicle coordinate system and control variables are depictedin
Fig. 7. During training, the control variables(θ, d) are given
interactively by the position of the mouse pointerP through
a GUI interface. Once the trainer clicks the mouse button,
the following equations are used to compute the imposed
(taught) actiony = (v, ω):

ω = −Kp(π/2 − θ)

v =

{

Kvd P ∈ Area I,
0 P ∈ Area II,

(8)

whereKp andKv are two predetermined positive constants.
Area II corresponds to rotation about the center of the robot
with v = 0.

Dav’s drive-base has four wheels, each driven by two DC
motors. Letq̇ denote the velocity readings of the encoders of
four wheels. Supposevx andvy denote the base’s translation
velocities, andω denotes the angular velocity of the base. By
assuming that the wheels do not slip, the kinematics of the
base is (Zeng, Cherba, & Weng 2003):

q̇ = B(vx, vy, ω)T , (9)

whereB is an8 × 3 matrix, decided by the wheels’ con-
figuration (known). The base velocities(vx, vy, ω)T is not
directly available to learning. It can be estimated from the
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Figure 7:The local coordinate system and control variables. Once
the mouse buttons are clicked, the position of the mouse pointer
(θ, d) gives the imposed action, whereθ denotes the desired steer-
ing angles, andd controls the speed of the base.

wheels’ speed vectoṙq in a least-square-error sense:

v = (vx, vy, ω)T = (BT B)−1BT q̇. (10)

In this paper, we use two velocities,(vy, ω), as the control
vectory. Thus, the IHDR tree learns the following mapping
incrementally:

y(t + 1) = f(z(t), v(t)).

During interactive learning,y is given. Whenevery is not
given, IHDR approximatesf while it performs (testing). At
the low level, the controller servoesq̇ based ony.

Online incremental training

The learning algorithm is outlined as follows:

1. At time framet, grab a new laser mapr(t) and the wheels’
velocity q̇(t). Use Eq. (10) to calculate the base’s velocity
v(t).

2. Computera(t) based onr(t) using Eq. (5). Apply atten-
tion a(t) to givenz(t) using Eq. (4). Mergez(t) and the
current vehicle’s velocities,v(t), into a single vectorx(t)
using Eq. (1).

3. If the mouse button is clicked (training), Eq. (8) is used
to calculate the imposed actiony(t), then go to step 4.
Otherwise go to step 6.

4. Use input-output pair(x(t), y(t)) to train the IHDR tree
as one incremental step.

5. Send the actiony(t) to the controller which giveṡq(t+1).
Incrementt by 1 and go to step 1.

6. Query the IHDR tree by calling the retrieval procedure
and get the primed actiony(t + 1). Sendy(t + 1) to the
controller which giveṡq(t + 1). Incrementt by 1 and go
to step 1.

The online incremental training process does not explicitly
have separate training and testing phases. Whenevery is not
given, the robot performs.

Table 2:The results of the leave-one-out test.

Range Mean error Mean error
(with attention) (without attention)

θ [0, π] 0.090 0.11
v [0, 1.0] 0.005 0.007

Robot

T

Figure 8: A 10-minute run by the simulated robot with the at-
tentional module. The solid dark lines denote walls and the small
trace circles show the trajectory. Obstacles of irregular shapes are
scattered about the corridor.

Experimental results
Simulation experiments
To show the importance of the attentional mechanism, two
IHDR trees were trained simultaneously: one used attention
and the other used the raw range image directly. We inter-
actively trained the simulated robot in 16 scenarios which
acquired 1917 samples.

In order to test the generalization capability of the learn-
ing system, we performed the leave-one-out test for both
IHDR trees. The 1917 training samples were divided into
10 bins. Chose 9 bins for training and left one bin for test-
ing. This procedure was repeated ten times, one for each
choice of test bin. The average results are shown in Table
2. Comparing the results, we can see that the mean error
was reduced by introducing attention. Although, the gen-
eralization capability was improved, the amount is not very
large because the training sample consisted of mostly far-
away objects.

The tests were performed in an environment different
from the training scenarios. In Fig. 8, with attention, the
simulated robot performed successfully a continuous 10-
minute run. The robot’s trajectory is shown by small trailing
circles. Remember that no environmental map was stored
across the laser maps and the robot had no global position
sensors. Fig. 9 shows that, without attention, the robot failed
several times in a 3-minute test run.

Experiment on the Dav robot
A continuous 15-minute run was performed by Dav in the
corridor of the Engineering Building at Michigan State Uni-
versity. The corridor was crowded with high school stu-
dents, as shown in Fig. 10. Dav successfully navigated in
this dynamic changing environment without collisions with
moving students. It is worth noting the testing scenarios
were not the same as the training scenarios.
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Figure 9:The result of the test without attentional selection. Four
collisions indicated by arrows are occurred.

Figure 10:Dav moved autonomously in a corridor crowded with
people.

Discussion and Conclusion

The system may fail when obstacles were outside the field-
of-view of the laser scanner. Since the laser scanner has to
be installed at the front, nearby objects on the side are not
“visible.” This means that the trainer needs to “look ahead”
when providing desired control signals so that the objects are
not too close to the “blind spots.” In addition, the attentional
mechanism assumes that far-away objects were not related
to the desired control signal. This does not work well for
long term planning, e.g., the robot may be trapped into a U-
shape setting. This problem can be solved by integrating this
local collision avoidance with a path planner, but the latter
is beyond the scope of this paper.

This paper described a range-based obstacle-avoidance
learning system implemented on a mobile humanoid robot.
The attention selection mechanism reduces the importance
of far-away objects when nearby objects are present. The
power of the learning-based method is to enable the robot
to learn very complex function between the input range map
and the desired behavior, such a function is typically so com-
plex that it is not possible to write a program to simulate it
accurately. Indeed, the complex range-perception based hu-
man action learned byy = f(z, v) is too complex to write
a program without learning. The success of the learning for
high dimensional input(z, v) is mainly due to the power of
IHDR, and the real-time speed is due to the logarithmic time
complexity of IHDR. The optimal subspace-based Bayesian
generalization enables quasi-optimal interpolation of behav-
iors from matched learned samples. The online incremental
learning is useful for the trainer to dynamically select sce-
narios according to the robots weakness (i.e., problem areas)
in performance. It is true that training needs extra effort,but
it enables the behaviors to change according to a wide vari-

ety of changes in the range map.

Appendix A
Proof of Theorem 1: Consider the cases where there arek
(1 ≤ k ≤ h) end points located within the half-circleT (see
Fig. 4). The number of possible configurations for theh− k
end points outside the circle, denoted bysk, is:

sk = qh−k. (11)

Because the radial distance of theh − k end points have the
freedom to choose values from the interval[T, rm], which
hasq discrete values. By definition:

EP ′{R(P ′)|C} =

h
∑

k=1

skP (k|C),

whereP (k|C) denotes the conditional probability whenk
end points are located within the half-circleT . We can see

P (k|C) = Ck
h(1 − p)k/(1 − ph).

Therefore,

EP ′{R(P ′)} =

h
∑

k=1

qh−k Ck
h(1 − p)k

1 − ph

=

∑h

k=0
Ck

hqh−k(1 − p)k − qh

1 − ph

=
(q + (1 − p))h − qh

1 − ph
>

(1 − p)hqh−1

1 − ph
.

In the last step, the inequality,(x + δ)n − xn > nxn−1δ if
0 < δ << x, is used.
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